
Diagonalization�Lan
e FortnowyNEC Resear
h Institute4 Independen
e WayPrin
eton, NJ 08540May 15, 2000Abstra
tWe give a modern histori
al and philosophi
al dis
ussion of diagonalization as a tool to provelower bounds in 
omputational 
omplexity. We will give several examples and dis
uss four pos-sible approa
hes to use diagonalization for separating logarithmi
-spa
e from nondeterministi
polynomial-time.1 Introdu
tionThe greatest embarrassment in 
omputational 
omplexity theory 
omes from our inability to a
hievesigni�
ant 
omplexity 
lass separations. In re
ent years we have seen many interesting results
ome from an old te
hnique|diagonalization. De
eptively simple, diagonalization, 
ombined withte
hniques for 
ollapsing 
lasses, 
an yield quite interesting lower bounds on 
omputation.In 1874, Cantor [Can74℄ �rst used diagonalization for showing the set of reals is not 
ountable.The proof worked by assuming an enumeration of the reals and designing a set that one-by-one isdi�erent from every set in the enumeration. Drawn as a table this pro
ess 
onsiders the diagonalset and reverses it. Thus the term diagonalization.Diagonalization was �rst used in 
omputability theory in the 1930's by Turing [Tur36℄ to showthat there existed 
omputably enumerable problems that were not 
omputable. The seminal paperin 
omputational 
omplexity [HS65℄ used diagonalization to give time and spa
e hierar
hies.Diagonalization works! In Se
tion 2.1 we des
ribe Allender's diagonalization proof [All99℄ thatthe permanent is not 
omputable by uniform 
onstant depth threshold 
ir
uits. Without diagonal-ization, 
an we even show that the halting problem does not have su
h 
ir
uits?Razborov and Rudi
h [RR97℄ has developed the 
on
ept of \natural proofs" that 
apture theknown te
hniques for proving lower bounds in nonuniform 
ir
uit 
lasses. They show that underreasonable assumptions, these proofs 
annot give us strong lower bounds for various interesting
ir
uit problems. Sin
e diagonalization works against uniform models of 
omputation, these issuesdo not apply.The te
hniques for diagonalization remain relatively simple. To prove a separation result, oneassumes a 
ollapse and derives enough 
onsequen
es until we violate a well-known time-hierar
hytheorem. Most of the interesting diagonalization proofs do not rely on hard 
ombinatori
s.�Based on an invited talk given at the DIMACS Workshop on Computational Intra
tability on April 13, 2000.The slides of that presentation 
an be found at http://www.ne
i.nj.ne
.
om/homepages/fortnow/talks.yURL: http://www.ne
i.nj.ne
.
om/homepages/fortnow. Email: fortnow�resear
h.nj.ne
.
om.1



Diagonalization does have its limitations. Most of the results we have by diagonalization are stillfar weaker than we would hope. Diagonalization also gives even weaker results against probabilisti
and nonuniform 
omputation.Baker, Gill and Solovay [BGS75℄ develop the notion of \relativization". They 
reated a rel-ativized world A where PA = NPA. Sin
e all of the known diagonalization proofs of the timerelativize, this gave a good argument that diagonalization alone would not separate P from NP.One 
an get some nonrelativizing separation results. We give one su
h example in Se
tion 2.6.However these results require nonrelativizing 
ollapses of whi
h there are few.We will give several results showing how diagonalization has and 
ontinues to play an importantrole in 
omputational 
omplexity theory. We also argue that diagonalization may even help usseparate 
lasses like NP from L|we give four approa
hes towards this goal.2 Diagonalization ProofsIn this se
tion we give several examples about diagonalization results to give a taste and history ofthe te
hnique.2.1 Permanent is not in uniform TC0A wonderful example of the diagonalization te
hnique is the result showing that the permanent
annot be 
omputed by uniform 
onstant depth threshold 
ir
uits. This result was proven byAllender [All99℄ building on work of Caussinus, M
Kenzie, Th�erien and Vollmer [CMTV98℄ andAllender and Gore [AG94℄. We sket
h the proof in this se
tion.Consider threshold ma
hines: These are like alternating ma
hines ex
ept that instead of askingexistential and universal questions they ask \Do a majority of my 
omputation paths a

