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We recently became aware of a 1979 paper by Miller [Mil79] that settles the �r2 = �r2 questionin an unusual way: \�r2 = �r2" is independent of the standard axioms of set theory. As far as weknow, this is the �rst known independence result for an in�nite version of a complexity question.Note that the independence of the in�nite case does not imply anything about the provabilityof the communication complexity question. What it does tell us is that any proof that �cc2 = �cc2or �cc2 6= �cc2 will not carry over to the in�nite case.As we shall see, if one assumes the axiom of choice and the continuum hypothesis (there is noset smaller than the reals but bigger than the natural numbers) then we have that �r2 = �r2 equalsevery subset of R� R. On the other hand, Miller shows that it is consistent with the axioms ofset theory that the rectangle hierarchy collapse at precisely the � level for � any successor ordinalgreater than one and less than !1.The proof that the continuum hypothesis and the axiom of choice imply that �r2 = �r2 equalsevery subset of R�R can be understood without a deep knowledge of set theory. In this note wewill present a simpli�ed proof of this fact.First some de�nitions and notations:Let ZFC be the standard axioms of set theory including the axiom of choice (AC).Let ! = !0 be the set of natural numbers. Let !1 be the smallest ordinal with uncountablecardinality. Let R denote the set of real numbers and Q denote the set of rational numbers.Let jX j denote the cardinality of X and P(X) and 2X denote the power set of X , i.e., the setof all subsets of X .The continuum hypothesis (CH) states that j!1j = j2!j(= jRj).Theorem 1 ZFC implies P(!1 � !1) � �r2Proof: Let T be any subset of !1�!1. We will show that T is a �r2 set, i.e., a countable unionof �r1 sets.Note that for every � < !1 there are at most a countable number of � � �. For every � < !1de�ne A� and B� as A� = f(�; �) j (�; �) 2 T & � � �gB� = f(�; �) j (�; �) 2 T & � < �gNote that for every � < !1, A� and B� are countable andT = [�<!1A� [B�Since A� and B� are countable, �x some enumeration of their elements using the axiom of choice.De�ne the partial function fA : !1 � ! ! !1 as follows:fA(�; i) = � where (�; �) is the ith element in the enumeration of A� if an ith element exists.De�ne SA as: SA(i) = [�<!1f(f(�; i); �) j f(�; i) is de�nedgWe can de�ne fB and SB similarly.Note that T = [i2!(SA(i)[ SB(i))



We now only need to show that for every i 2 !, SA(i) and SB(i) are both �r1 sets.Fix i 2 !. Since j!1j � j2!j = jRj there exists a one-to-one function g that maps !1 into R.De�ne rectangles � and �q and �q for q 2 Q as follows:� = f(�; �) j fA(�; i) is not de�nedg�q = f(�; �) j fA(�; i) is de�ned and g(�) < q and g(fA(�; i)) > qg�q = f(�; �) j fA(�; i) is de�ned and g(�) > q and g(fA(�; i)) < qgNote that SA(i) = � [ [q2Q(�q [ �q)because for every (�; �) 62 SA(i), either fA(�; i) is not de�ned or there is some q 2 Q such thateither g(�) < q < g(fA(�; i)) or g(�) > q > g(fA(�; i)). Thus SA(i) is a �r1 set. The proof thatSB(i) is a �r1 set is similar. 2Corollary 2 ZFC + CH implies that �r2 = �r2 = P(R�R):Miller notes that the converse of Corollary 2 does not hold.Miller's proof showing that it is consistent with the axioms of set theory that �r2 6= �r2 usesforcing techniques requiring a substantial background in set theory. We state the appropriatetheorem from Miller's paper [Mil79, Theorem 37] and refer the interested reader to that paper.Theorem 3 For any �0 a successor ordinal such that 2 � �0 < !1, it is relatively consistent withZFC that j2!j = !2 and �0 is the least ordinal such that �r�0 = P(R�R):Corollary 4 For any �0 a successor ordinal such that 2 � �0 < !1, it is relatively consistent withZFC that j2!j = !2 and �0 is the least ordinal such that �r�0 = �r�0Proof: Note that for any � < !1, if �r� = �r� then for any � � �, �r� = �r� .References[BFS86] L. Babai, P. Frankl, and J. Simon. Complexity classes in communication complexitytheory. In Proceedings of the 27th IEEE Symposium on Foundations of Computer Science,pages 337{347. IEEE, New York, 1986.[FSS84] M. Furst, J. Saxe, and M. Sipser. Parity, circuits and the polynomial-time hierarchy.Mathematical Systems Theory, 17:13{27, 1984.[Mil79] A. Miller. On the length of borel hierarchies. Annals of Mathematical Logic, 16:233{267,1979.[Sip83] M. Sipser. Borel sets and circuit complexity. In Proceedings of the 15th ACM Symposiumon the Theory of Computing, pages 61{69. ACM, New York, 1983.


