
Proving SAT does not have Small Circuits with
an Application to the Two Queries Problem

Lance Fortnow∗ A. Pavan† Samik Sengupta‡

Abstract

We show that ifSAT does not have small circuits, then there must exist
a small number of satisfiable formulas such that every small circuit fails to
compute satisfiability correctly on at least one of these formulas. We use this
result to show that ifPNP[1] = PNP[2], then the polynomial-time hierarchy
collapses toSp

2 ⊆ Σp
2∩Πp

2. Even showing that the hierarchy collapsed toΣp
2

remained open prior to this paper.

1 Introduction

Bshouty, Cleve, Gavald́a, Kannan and Tamon [BC+96] give a probabilistic al-
gorithm with a SAT oracle that learns circuits given hypothesis and membership
queries to that circuit. If SAT has polynomial-size circuits, then one can use their
algorithm to give a probabilistic procedure, once again with a SAT oracle, that
finds that circuit. One can verify in co-NP that this circuit correctly computes
SAT.

What if SAT does not have small circuits? Can one find a short witness of this
fact? We give an affirmative answer. Building on Bshouty et al. we show that if
SAT does not have polynomial-size circuits at lengthn, then for everyk there are

∗Department of Computer Science, University of Chicago, Chicago, IL 60637. Email: fort-
now@cs.uchicago.edu

†Department of Computer Science, Iowa State University, Ames, IA 50011. Part of the work
done while the author was a postdoc at NEC Research Institute. Research supported in part by
NSF grant CCF-0430807. Email: pavan@cs.iastate.edu

‡Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260.
Email: samik@cse.buffalo.edu

1

polynomial number of satisfiable formulas such that every circuit of size at most
nk fails to give a correct answer on at least one of these formulas.

In addition, one can find these formulas with a probabilistic algorithm with a
SAT oracle. These satisfiable formulas along with satisfying assignments give a
co-NP verifiable proof that SAT does not havenk-size circuits.

We show an application to the following well studied question: Is one query
to SAT as powerful as two queries to SAT? In the context of computing functions,
Krentel [Kre88] showed that if any function that can be computed by two queries
to SAT can be computed by one query, thenP = NP, i.e, if PFNP[1] = PFNP[2],
thenP = NP. It is natural to ask whether we can obtain such collapse if we focus
on languages instead of functions.

Kadin [Kad88] showed that ifPNP[1] = PNP[2], then the polynomial-time hier-
archy collapses toΣp

3. Wagner [Wag87] showed that the collapse can be improved
to ∆p

3 = PΣp
2 . Beigel, Chang, and Ogihara [BCO93], building on the work of

Wagner [Wag87] and Chang and Kadin [CK96] obtained a stronger conclusion.
They showed that every language in the polynomial-time hierarchy can be solved
by a polynomial-time machine that makes at most oneNP query and oneΣp

2 query.
Buhrman and Fortnow [BF99] showed many other collapses including that

polynomial-time hierarchy collapses toBPPNP. They tried to improve their col-
lapse toΣp

2 but they could not find a way to easily determine whether SAT had
small circuits.

Using our lemma we can solve this problem and achieve the collapse. We
show that ifPNP[1] = PNP[2] then PH collapses toSp

2 ⊆ ZPPNP([Cai01]) ⊆
Σp

2 ∩ Πp
2.

2 Preliminaries

Given k > 0, PNP[k] denotes the class of languages accepted by a polynomial-
time-bounded oracle Turing machine that makes at mostk adaptive queries to
SAT.

The classSp
2 has been defined independently by Russell and Sundaram [RS98]

and Canetti [Can96]. A setL is in Sp
2 if there is a polynomial-time predicateR

and a polynomialp(·) such that

x ∈ L ⇒ ∃y ∀z R(x, y, z), and

x /∈ L ⇒ ∃z ∀y ¬R(x, y, z),

where|y|, |z| ≤ p(|x|).

2

The classSp
2 can be viewed as a game among two competing provers and a

polynomial-time verifier. The first prover is trying to convince the verifier that the
string is in the language, and the second prover is trying to convince the verifier
that the string is not in the language. If the inputx belongs toL, then the first
prover can give an irrefutable proofy of this fact, i.e., the verifier will accept
irrespective of the proof given by the second prover. Similarly, if the string does
not belong to the language, then the second prover can furnish an irrefutable proof.

3 Key Lemma

In this section we show that if SAT does not have polynomial-size circuits, then
for everyk there exist polynomially many formulas such that every circuit of size
nk is wrong on at least one of these formulas.

Throughout this paper, we assume without loss of generality that if a circuit
says that a formula is satisfiable, then it outputs a satisfying assignment. Thus
the circuit can make errors on only one side. This implies that the language
{〈C, 1n〉 | C is wrong on a formula of sizen} is in NP.