ept?" Ak-threshold ma
hine 
an have k threshold questions on any path. Polynomial-time unbounded-threshold ma
hines give us PSPACE. Polynomial-time 
onstant-threshold ma
hines 
hara
terizethe 
ounting hierar
hy. Logarithmi
-time 
onstant-threshold ma
hines with random-a

ess to theinput 
hara
terize uniform TC0.Suppose the permanent is in uniform TC0 and therefore in P. Thus we 
an 
ount 
omputationpaths in polynomial-time [Val79℄ so the entire 
ounting hierar
hy 
ollapses to P. The proofs thatthe permanent is #P-
omplete [Val79, Zan92℄ show that the permanent is in fa
t 
omplete underredu
tions 
omputable by 
onstant depth 
ir
uits. Sin
e the permanent is in TC0 the 
ountinghierar
hy now 
ollapses to TC0.By straightforward diagonalization one 
an get that for any �xed k there exists a language a
-
epted by a polynomial-time k-threshold ma
hine not a

epted by any logarithmi
-time k-thresholdma
hine. We have not yet rea
hed a 
ontradi
tion sin
e it is possible that a polynomial-time k-threshold ma
hine is a

epted by some logarithmi
-time k + 1-threshold ma
hine.Now SAT is a

epted by a log-time k-threshold ma
hine for some �xed k. All of NP, andthus the 
ounting hierar
hy is redu
ible to SAT via simple proje
tions. All of the polynomial-time
onstant threshold ma
hines 
an be simulated by a logarithmi
-time k-threshold ma
hine giving usthe 
ontradi
tion.This proof is a great example of the diagonalization method: We want to prove a separation.First we assume the 
ollapse. Then we get other 
ollapses and keep on 
ollapsing until we 
anapply a straightforward diagonalization.
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2.2 Time and Spa
e Hierar
hiesThe �rst uses of diagonalization in 
omplexity theory 
ame in the very �rst papers. The main resultsof the seminal paper in 
omplexity theory by Hartmanis and Stearns [HS65℄ gave deterministi
 timeand spa
e hierar
hy results using straightforward diagonalization.Nondeterministi
 hierar
hy results are not so straightforward be
ause of the need to do theopposite in the diagonalization step. Ibarra [Iba72℄ showed how to get good bounds for the nonde-terministi
 spa
e hierar
hy by making many 
ollapses and then applying Savit
h's Theorem [Sav70℄to get the determinism needed for diagonalization. Immerman [Imm88℄ and Szelep
s�enyi [Sze88℄'sresults that nondeterministi
 spa
e is 
losed under 
omplement removed this problem and gavetight hierar
hies.We do not believe nondeterministi
 time is 
losed under 
omplement and we also do not haveany deterministi
 simulation nearly as ni
e as Savit
h's theorem for spa
e. However, using a largenumber of 
ollapses we 
an a
hieve quite a tight hierar
hy for nondeterministi
 time.Cook [Coo73℄ �rst showed that NTIME(nr) ( NTIME(ns) if 1 � r < s. Seiferas, Fis
herand Meyer [SFM78℄ give a signi�
antly stronger version.Theorem 2.1 (Seiferas-Fis
her-Meyer) For any time-
onstru
tible fun
tions s and t su
h thats(n+ 1) = o(t(n)), there exists a language a

epted in nondeterministi
 time t(n) but not a

eptedin nondeterministi
 time s(n).We sket
h a simple proof of Theorem 2.1 due to �Z�ak [�Z�ak83℄.Sket
h of Proof: Let M1; : : : be an enumeration of nondeterministi
 Turing ma
hines. We de�nea nondeterministi
 ma
hine M that a
ts as follows on input w = 1i01m01k: If k < mt(m) thensimulate Mi on input 1i01m01k+1 for t(jwj) steps. If k = mt(m) then a

