Proving SAT does not have Small Circuits with
an Application to the Two Queries Problem

Lance Fortnow A.Pavan’ Samik Sengupta

Abstract

We show that ifSAT does not have small circuits, then there must exist
a small number of satisfiable formulas such that every small circuit fails to
compute satisfiability correctly on at least one of these formulas. We use this
result to show that iPNPH) = PNPI2]| then the polynomial-time hierarchy
collapses t; C X NII5. Even showing that the hierarchy collapsedp
remained open prior to this paper.

1 Introduction

Bshouty, Cleve, Gavald Kannan and Tamon [B®6] give a probabilistic al-
gorithm with a SAT oracle that learns circuits given hypothesis and membership
queries to that circuit. If SAT has polynomial-size circuits, then one can use their
algorithm to give a probabilistic procedure, once again with a SAT oracle, that
finds that circuit. One can verify in co-NP that this circuit correctly computes
SAT.

What if SAT does not have small circuits? Can one find a short witness of this
fact? We give an affirmative answer. Building on Bshouty et al. we show that if
SAT does not have polynomial-size circuits at lengtlthen for everyk there are

*Department of Computer Science, University of Chicago, Chicago, IL 60637. Email: fort-
now@cs.uchicago.edu

TDepartment of Computer Science, lowa State University, Ames, IA 50011. Part of the work
done while the author was a postdoc at NEC Research Institute. Research supported in part by
NSF grant CCF-0430807. Email: pavan@cs.iastate.edu

!Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260.
Email: samik@cse.buffalo.edu

polynomial number of satisfiable formulas such that every circuit of size at most
n* fails to give a correct answer on at least one of these formulas.

In addition, one can find these formulas with a probabilistic algorithm with a
SAT oracle. These satisfiable formulas along with satisfying assignments give a
co-NP verifiable proof that SAT does not havesize circuits.

We show an application to the following well studied question: Is one query
to SAT as powerful as two queries to SAT? In the context of computing functions,
Krentel [Kre88] showed that if any function that can be computed by two queries
to SAT can be computed by one query, tHer= NP, i.e, if PENI — ppNPE,
thenP = NP. Itis natural to ask whether we can obtain such collapse if we focus
on languages instead of functions.

Kadin [Kad88] showed that iPN"[) = PNPRI| then the polynomial-time hier-
archy collapses t&%. Wagner [Wag87] showed that the collapse can be improved
to A = P>, Beigel, Chang, and Ogihara [BC093], building on the work of
Wagner [Wag87] and Chang and Kadin [CK96] obtained a stronger conclusion.
They showed that every language in the polynomial-time hierarchy can be solved
by a polynomial-time machine that makes at mostNirequery and on&% query.

Buhrman and Fortnow [BF99] showed many other collapses including that
polynomial-time hierarchy collapses BPP™Y. They tried to improve their col-
lapse toX but they could not find a way to easily determine whether SAT had
small circuits.

Using our lemma we can solve this problem and achieve the collapse. We
show that if PNPI = PNPRI then PH collapses t6;, C ZPPY*([Cai0]) C
¥E N IIE.

2 Preliminaries

Givenk > 0, PNPI¥ denotes the class of languages accepted by a polynomial-
time-bounded oracle Turing machine that makes at moastlaptive queries to
SAT.

The class$s) has been defined independently by Russell and Sundaram [RS98]
and Canetti [Can96]. A sdt is in S if there is a polynomial-time predicate
and a polynomiap(-) such that

rel = 3JyVzR(x,y,z), and
r¢ L = FzVy-R(z,y,2),

wherelyl, |z| < p(|z|).

The classSh can be viewed as a game among two competing provers and a
polynomial-time verifier. The first prover is trying to convince the verifier that the
string is in the language, and the second prover is trying to convince the verifier
that the string is not in the language. If the inpubelongs tol, then the first
prover can give an irrefutable progfof this fact, i.e., the verifier will accept
irrespective of the proof given by the second prover. Similarly, if the string does
not belong to the language, then the second prover can furnish an irrefutable proof.

3 KeylLemma

In this section we show that if SAT does not have polynomial-size circuits, then
for everyk there exist polynomially many formulas such that every circuit of size
n* is wrong on at least one of these formulas.

Throughout this paper, we assume without loss of generality that if a circuit
says that a formula is satisfiable, then it outputs a satisfying assignment. Thus
the circuit can make errors on only one side. This implies that the language
{{C,1") | C'iswrong on a formula of size} is in NP.