Lemma 3.1 Fix n > 0. For everyk > 0, if SAT does not havenk+2-size circuits
at lengthn, then there exists a setS of satisfiable formulas of lengthn, called
counter-examples, such that every circuit of sizenk is wrong on at least one for-
mula fromS. The cardinality ofS is polynomial inn.

Proof. The proof uses ideas from Bshouty et al. [BC+96]. We define a prob-
abilistic process and show that if SAT does not havenk+2-size circuits, then the
probabilistic process outputs a set of counter-examples with nonzero probability.
We build the setS of counter-examples in stages. At stage zero,S contains an
arbitrary satisfiable formula. At each stage we add a formula to the set. There-
fore, afteri − 1 stages,S hasi counter-examples. We now describe stagei. Fix
m = 36n.

Let Ti be the set of allnk-size circuits that are correct onS. If Ti is empty,
then we are done; so assumeTi is not empty. Uniformly and independently pick
m circuits c1, c2, · · · , cm from Ti. Let C be a circuit that takes majority vote of
c1, · · · , cm. Note that the size ofC is at mostnk+2. Since SAT does not have
nk+2-size circuits, there exists a satisfiable formulaφ on whichC is not correct.
Add φ to S. This completes stagei.

3

We claim that after polynomially many stages,Ti is empty. ThusS contains
polynomially many formulas such that every circuit of sizenk is wrong on at least
one formula inS.

Claim 3.2
Pr[‖Ti+1‖ ≤ 2/3‖Ti‖] > 0.

Proof. Denote the set of randomly chosen circuits byU . Given a formulaρ,
let Vρ be the set of all circuits inTi that are correct onρ. Call a formulaρ “bad” if
‖Vρ‖ > 2/3‖Ti‖. In the following, we fix a badρ.

For 1 ≤ i ≤ m, define random variablesXi as follows:Xi = 1 ⇔ ci /∈ Vρ.
Sinceci-s are picked independently and uniformly,Pr[Xi = 1] = p ≤ 1

3
for every

i, 1 ≤ i ≤ m. We note that sincep ≤ 1
3
,

Pr[‖U ∩ Vρ‖ ≤ 1

2
‖U‖] ≤ Pr

[
Σm

i=1Xi

m
− p >

1

6

]
.

Applying the Chernoff bound [Gol01, page 11] on the right hand side, we can
show that

Pr[‖U ∩ Vρ‖ ≤ 1

2
‖U‖] ≤ 2e−m∗(1/18) < 1/22n.

Since there can be at most2n bad formulas,

Pr[∃ badρ such that‖U ∩ Vρ‖ ≤ 1

2
‖U‖] < 1/2n. (1)

Consider the counter-exampleφ generated during stagei. Sinceφ is a counter-
example toC, the majority circuit ofc1, · · · cm, more thanm/2 circuits inU are
wrong onφ. However, if thisφ were a bad formula, then by Equation 1, with
high probability, more than half the circuits fromU = {c1, · · · , cm} would be
correct onφ. It follows that the probability thatφ is not bad is nonzero. Thus
‖Vφ‖ ≤ 2/3‖Ti‖ with high probability. Note that every circuit inTi+1 should be
correct onφ. Thus it follows that‖Ti+1‖ ≤ 2/3‖Ti‖ with nonzero probability.
This proves Claim 3.2.2

Therefore, after each stage, with nonzero probability, the number of circuits
that are correct onS are reduced by a constant fraction. So after polynomially
many stages all thenk-size circuits would be wrong onS. Since we increase
the size ofS by one during each stage, the cardinality ofS is bounded by a

4

polynomial.2

We also note that the above process can be implemented by a probabilistic
polynomial-time-bounded machine that uses SAT as an oracle. At any stage we
need the ability to pick circuitsc1, c2, · · · , cm uniformly at random fromTi, and
generate a counter exampleφ to C whereC is the circuit that takes majority vote
of c1, · · · , cm. The later task can be done by making queries to the followingNP
language.

{〈C, x〉 | ∃ a satisfiable formulaφ such thatx is a prefix ofφ andC is wrong onφ}.

Also note that once we obtain the counterexampleφ, we can compute a satis-
fying assignment ofφ using SAT as an oracle. So we can assume thatS consists
of satisfiable formulas along with the assignments. Now

Ti = {C | C is ank-size circuit that is correct onS}.

SinceS consists of satisfiable formulas along with the assignments,Ti is a set
in P. Jerrum, Valiant, and Vazirani [JVV86] showed that picking elements, in an
approximately uniform manner, from a set inP can be done in polynomial-time
using SAT as an oracle. Using their procedure we can pick circuits fromTi in an
approximately uniform manner.