ept if 1i01m0 reje
ts whi
hwe 
an do qui
kly as a fun
tion of the 
urrent input size.This ma
hine uses time t(n) so by assumption 
an be simulated in time s(n) by some ma
hineMi. Sin
e s(n+ 1) = o(t(n)) we have for suÆ
iently large m,1i01m0 2 L(M), 1i01m01 2 L(M), � � � , 1i01m01mt(m) 2 L(M), 1i01m0 62 L(M)a 
ontradi
tion. �2.3 Delayed DiagonalizationIn 1975, Ladner [Lad75℄ showed that if P 6= NP there must an in
omplete set in NP � P. Hisproof 
reates a set that is sometimes SAT to keep it out of P and sometimes the empty set to keepit in
omplete. The tri
ky part is to keep the set in NP. We need to be patient and wait until wea
tually see a diagonalization o

ur.Theorem 2.2 (Ladner) If P 6= NP then there exists a set A su
h that1. A 2 NP,2. A 62 P, and3. A is not NP-
omplete.
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Proof: We will 
reate a polynomial-time 
omputable fun
tion f : 1� ! N. We de�ne our set A asA = f� j � 2 SAT and f(j�j) is eveng:Clearly A is in NP. We will use f to indi
ate our 
urrent stage. When f is equal to 2i then we willtry to prevent A from being a

epted by the ith polynomial-time Turing ma
hine. When f is equalto 2i+1 we will prevent SAT from redu
ing to A via the ith polynomial-time 
omputable redu
tion.To keep f polynomial-time 
omputable we will need to wait not only for the diagonalization too

ur but for there to be enough time for us to see it. Thus the notion of \delayed diagonalization."Let M1; : : : be an enumeration of the polynomial-time 
omputable Turing ma
hines. Let g1; : : :be an enumeration of polynomial-time 
omputable fun
tions.Initially let f(0) = 2. We will start in stage n = 1.STAGE n:Let j = f(n� 1). If j is even we will work against A = L(M j2 ). If j is odd we will work againstgb j2 
 redu
ing SAT to A.CASE j = 2k:See if there exists a formula � su
h that j�j � log n and � is in the symmetri
 di�eren
e ofL(Mk) and A as de�ned so far. If so let f(n) = j + 1 otherwise let f(n) = j.CASE j = 2k + 1:See if there exists a formula � su
h that j�j � log n and either1. � 2 SAT and gk(�) 62 A, or2. � 62 SAT and gk(�) 2 A.If so then let f(n) = j + 1 otherwise let f(n) = j.If f(n) goes to in�nity then we have ful�lled the 
onditions for A. If f(n) rea
hes a limit of2k then A will be equal to L(Mk) and also �nitely di�erent from SAT violating the P 6= NPassumption. Likewise if f(n) rea
hes a limit of 2k+ 1 then gk will redu
e SAT to A but A will be�nite again violating the P 6= NP assumption. �2.4 Every separation is diagonalization?Partly in response to the relativization work of Baker, Gill and Solovay [BGS75℄, Kozen [Koz80℄took a di�erent ta
t. He argued that any proof of say P 6= NP would be a proof by diagonalization.LetM1; : : : be an enumeration of the polynomial-time 
omputable ma
hines. Let h be a fun
tionmapping �� to the natural numbers. We de�ne diagh asdiagh = fx j Mh(x)(x) reje
tsg:Kozen notes that either of the following two 
onditions guarantee that diagh is not in P.1. For all L in P there is some x su
h that L = L(Mh(x)).4



