
Complexity with Rod

Lance Fortnow

Georgia Institute of Technology

Abstract. Rod Downey and I have had a fruitful relationship though
direct and indirect collaboration. I explore two research directions, the
limitations of distillation and instance compression, and whether or not
we can create NP-incomplete problems without punching holes in NP-
complete problems.

1 Introduction

I first met Rod Downey at the first Dagstuhl seminar on “Structure and Com-
plexity Theory” in February 1992. Even though we heralded from different com-
munities, me as a computer scientist working on computational complexity, and
Rod as a mathematician working primarily in computability, our paths have
crossed many times on many continents, from Germany to Chicago, from Sin-
gapore to Honolulu. While we only have had one joint publication [1], we have
profoundly affected each other’s research careers.

In 2000 I made my first pilgrimage to New Zealand, to the amazingly beau-
tiful town of Kaikoura on the South Island. Rod Downey had invited me to give
three lectures [2] in the summer New Zealand Mathematics Research Institute
graduate seminar on Kolmogorov complexity, the algorithmic study of infor-
mation and randomness. Those lectures helped get Rod and Denis Hirschfeldt
interested in Kolmogorov complexity, and their interest spread to much of the
computability community. Which led to a US National Science Foundation Foun-
dation Focused Research Group grant among several US researchers in the area
including myself. What comes around goes around. In 2010 Rod Downey and De-
nis Hirschfeldt published an 855 page book Algorithmic Randomness and Com-
plexity [3] on this line of research.

In this short paper I recount two other research directions developed with
interactions with Rod Downey. In Section 2, I recall how an email from Rod led
to a paper with Rahul Santhanam on instance compression [4], easily my most
important paper of this century. In Section 3, I discuss my joint paper with Rod
on the limitations of Ladner’s theorem, that if P is different than NP, there are
NP-incomplete sets and that continues to affect my current research.

2 Distillation

In the 1992 Dagstuhl workshop, Rod Downey gave a lecture entitled “A Com-
pleteness Theory for Parameterized Intractability,” my first taste of fixed-parameter

tractability (FPT). FPT looks at NP problems with a parameter, like whether
a given graph G with n vertices has a vertex cover of size k. A problem is fixed-
parameter tractable if there is an algorithm whose running time is of the form
f(k)nc for an arbitrary f that does not depend on n. Vertex cover has such an
algorithm but clique does not seem to. Downey and Michael Fellows had devel-
oped a series of complexity classes to capture these questions. I learned much
more about FPT in a series of lectures of Michael Fellows at the aforementioned
Kaikoura workshop in 2000.

On March 11, 2007 I travelled to Toronto to visit Rahul Santhanam, a former
student and then a postdoc at the University of Toronto. On March 12th Rod
Downey sent me a question by email (with a lucky typo) that came from a paper
“On problems without polynomial kernels” [5] that Downey was working on with
Fellows, Hans Bodlaender and Danny Hermelin. This confluence of events would
lead my paper with Rahul Santhanam “Infeasibility of Instance Compression
and Succinct PCPs for NP” [4]. These two papers would go on to be the co-
winners of the 2014 EATCS-IPEC Nerode Prize and would eventually have over
500 combined citations.

Here is a formatted version of the email sent by Rod.

Say a language L has a distillation algorithm if there is an algo-
rithm A which when applied to a sequence (perhaps exponentially long)
x1, . . . , xn outputs in time polynomial in

∑
i |xi| a single string t such

that
1. t is small: |t| ≤ max{xi : i ≤ n}, and
2. there exists an i, xi ∈ L iff t ∈ L

Clearly either all or no NP complete problems have distillation algo-
rithms.

Conjecture: No NP complete L has a distillation algorithm.
Can you think of any classical consequence of the failure of this con-

jecture? I had thought it implied NPNP ∈ NP/poly, but the proof was
flawed.

I discussed the problem with Rahul and responded.

I believe I can show you get co-NP in NP/poly (thus PH in Σp
3) under

this condition.
Fix a length m. Let S be the set of all strings not in L of length at

most m. We will get a subset V of S with |V | of size at most poly(m)
and an r ≤ poly(m) such that for all x in S there are y1, . . . , yr with
1. x = yi for some i.
2. the procedure on y1, . . . , yr outputs a t in V . Then we have an NP

test for x in S with V as the advice.
Let N = |S|. There are Nr tuples y1, . . . , yr. On each of them the pro-
cedure maps to something in S. For some z in S at least Nr−1 tuples
map to z. The number of x’s covered by z is at least N (r−1)/r covering a
N−1/r fraction of the elements of S. Picking r = logN (which is poly(m))
makes this a constant fraction. Then we recurse on the remaining strings
in S.

Rod Downey conferred with Michael Fellows and the next day realized he
had slightly misstated the problem.