4 Application to Two Queries

In this section we show an application of our lemma to the two queries problem.

Theorem 4.1 If PNP[1] = PNP[2], thenPH = Sp
2.

To prove Theorem 4.1 we need the following theorem by Buhrman and Fort-
now [BF99].

Theorem 4.2 (Buhrman-Fortnow) If PNP[1] = PNP[2], then there exists a
polynomial-time predicateR and a constantk > 0 such that for everyn, one
of the following holds.

1. Locally NP = co-NP: For every unsatisfiable formulaφ of lengthn, there
is a short proof of unsatisfiabilityw, i.e.,φ /∈ SAT ⇔ ∃wR(φ,w), where
|w| is bounded by a fixed polynomial inn.

5

2. There exists a circuit of sizenk that decides SAT at lengthn.

We first show that ifPNP[1] = PNP[2], thenΣp
2 = Πp

2. We use Lemma 3.1 to
decide whether locallyNP = co-NP or SAT has small circuits.

Lemma 4.3 If PNP[1] = PNP[2], thenΣp
2 = Πp

2.

Proof. Let L be any language inΠp
2. For any inputx, the following holds:

x ∈ L ⇔ ∀y φy ∈ SAT.

Let |φy| = m. By Theorem 4.2, if SAT does not havemk+2-size circuits at length
m, then every unsatisfiable formula of lengthm has a short proof of unsatisfiabil-
ity.

We describe anNP machine with SAT as an oracle that acceptsL. Recall that
the set{〈C, 1n〉 | C is wrong on a formula of lengthn} is in NP.

Consider the following machineM :

1. Guess 0 or 1

2. If the guessed bit is 0, guess a circuitC of sizemk+2, and ask the SAT
oracle ifC is a correct circuit for SAT at lengthm. If the answer is “no”,
then reject the input. If the answer is “yes”, thenC is a correct circuit for
SAT at lengthm. This can be used to decidex, by asking the SAT oracle
whether there is ay such thatC(φy) = 0. If the answer is “yes”, thenx
does not belong toL; otherwise,x belongs toL.

3. If the guessed bit is 1, guessl satisfiable formulasφ1, · · · , φl and ask the
SAT oracle whether there is a circuit of size at mostmk that is correct on
all the guessed formulas. (Note thatl is the number of counter-examples
obtained from Lemma 3.1.) If the answer is “yes”, then reject the input. If
the answer is “no”, then there is no circuit (for SAT) of sizemk at lengthm.
In this case, by Theorem 4.2, there is a polynomial-time predicateR such
that for every unsatisfiable formula of lengthm, there is a short proofw.
Ask the SAT oracle ifx is in the following set:

{x | ∃y∃wR(φy, w)}.
If x is in this set, then rejectx, otherwise acceptx.

We claim that the above algorithm is correct. Letx ∈ L. We consider the follow-
ing two cases.

6

Case 1: SAT hasmk+2-size circuits at lengthm. In this case there exists a path
of M that guesses the correct circuit and the machine accepts along this
path.

Case 2: SAT does not havemk+2-size circuits at lengthm. In this case, by
Lemma 3.1, there exists a set of satisfiable formulasφ1 · · ·φl such that ev-
ery circuit of sizemk is wrong on at least one of the formulas. Therefore,
there is a path ofM that correctly guesses theseφ1, · · · , φl. Along this path
M knows thatNP = co-NP locally. SoM acceptsx along this path.

Next we show that ifx does not belong toL, then every path of the machine rejects
x. Again we treat two cases.

Case 1: SAT hasmk+2-size circuits at lengthm. Consider the paths that guessed
0 in the first step. The path that correctly guesses the circuit rejects. The
paths that guess a wrong circuit also reject. Now, consider that paths the
guessed 1. In this case, there may or may not exist a set of counter-examples
againstmk-size circuits. If there are no counter-examples, then all paths
reject. If there are counter-examples, then some paths will guess the correct
counter-examples. However, the existence of counter-examples tomk-size
circuits implies that SAT does not havemk-size circuits at lengthm. Thus
by Theorem 4.2, locallyNP = co-NP. Thus all these paths correctly decide
thatx /∈ L.

Case 2: SAT does not havemk+2-size circuits at lengthm. In this case all the
paths that guessed 0 in the first step reject. Consider the paths that guessed
1. By Lemma 3.1, there exists a set of counter-examples. The path that
correctly guesses the counter-examples realizes that locallyNP = co-NP,
and rejectsx. The paths that guess wrong counter-examples also reject.

Therefore,M decidesL. This shows thatΣp
2 = Πp

2. 2

Theorem 4.1 follows from Lemma 4.3 and the following lemma.