Lemma 3.1 Fix n > 0. For everyk > 0, if SAT does not have**2-size circuits
at lengthn, then there exists a sét of satisfiable formulas of length, called
counter-examplessuch that every circuit of size® is wrong on at least one for-
mula fromS. The cardinality ofS is polynomial inn.

Proof. The proof uses ideas from Bshouty et al. [B#B]. We define a prob-
abilistic process and show that if SAT does not hal&?-size circuits, then the
probabilistic process outputs a set of counter-examples with nonzero probability.
We build the setS of counter-examples in stages. At stage zér@ontains an
arbitrary satisfiable formula. At each stage we add a formula to the set. There-
fore, afteri — 1 stagesS hasi counter-examples. We now describe stagEix
m = 36n.

Let 7; be the set of alh*-size circuits that are correct aii If T} is empty,
then we are done; so assuffigis not empty. Uniformly and independently pick
m CircuitScy, co, - - - , ¢, from T;. Let C' be a circuit that takes majority vote of
c1,--+,cm. Note that the size of is at mostn**2. Since SAT does not have
n**+2-size circuits, there exists a satisfiable formulan whichC' is not correct.

Add ¢ to S. This completes stage

We claim that after polynomially many stagés,is empty. ThusS contains
polynomially many formulas such that every circuit of siZeis wrong on at least
one formula inS.

Claim 3.2
Pr{|I Tl < 2/3|1] > 0.

Proof. Denote the set of randomly chosen circuitsitby Given a formulap,
let V, be the set of all circuits iff; that are correct op. Call a formulap “bad” if
Vol > 2/3]|T;||. In the following, we fix a bagh.

For1l < i < m, define random variable¥; as follows: X; = 1 < ¢; ¢ V,.
Sincec;-s are picked independently and uniformB [X, = 1] = p < %for every
i, 1 <i < m. We note that sincg < I,

1 XX 1
<= < = _ —1.
PrIU Nl < 501 < Pr | T s 1]
Applying the Chernoff bound [Gol01, page 11] on the right hand side, we can
show that

1
Pr{|Un V|| < UJl} < 270/ <1 /2%,

Since there can be at maxst bad formulas,
1
Pr{3badp suchthat|lU NV,| < §||U||] < 1/2™. 1)

Consider the counter-examptegenerated during stage Since¢ is a counter-
example toC, the majority circuit ofcy, - - - ¢,,,, more thanmn /2 circuits inU are
wrong on¢. However, if thisp were a bad formula, then by Equation 1, with
high probability, more than half the circuits frobh = {c,--- , ¢, } would be
correct ong. It follows that the probability thad is not bad is nonzero. Thus
Vsl < 2/3||T;|| with high probability. Note that every circuit i, should be
correct ong. Thus it follows that||7;,,| < 2/3||7;|| with nonzero probability.
This proves Claim 3.2

Therefore, after each stage, with nonzero probability, the number of circuits
that are correct o1y are reduced by a constant fraction. So after polynomially
many stages all the*-size circuits would be wrong o§. Since we increase
the size ofS by one during each stage, the cardinality ©fis bounded by a

polynomial.O

We also note that the above process can be implemented by a probabilistic
polynomial-time-bounded machine that uses SAT as an oracle. At any stage we
need the ability to pick circuits;, ¢y, - - - , ¢, Uniformly at random froni;, and
generate a counter exampldo C' whereC' is the circuit that takes majority vote
of ¢1,--- ,¢,. The later task can be done by making queries to the followiRg
language.

{{C, z) | 3 a satisfiable formula such that: is a prefix of¢ andC' is wrong on¢}.

Also note that once we obtain the counterexampleve can compute a satis-
fying assignment of using SAT as an oracle. So we can assume $hansists
of satisfiable formulas along with the assignments. Now

T; = {C | C'is an*-size circuit that is correct of}.

SinceS consists of satisfiable formulas along with the assignméhis,a set
in P. Jerrum, Valiant, and Vazirani [JVV86] showed that picking elements, in an
approximately uniform manner, from a setlncan be done in polynomial-time
using SAT as an oracle. Using their procedure we can pick circuits Ttaman
approximately uniform manner.