Sorry I realized that I made a mistake in the way that I defined
distillation.

t is small means that |t| is polynomial in max{|xi| : i ≤ n}, not
≤ max{|xi| : i ≤ n}. I knew how to do it for ≤ |xi| since then the
language would be weakly p-selective (or something similar) and hence
PH = Σp

2 .
This is the problem. I cannot see how to fix your proof either, since

the recursion goes awry.

Rahul and I looked it over and I responded to Rod

I worked this out with Rahul Santhanam. The same basic argument
does go through if you pick r at least |t|.

Rod expressed surprise and when I got back to Chicago I wrote up a quick
proof that would become the main lemma in my paper with Rahul [4]. A month
later I cleaned up the statement and proof and present that version below
(Lemma 1).

We generalized the proof for Rod’s first question to get the proof for the
question Rod had meant to ask. This two step approach helped us dramatically.
If Rod didn’t have the typo in the first question, we may never have discovered
the proof. Just goes to show the role of pure luck in research.

Lemma 1. Let L be any language. Suppose there exists a polynomial-
time computable function f such that f(φ1, . . . , φm) = y with

1. Each |φi| ≤ n.
2. |y| ≤ nc with c independent of m.
3. y is in L if and only if there is an i such that φi is in SAT.

then NP is in co-NP/poly.
Proof Let A ⊆ SAT ∩ Σ≤n with A 6= ∅. Let B = L ∩ Σ≤nc

. Let
N = |A| and M = |B| ≤ 2n

c

. Let m = nc.

Claim. There must be some y in B such that for at least half of the φ
in A, there exists φ1, . . . , φm such that

1. For some i, φ = φi.
2. f(φ1, . . . , φm) = y.

Let φ be y-good if the above holds. Given y, we have a NP-proof that φ
is not satisfiable for all y-good φ.

Now consider the Nm tuples (φ1, . . . , φm) in Am. The function f
maps these tuples into elements of B. So for some y in B must have Nm

M
inverses in Am.

If there are k y-good φ then Nm

M ≤ km, so k ≥ N
M1/m . Since m = nc,

M1/m ≤ 2 and k ≥ N
2 which proves our claim.

Now we start with A = SAT ∩ Σ≤n and S = ∅. Applying the claim
gives us a y in B. We put y in S, remove all of the y-good φ from A and
repeat. Since |A| ≤ 2n+1 we only need to recurse at most n + 2 times
before A becomes empty.

We then have the following NP algorithm for SAT on input φ using
advice S:
– Guess φ1, . . . , φm.
– If φ = φi for some i and f(φ1, . . . , φm) is in S then accept.

Every language that is fixed-parameter tractable language can be mapped in
polynomial time to an input whose size is a function of the parameter. Ver-
tex cover, for example, has a stronger property that the kernel of an input is
polynomial in the size of the parameter, i.e., the size of the vertex cover to
check. The paper of Bodlaender, Downey, Fellows and Hermelin [5] would use
Lemma 1 to show a number of fixed-parameter tractable problems do not have
short kernelizations without complexity consequences.

The paper of Rahul and myself [4] had made some connections also to a paper
by Danny Harnik and Moni Naor [6] on instance compression with some connec-
tions to cryptography. Later Harry Buhrman and John Hitchcock [7] would build
on our lemma to show that NP can’t have subexponential-sized complete sets
unless the polynomial-time hierarchy collapsed. Andrew Drucker [8] generalized
the lemma to problems like AND-SAT (for all i instead of there exists an i in
condition 3 of Lemma 1) and to probabilistic and quantum reductions.

3 Punching Holes in SAT

In a 1944 address to the American Mathematical Society, Emil Post [9] laid out
the landscape of recursive and recursively enumerable languages (now commonly
called computable and computably enumerable), as well as reductions between
languages.

A primary problem in the theory of recursively enumerable sets is the
problem of determining the degrees of unsolvability of the unsolvable
decision problems thereof. We shall early see that for such problems there
is certainly a highest degree of unsolvability. Our whole development
largely centers on the single question of whether there is, among these
problems, a lower degree of unsolvability than that, or whether they are
all of the same degree of unsolvability.

In the paper, Post laid out his program to tackle that question but ultimately
leaves it unresolved. It would take a dozen years for Friedberg and Muchnik
(see [10]) to show the existence of a computably enumerable set that was not
computable and not all other computably enumerable sets reduce to it.

After Steve Cook [11] and Richard Karp [12] defined the complexity classes
NP and NP-complete in the early 70s, one could ask a similar question: Is there
a problem in NP that is not computable in polynomial-time and not complete?

Unlike in the computability world, we had several natural candidates for those
classes including graph-isomorphism and factoring, where factoring as a language
problem is the set of tuples (m, r) such that there is a prime factor p of m with
p ≤ r. It took just a couple of years after the introduction of NP-completeness
for Richard Ladner [13] in 1975 to answer the question in the affirmative under
the assumption that P differs from NP.