Lemma 4.4 If PNP[1] = PNP[2], thenΣp
2 ∩ Πp

2 = Sp
2.

Proof. Let L be inΣp
2 ∩ Πp

2. Thus

x ∈ L ⇒ ∃y φy /∈ SAT ∧ ∀z ρz ∈ SAT.

x /∈ L ⇒ ∃z ρz /∈ SAT ∧ ∀y φy ∈ SAT.

7

Without loss of generality, assume that|φy| = |ρz| = m. By Theorem 4.2, at
lengthm either every unsatisfiable formula has a short proof of unsatisfiability, or
there is amk-size circuit that decides SAT at lengthm.

In the former case, i.e., if every unsatisfiable formula has a short proof of
satisfiability, the first prover’s proof consists ofy, φy, and a proof thatφy is not
satisfiable. And the second prover’s proof consists ofz, ρz, and a proof thatρz is
not satisfiable.

In the later case, the first prover’s proof consists ofy, φy, and a circuit of size
mk. The second prover’s proof consists ofz, ρz, and a circuit of sizemk.

Upon receiving the proofs, the verifier executes the following algorithm. If
either prover claims a short proof of unsatisfiability, then the verifier first checks
whether the given short proof really proves that the formula in consideration (φy

or ρz) to be unsatisfiable. The verifier accepts if the first prover’s proof is correct
and rejects if the second prover’s proof is correct. Note that both of them cannot
be correct.

Consider the case where both the provers give circuits. Here, the first prover
is claiming thatφy is unsatisfiable, and the second prover is claiming thatρz is
unsatisfiable. Also, the first prover is implicitly claiming that for everyz, ρz is
satisfiable. Therefore, if the first prover is correct, then his circuit should be able
to output a satisfying assignment ofρz given by the second prover. The verifier
checks whether that is the case. The verifier accepts only if the first prover’s circuit
produces a satisfying assignment onρz.

It is clear that the prover who gives a correct proof can convince the verifier.
Therefore,L is in Sp

2. 2

5 Further Work

It would be interesting to see whether more applications of Lemma 3.1 can be
found. Can we improve the collapse in Theorem 4.1 toPNP? What consequences
can be obtained if one assumesPNP[k] = PNP[k+1] for k ≥ 2?

6 Acknowledgments

The authors thank Richard Chang for his comments on an earlier version of this
paper. The third author thanks Alan Selman for his helpful insights and valuable

8

suggestions.

References

[BCO93] R. Beigel, R. Chang, and M. Ogihara. A relationship between differ-
ence hierarchies and relativized polynomial hierarchies.Mathemati-
cal Systems Theory, 26(3), pp. 291–310, 1993.

[BC+96] N. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon. Oracles
and queries that are sufficient for exact learning.Journal of Computer
and System Sciences, 52(3), pp. 421–433, 1996.

[BF99] H. Buhrman and L. Fortnow. Two queries.Journal of Computer and
System Sciences, 59(2), pp. 182–194, 1999.

[Cai01] Jin-Yi Cai. Sp
2 ⊆ ZPPNP. Proceedings of the 42nd IEEE Conference

on Foundations of Computer Science (FOCS), pp. 620–629, 2001.

[Can96] R. Canetti. More on BPP and the polynomial-time hierarchy.Infor-
mation Processing Letters, 57(5), pp. 237–241, 1996.

[CK96] R. Chang and J. Kadin. The boolean hierarchy and the polynomial
hierarchy; A closer connection.SIAM Journal on Computing, 25(2),
pp. 340–354, 1996.

[Gol01] O. Goldreich.Foundations of Cryptography – Volume 1. Cambridge
University Press, New York, 2001.

[JVV86] M. Jerrum, L. Valiant, and V. Vazirani. Random generation of combi-
natorial structures from a uniform distribution.Theoretical Computer
Science, 43(1986), pp. 169–188.

[Kad88] J. Kadin. The polynomial-time hierarchy collapses if the boolean hi-
erarchy collapses.SIAM Journal on Computing, 17(1988), pp. 1263–
1282.

[Kre88] M. Krentel. The complexity of optimization problems.Journal of
Computer and System Sciences, 36(1988), pp. 490–509.

[RS98] A. Russell and R. Sundaram. Symmetric alternation captures BPP.
Journal of Computational Complexity, 7(2), pp. 152–162, 1998.

9

[Wag87] K. Wagner. Number-of-query hierarchies. Technical Report 158, In-
stitut für Mathematik, Universitat Augsburg, October 1987.

[Wag89] K. Wagner. Number-of-query hierarchies. Technical Report 4, Institut
für Informatik, Universitat Ẅurzburg, February 1989.

10