4 Application to Two Queries

In this section we show an application of our lemma to the two queries problem.
Theorem 4.1 If PNP[U = PNPRI thenPH = S5,

To prove Theorem 4.1 we need the following theorem by Buhrman and Fort-
now [BF99].

Theorem 4.2 (Buhrman-Fortnow) If PNPII = PNPRI then there exists a
polynomial-time predicaté? and a constant > 0 such that for every:, one
of the following holds.

1. Locally NP = co-NP: For every unsatisfiable formula of lengthn, there
is a short proof of unsatisfiability, i.e., ¢ ¢ SAT < JwR(¢,w), where
|w| is bounded by a fixed polynomialin

5

2. There exists a circuit of sizé" that decides SAT at length

We first show that ifPNP[l = PNPI2I thenXh = II5. We use Lemma 3.1 to
decide whether locallNP = co-NP or SAT has small circuits.

Lemma 4.3 If PNPIU = PNPE theny] = I15.
Proof. Let L be any language ifi5. For any inputz, the following holds:
r € L & Vy ¢, € SAT.

Let |¢,| = m. By Theorem 4.2, if SAT does not hawe"2-size circuits at length
m, then every unsatisfiable formula of lengthhas a short proof of unsatisfiabil-
ity.

We describe atNP machine with SAT as an oracle that acceptfRecall that
the set{(C, 1") | C'is wrong on a formula of length} is in NP.

Consider the following machin&/:

1. GuessOorl

2. If the guessed bit is 0, guess a circditof sizem**2, and ask the SAT
oracle if C' is a correct circuit for SAT at length. If the answer is “no”,
then reject the input. If the answer is “yes”, théhis a correct circuit for
SAT at lengthm. This can be used to decide by asking the SAT oracle
whether there is g such thatC'(¢,) = 0. If the answer is “yes”, then
does not belong td; otherwise;x belongs tal..

3. If the guessed bit is 1, guessatisfiable formulag, - - - , ¢; and ask the
SAT oracle whether there is a circuit of size at mogtthat is correct on
all the guessed formulas. (Note tHat the number of counter-examples
obtained from Lemma 3.1.) If the answer is “yes”, then reject the input. If
the answer is “no”, then there is no circuit (for SAT) of sizé at lengthm.
In this case, by Theorem 4.2, there is a polynomial-time prediBasach
that for every unsatisfiable formula of length, there is a short proob.
Ask the SAT oracle ifc is in the following set:

{z | IyFwR(Py, w)}.
If z is in this set, then rejeat, otherwise accept.

We claim that the above algorithm is correct. ket L. We consider the follow-
ing two cases.

Case 1: SAT hasm**2-size circuits at lengthn. In this case there exists a path
of M that guesses the correct circuit and the machine accepts along this
path.

Case 2: SAT does not haven**2-size circuits at lengthn. In this case, by
Lemma 3.1, there exists a set of satisfiable formulas - ¢, such that ev-
ery circuit of sizem” is wrong on at least one of the formulas. Therefore,
there is a path of/ that correctly guesses thesg - - - , ¢;. Along this path
M knows thatNP = co-NP locally. SoM acceptse along this path.

Next we show that it does not belong ta, then every path of the machine rejects
x. Again we treat two cases.

Case 1: SAT hasm**2-size circuits at lengthn. Consider the paths that guessed
0 in the first step. The path that correctly guesses the circuit rejects. The
paths that guess a wrong circuit also reject. Now, consider that paths the
guessed 1. In this case, there may or may not exist a set of counter-examples
againstm*-size circuits. If there are no counter-examples, then all paths
reject. If there are counter-examples, then some paths will guess the correct
counter-examples. However, the existence of counter-example&-gize
circuits implies that SAT does not hawe®-size circuits at length:. Thus
by Theorem 4.2, locallWP = co-NP. Thus all these paths correctly decide
thate ¢ L.

Case 2: SAT does not haven**2-size circuits at lengthn. In this case all the
paths that guessed O in the first step reject. Consider the paths that guessed
1. By Lemma 3.1, there exists a set of counter-examples. The path that
correctly guesses the counter-examples realizes that lag&lly= co-NP,
and rejects. The paths that guess wrong counter-examples also reject.

Therefore M decidesL. This shows thab} = T15. O
Theorem 4.1 follows from Lemma 4.3 and the following lemma.
Lemma 4.4 If PNPI = PNPR] thenyh N 115 = S5,
Proof. Let L be inX} N I15. Thus
r € L=3y¢, ¢ SAT N Vzp, € SAT.
r¢ L= 3zp, ¢ SAT N Vy ¢, € SAT.