2. For all L in P there is L0 su
h that L0 and L di�er in �nitely many pla
es and for in�nitelymany x, L0 = L(Mh(x)).Theorem 2.3 (Kozen) For any 
omputable set B not in P there exists a 
omputable h su
h thatB = diagh. Moreover, h 
an be 
hosen to meet both of the 
onditions above.In parti
ular if P 6= NP then we 
an take B = SAT in Theorem 2.3. Any proof that P 6= NPwould imply a proof of the existen
e of an h ful�lling the 
onditions above su
h that SAT = diagh.I believe this result says more about the diÆ
ulty of exa
tly formalizing the notion of a \diag-onalization proof" than of a
tually arguing the diagonalization te
hnique is the only te
hnique wehave for 
lass separation.2.5 Separations against nonuniform 
lassesDiagonalizing against nonuniform 
lasses appears quite diÆ
ult. One 
ould use some input todiagonalize against a parti
ular 
ir
uit. Unfortunately we usually have more 
ir
uits than inputs.Kannan [Kan82℄ gives an interesting strategy for showing that some 
lasses do not have small
ir
uits.Theorem 2.4 (Kannan)1. For any �xed k, there is a language in �p2 \�p2 not 
omputable in nk-size 
ir
uits.2. There is a language in �E4 \�E4 not 
omputable by 2o(n)-size 
ir
uits.3. There is a language in �E2 \�E2 not 
omputable by polynomial-size 
ir
uits.The 
lass �Ek represents the 2O(n) version of �pk.Proof: We will give the proof for the �rst. The other two are similar.Fix k. Consider the set of strings L 
onsisting of x a

epted by the lexi
ographi
ally least
ir
uit of size nk+1 that is di�erent from all 
ir
uits of size nk. Simple 
ounting arguments showthat su
h 
ir
uits must exist. This expression 
an be formulated in �p4.To get a separation at the se
ond level of the hierar
hy we use a non
onstru
tive argument. IfSAT does not have nk size 
ir
uits than the result follows. Otherwise by Karp and Lipton [KL80℄the entire polynomial-time hierar
hy and thus L is 
ontained in �p2 \�p2. �Is this proof a diagonalization argument or really a simple 
ombinatorial argument? It is not
lear and an informal survey of fellow 
omplexity theorists gave a mixed response.2.6 Nonrelativizing SeparationsBuhrman, Fortnow and Thierauf [BFT98℄ give the �rst separation result that does not relativize.Consider the 
lassMAEXP that 
onsists of languages proven by an intera
tive proof system wherethe prover sends a single message to a probabilisti
 exponential-time veri�er.Theorem 2.5 (Buhrman-Fortnow-Thierauf)1. There exists a language in MAEXP that does not have polynomial-size 
ir
uits.2. There exists a relativized world where every language in MAEXP has polynomial-size 
ir
uits.5



