The Infinite Version of an Open Communication Complexity
Problem is Independent of the Axioms of Set Theory

Lance Fortnow™
Stuart Kurtz'

Duke Whang?
Department of Computer Science
The University of Chicago
1100 East 58th Street
Chicago, Illinois 60637

Abstract

In 1986, Babai, Frankl and Simon [BFS86] defined the polynomial hierarchy in communi-
cation complexity and asked whether ¥5° = II5°. In order to tackle this problem, researchers
have looked at an infinite version. We recently became aware of a paper from 1979 where Miller
[Mil79] shows that this infinite version is independent of the axioms of set theory. In this note
we will describe Miller’s result and give a simplified proof of one direction by showing that the
continuum hypothesis implies that X4 = 115 = P(R x R).

One approach to solving problems in complexity theory is to look at infinite versions of problems
where the solutions may be easier. One can then try to apply these proof techniques to the finite
complexity theory question. In one of the best examples of this technique, Sipser (see [Sip83])
showed that an infinite version of parity does not have bounded depth countable-size circuits.
Furst, Saxe and Sipser [F'SS84] used the techniques from Sipser’s paper to show that parity does
not have constant-depth polynomial-size circuits.

In 1986, Babai, Frankl and Simon [BFS86] defined a hierarchy of communication complexity
classes and asked whether ¥5° = II5° in this hierarchy. In this paper we will look at the equivalent
combinatorial definition of this hierarchy. We refer the reader to [BFS86] for a background in
communication complexity and the communication complexity definition of this hierarchy.

Let N ={1,...2"}. A rectangle is defined to be A x B where A and B are arbitrary subsets of
N x N. Let II§° be the set of rectangles. For every ¢ > 0, let Xf{, be any polynomial union of II§*
sets and let TI5, be the set of complements of X¢{, sets. Note that the diagonal set {(z,z) |z € N}
is in IIT" — X7°.

In order to tackle the 35° = 115° problem, researchers have looked at an infinite version of the
communication complexity hierarchy. We define the X7, II levels of the rectangle hierarchy the
same way as the communication complexity hierarchy except we use R instead of NV and countable
union instead of polynomial union. Note again that the diagonal set {(x,z) |« € R}is in II] — X7.
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We recently became aware of a 1979 paper by Miller [Mil79] that settles the X! = I} question
in an unusual way: “¥% = 1117 is independent of the standard axioms of set theory. As far as we
know, this is the first known independence result for an infinite version of a complexity question.

Note that the independence of the infinite case does not imply anything about the provability
of the communication complexity question. What it does tell us is that any proof that X5 = II5°
or ¥5° # I15° will not carry over to the infinite case.

As we shall see, if one assumes the axiom of choice and the continuum hypothesis (there is no
set smaller than the reals but bigger than the natural numbers) then we have that X} = Il equals
every subset of R x R. On the other hand, Miller shows that it is consistent with the axioms of
set theory that the rectangle hierarchy collapse at precisely the a level for a any successor ordinal
greater than one and less than w;.

The proof that the continuum hypothesis and the axiom of choice imply that X7 = II3 equals
every subset of R X R can be understood without a deep knowledge of set theory. In this note we
will present a simplified proof of this fact.

First some definitions and notations:

Let ZFC be the standard axioms of set theory including the axiom of choice (AC).

Let w = wy be the set of natural numbers. Let w; be the smallest ordinal with uncountable
cardinality. Let R denote the set of real numbers and @ denote the set of rational numbers.

Let | X | denote the cardinality of X and P(X) and 2% denote the power set of X, i.e., the set
of all subsets of X.

The continuum hypothesis (CH) states that |w,| = |2¥|(= |R]).

Theorem 1 ZFC implies P(w; X wy) C X5

Proof: Let T be any subset of w; Xw;. We will show that 7 is a X set, i.e., a countable union
of 117 sets.
Note that for every o < w; there are at most a countable number of 3 < a. For every a < w;

define A, and B, as
Ay ={(B,a) | (B,0) €T & B < a}

Bo ={(e,f) [ (e, f) €T & < a}

Note that for every a < wy, A, and B, are countable and

T=|J A.uB,

alwy

Since A, and B, are countable, fix some enumeration of their elements using the axiom of choice.
Define the partial function f, :w; X w — w; as follows:

fala,i) = where (3, ) is the ith element in the enumeration of A, if an ith element exists.

Define 54 as:
U {f a) | fa,i)is defined}

a<<wy

We can define fg and Sg similarly.
Note that

T = J(Sa(i) U Sp(i))
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We now only need to show that for every ¢ € w, 54(7) and Sp(?) are both 117 sets.
Fix ¢ € w. Since |wy| < |2¥| = |R| there exists a one-to-one function ¢ that maps w; into R.
Define rectangles ® and A, and I'; for ¢ € Q as follows:

O = {(B,a)| fala,i)is not defined}
A, = {(B,a)]| fala,i)is defined and ¢(3) < ¢ and g(fa(e,7)) > ¢}
1(B,2) | fa(a,i)is defined and g(3) > ¢ and g(fa(a,7)) < ¢}

=
|

Note that
Sis(y=0u [ J(a,ur,)
q€Q
because for every (,a) & Sa(i), either f4(a,?) is not defined or there is some ¢ € @ such that
either g(f) < ¢ < g(fala,i)) or g(B) > q > g(fa(e,7)). Thus S4(7) is a II] set. The proof that
Sp(i)is a Il set is similar. O

Corollary 2 ZFC + CH implies that ¥} = 1I;, = P(R x R).

Miller notes that the converse of Corollary 2 does not hold.

Miller’s proof showing that it is consistent with the axioms of set theory that X} # II} uses
forcing techniques requiring a substantial background in set theory. We state the appropriate
theorem from Miller’s paper [Mil79, Theorem 37] and refer the interested reader to that paper.

Theorem 3 For any ay a successor ordinal such that 2 < ag < wy, it is relatively consistent with
ZFC that |2°| = w, and ay is the least ordinal such that ¥, = P(R x R).

Corollary 4 For any oy a successor ordinal such that 2 < ag < wy, it is relatively consistent with
ZFC that |2°] = w, and ay is the least ordinal such that X7, = 117,

Proof: Note that for any a < wy, if X7 = II}, then for any § > «a, X = II7.
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