7

Without loss of generality, assume that| = |p.| = m. By Theorem 4.2, at
lengthm either every unsatisfiable formula has a short proof of unsatisfiability, or
there is an”-size circuit that decides SAT at length

In the former case, i.e., if every unsatisfiable formula has a short proof of
satisfiability, the first prover’s proof consists of ¢,, and a proof thab, is not
satisfiable. And the second prover’s proof consists,¢f., and a proof thap, is
not satisfiable.

In the later case, the first prover’s proof consistg,of,, and a circuit of size
m¥. The second prover’s proof consists:0f,, and a circuit of sizen*.

Upon receiving the proofs, the verifier executes the following algorithm. If
either prover claims a short proof of unsatisfiability, then the verifier first checks
whether the given short proof really proves that the formula in consideragipon (
or p.) to be unsatisfiable. The verifier accepts if the first prover’s proof is correct
and rejects if the second prover’s proof is correct. Note that both of them cannot
be correct.

Consider the case where both the provers give circuits. Here, the first prover
is claiming thatg, is unsatisfiable, and the second prover is claiming thas
unsatisfiable. Also, the first prover is implicitly claiming that for everyp, is
satisfiable. Therefore, if the first prover is correct, then his circuit should be able
to output a satisfying assignment @f given by the second prover. The verifier
checks whether that is the case. The verifier accepts only if the first prover’s circuit
produces a satisfying assignmentgn

It is clear that the prover who gives a correct proof can convince the verifier.
Therefore,L isinSb. O

5 Further Work

It would be interesting to see whether more applications of Lemma 3.1 can be
found. Can we improve the collapse in Theorem 4.PY¥6? What consequences
can be obtained if one assun@®¥’* = PNPIE+ for g > 27

6 Acknowledgments

The authors thank Richard Chang for his comments on an earlier version of this
paper. The third author thanks Alan Selman for his helpful insights and valuable

suggestions.

References

[BCO93]

[BC*+96]

[BF99]

[Cai01]

[Can96]

[CK96]

[Gol01]

[JVV86]

[Kadss]

[Kress]

[RS98]

R. Beigel, R. Chang, and M. Ogihara. A relationship between differ-
ence hierarchies and relativized polynomial hierarchidathemati-
cal Systems Thear26(3), pp. 291-310, 1993.

N. Bshouty, R. Cleve, R. GavadS. Kannan, and C. Tamon. Oracles
and queries that are sufficient for exact learnidbmurnal of Computer
and System Sciengés2(3), pp. 421-433, 1996.

H. Buhrman and L. Fortnow. Two querie3ournal of Computer and
System Sciences9(2), pp. 182—-194, 1999.

Jin-Yi Cai. S C ZPP™Y. Proceedings of the 42nd IEEE Conference
on Foundations of Computer Science (FOG#®). 620-629, 2001.

R. Canetti. More on BPP and the polynomial-time hierardimyor-
mation Processing Letter§7(5), pp. 237-241, 1996.

R. Chang and J. Kadin. The boolean hierarchy and the polynomial
hierarchy; A closer connectior8IAM Journal on Computindg?5(2),
pp. 340-354, 1996.

O. Goldreich.Foundations of Cryptography — Volume Cambridge
University Press, New York, 2001.

M. Jerrum, L. Valiant, and V. Vazirani. Random generation of combi-
natorial structures from a uniform distributiohheoretical Computer
Science43(1986), pp. 169-188.

J. Kadin. The polynomial-time hierarchy collapses if the boolean hi-
erarchy collapsesSIAM Journal on Computind. 7(1988), pp. 1263—
1282.

M. Krentel. The complexity of optimization problemslournal of
Computer and System Scienc@8(1988), pp. 490-509.

A. Russell and R. Sundaram. Symmetric alternation captures BPP.
Journal of Computational Complexjty(2), pp. 152-162, 1998.

9

[Wag87] K. Wagner. Number-of-query hierarchies. Technical Report 158, In-
stitut fur Mathematik, Universitat Augsburg, October 1987.

[Wag89] K. Wagner. Number-of-query hierarchies. Technical Report 4, Institut
fur Informatik, Universitat Wirzburg, February 1989.

10