Proof of Theorem 2.5(1): Assume thatMAEXP has polynomial-size 
ir
uits. This implies thatEXP has polynomial-size 
ir
uits and thus that EXP = MA [BFL91℄. We then have �p2 �MAand by translation that �EXP2 � MAEXP. This 
ontradi
ts Kannan's result [Kan82℄ that �EXP2does not have polynomial-size 
ir
uits. �The proof does not relativize be
ause it relies on the result of Babai, Fortnow and Lund [BFL91℄that EXP has polynomial-size 
ir
uits impliesEXP =MA whi
h follows from their nonrelativizingproof of MIP = NEXP.This proof shows that one 
an get nonrelativizing diagonalization arguments by using nonrela-tivizing 
ollapses.3 Approa
hes to separating L from NPWhile the P 6= NP question remains quite formidable, the L 6= NP question seem mu
h moretra
table. We have no reason to think this question is diÆ
ult. The la
k of good relativizationmodels for spa
e means we have no meaningful ora
le model where L and NP 
ollapse. Also sin
eL is a uniform 
lass, the Razborov-Rudi
h [RR97℄ limitations do not apply.In this se
tion we give four di�erent approa
hes to atta
k this problem.3.1 Autoredu
ibilityTrakhtenbrot [Tra70a℄ �rst looked at autoredu
ibility in the 
omputability setting as a measure ofredundan
y in a set. Buhrman, Fortnow, van Melkebeek and Torenvliet [BFvMT00℄ showed thatin the 
omplexity setting autoredu
ibility may help separate 
omplexity 
lasses.A set A is autoredu
ible if there exists an ora
le polynomial-time Turing ma
hine M su
hthat L(MA) = A with the restri
tion that for all x, MA(x) does not query whether x is in A.Buhrman, Fortnow, van Melkebeek and Torenvliet show a relationship between 
omplete sets andautoredu
ibility.Theorem 3.1 (Buhrman-Fortnow-van Melkebeek-Torenvliet)1. If every Turing-
omplete set for EXPSPACE is autoredu
ible then NL 6= NP.2. If every nonadaptively-Turing-
omplete set for PSPACE is nonadaptively autoredu
ible thenNL 6= NP.Assuming NL = NP Buhrman, Fortnow, van Melkebeek and Torenvliet 
reate a series of
onstru
tions to get an A su
h that1. A is in EXPSPACE,2. A is Turing-hard for EXPSPACE and3. A \diagonalizes" against all possible autoredu
tions.They also give autoredu
tions for the EXP-
omplete sets and 
omplete sets for some 
lasses inthe exponential-time hierar
hy. These autoredu
tions use game 
hara
terizations of 
lasses 
reatinga 
ontest between a player trying to show a string x is in a set A and a player trying to show thatx is not in A. Earlier Beigel and Feigenbaum [BF92℄ used a di�erent te
hnique to show that all ofthe Turing-
omplete sets for PSPACE are autoredu
ible.6



3.2 Interse
ting Finite AutomataKarakostas, Lipton and Viglas [KLV00℄ give an interesting approa
h to the L 6= NP problem bylooking at the 
omplexity of determining whether a 
olle
tion of �nite automata a

ept a 
ommonstring.Given a �nite automaton of s states one 
an determine whether the ma
hine a

epts any stringsat all in O(s) time by using depth-�rst sear
h to determine if there exists a path from the initialstate to an a

ept state. If we are given k su
h automata, we 
an �rst 
reate the interse
tingautomaton by using 
ross produ
ts and then apply depth-�rst sear
h to this automata in O(sk)time. Karakostas, Lipton and Vigas show that even small improvements in this running time wouldyield 
omplexity 
lass separations.Theorem 3.2 (Karakostas-Lipton-Viglas) Suppose we are given k �nite automata with s statesand one additional automaton with t states. Let L be the interse
tion of the languages a

epted bythese automata.1. If we 
an determine whether L is not empty in so(k)t time then L 6= P.2. If we 
an determine whether L is not empty with so(k)t-size 
ir
uits then L 6=NP.The proof works by assigning �nite automata F1; : : : ; Fk to di�erent regions of the work tape. Ea
hFi is responsible for 
he
king the 
omputation when the head is in its region. Ea
h Fi has to keeptra
k of its region of the tape and the 
urrent tape head lo
ation. An additional automaton Gkeeps tra
k of the input tape. With appropriate 
hoi
es of s for the sizes of the Fi and t for the sizeof G, if we 
an determine that L is not empty in so(k)t time then we have L �DTIME(n1+�) ( P.A similar proof shows that if we 
an determine whether L is not empty with so(k)t-size 
ir
uitsthen L has n1+� size 
ir
uits. If L = NP then L = �p2 and �p2 
annot have nk size 
ir
uits for any�xed k [Kan82℄.We may have trouble applying Theorem 3.2 dire
tly to separate L fromNP be
ause determiningwhether L is not empty may just be a diÆ
ult problem. However, to separate L from NP, we needonly show a qui
k algorithm for 
he
king that L is not empty under the assumption that L =NP.There we may have more hope.3.3 Hardness versus RandomnessImpagliazzo and Wigderson [IW97℄ show how to 
ompletely derandomize BPP using a stronghardness assumption. Trying to show this or even stronger assumptions false 
an lead to 
omplexityseparations.Theorem 3.3 (Impagliazzo-Wigderson) If there exist languages in E that 
annot be 
omputedby 2o(n)-size 
ir
uits then P = BPP.This is a wonderful derandomization result|but that is the topi
 of another survey. Instead letus fo
us on the ante
edent. The ante
edent seems awfully strong|It is impossible to have a verylarge amount of advi
e to give a small improvement on time. However, proving it false would implyP 6= NP.Theorem 3.4 If P = NP then there exist languages in E that 
annot be 
omputed by 2o(n)-size
ir
uits. 7



Proof: If P = NP then P = �p4 and by translation E = �E4 . However by Kannan [Kan82℄, �E4has languages that require 2
(n)-size 
ir
uits. �A similar argument shows that if linear spa
e has small 
ir
uits we 
an get weaker separations.Theorem 3.5 If L = NP then there exist languages in DSPACE(n) that do not have 2o(n)-size
ir
uits.It remains open whether even SAT 2 NTIME(n) � DSPACE(n) 
an be 
omputed by 2o(n)-size
ir
uits. However, if SAT does not have small 
ir
uits then we already know L 6= NP. This leadsto the following approa
h to separating those 
lasses.Theorem 3.6 If every language in DSPACE(n) has 2o(n)-size 
ir
uits assuming that SAT 
anbe 
omputed in polynomial-size 
ir
uits then L 6= NP.One 
an think of DSPACE(n) as linear alternating time. We want to simulate linear alternatingtime with slightly subexponential 
ir
uits on the assumption that we 
an do one layer of alternationin polynomial-size 
ir
uits.3.4 Alternation, Time and Spa
eA re
ent approa
h looks at using 
ollapses on ma
hines of small alternations. This approa
h hasled to interesting time-spa
e tradeo�s for satis�ability. Kannan [Kan84℄ had looked at similarte
hniques in 1984 followed by more re
ent work by Fortnow [For00℄, Lipton and Viglas [LV99℄,Tourlakis [Tou00℄ and Fortnow and van Melkebeek [FvM00℄.We give an easy example showing time-spa
e trade-o�s on �n2 time.Theorem 3.7 (Fortnow-van Melkebeek) There exists a language in �n2 that 
annot be 
om-puted by any deterministi
 random-a

ess Turing-ma
hine using n1:99 time and O(logn) spa
e.Proof Sket
h: Suppose the theorem is false. By translation we have every language L in �n22a

epted by a deterministi
 Turing-ma
hine M using n3:98 time and O(log n) spa
e.We will simulate M by a �n1:99 log n2 ma
hine violating the �2-time hierar
hy whi
h is provensimilarly to Theorem 2.1. Nondeterministi
ally guess the 
on�gurations ofM at the time step in1:99for 0 � i � n1:99. Universally pi
k an i < n1:99 and deterministi
ally 
he
k that the 
on�gurationat time in1:99 
an go to 
on�guration (i+ 1)n1:99. �Similar te
hniques show that �nk requires nearly nk deterministi
 time for small spa
e-boundedma
hines. If one 
ould show that for some �xed k, �nk requires nj time for all j then we haveseparated L from NP.We 
an also use these ideas to get time-spa
e tradeo�s for satis�ability. Fortnow and vanMelkebeek building on the earlier papers show that satis�ability 
annot be solved in na time andno(1) spa
e for random-a

ess Turing ma
hines for any a less than the golden ration, about 1.618.4 Con
lusionsDiagonalization, on
e given up for dead, has returned still giving us new and interesting lowerbounds. While the a
tual diagonalization step still remains easy, we have new tools and te
hniquesfor 
ollapsing 
lasses. As we have seen in this survey, better 
ollapses lead to better separations.8
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