Ladner’s proof works by “blowing holes in satisfiability”. Ladner creates a
language that for some input lengths is empty and other input lengths is some
NP-complete problem like Boolean formula satisfiability. The lengths are chosen
to diagonalize both from every polynomial-time algorithm and every reduction
from satisfiability, thus ensuring that the language is not in P or NP-complete.
To get the language in NP, Ladner develops a delayed diagonalization technique
that doesn’t move to the next requirement until it has had time to check that
the previous requirement is fulfilled. We present Ladner’s full proof as well as
an alternate proof in our paper [1]. Both proofs leave large gaps in satisfiability.

I personally find Ladner’s proof quite unsatisfying. We don’t expect the nat-
ural candidates to behave like Ladner’s set, as hard as satisfiability on some
input lengths and computable in polynomial time on others. Rather every in
every length we expect, for example, factoring to be difficult to compute but
not complex enough for satisfiability to reduce to it. Is this a necessary factor
to prove an intermediate set?

I visited Rod Downey in 1995 during his sabbatical year at Cornell. We
discovered our shared concern about Ladner’s proof. We formalized the issue by
creating a definition of uniformly hard, basically that a set that is hard over
polynomially long ranges of the input lengths.

Definition 2. A language A is uniformly hard if for every language B com-
putable in polynomial-time there is a k such that for every integer n > 1, A and
B differ on some input of length between n and nk.

To justify uniformly hard we define an honest reduction with a slight variation
to allow for giving a direct answer.

Definition 3. An honest reduction from A to B is a polynomial-time com-
putable function mapping Σ∗ to Σ∗ ∪ {+,−} such that

1. For some integer k, for all n > 1 and for all x, either f(x) ∈ {+,−} or
|x| ≥ |f(x)|k where |x| is the length of the string x.

2. If x is in A then f(x) ∈ B ∪ {+}.
3. If x is not in A then f(x) ∈ B ∪ {−}, where B = Σ∗ −B.

Uniformly hard sets are upwardly closed under these honest reductions.
Downey and I [1] looked at the question: If NP has uniformly-hard sets,

is there an incomplete-set that is uniformly-hard under honest reductions? We
conjecture such sets exist and in particular factoring should be such an example.
However no proof exists that shows there are incomplete uniformly-hard sets.
Why is proving such a result so difficult?

To answer that question, Downey and I look at a stronger version of Lad-
ner’s Theorem, with essentially the same proof, that there is no computable
polynomial-time minimal degree.

Theorem 4. For every computable B not in P there is a set A such that

1. A is not in P
2. A polynomial-time honestly reduces to B, in fact the reduction f(x) ∈ {x,−}

for all x, and
3. B does not even polynomial-time Turing reduce to A.

Downey and I show that there could be a minimum uniformly-hard set if
every problem computable in a polynomial amount of memory can also be com-
puted in a polynomial amount of time.

Theorem 5. If P = PSPACE, there is a computable minimum uniformly-hard
set under polynomial-time honest reductions.

We don’t believe P = PSPACE but on the other hand complexity theorists
have no approach to separating P and PSPACE. In particular that means we
have no known way to avoid the large gaps given by Ladner’s proof of Theorem 4.

Years later, Rahul Santhanam and I [14] generalized the uniformly hard-
ness notion into a concept we called robustly-often which led to a new proof
of the nondeterministic-time hierarchy. That work led to a paper by Rahul and
myself [15] in the 2016 Computational Complexity Conference that gave new
lower bounds for non-uniform classes, in particular we showed, for any a, b with
1 ≤ a < b, NTIME(nb) is not contained in NTIME(na) with n1/b bits of advice.

All of these results show that the ideas that Rod Downey helps generate have
ripples that continue to push my research today.

Acknowledgments

I’d like to thank the anonymous referee for several helpful comments.

References

1. Downey, R., Fortnow, L.: Uniformly hard languages. Theoretical Computer Science
298(2) (2003) 303 – 315

2. Fortnow, L.: Kolmogorov complexity. In Downey, R., Hirschfeldt, D., eds.: Aspects
of Complexity, Minicourses in Algorithmics, Complexity, and Computational Al-
gebra, NZMRI Mathematics Summer Meeting, Kaikoura, New Zealand, January
7–15, 2000. Volume 4 of de Gruyter Series in Logic and Its Applications. de Gruyter
(2001)

3. Downey, R., Hirschfeldt, D.: Algorithmic randomness and complexity. Springer
Science & Business Media (2010)

4. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. J. Comput. Syst. Sci. 77(1) (January 2011) 91–106

5. Bodlaender, H., Downey, R., Fellows, M., Hermelin, D.: On problems without
polynomial kernels. Journal of Computer and System Sciences 75(8) (2009) 423–
434

6. Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic
applications. SIAM Journal on Computing 39(5) (2010) 1667–1713

7. Buhrman, H., Hitchcock, J.: NP-hard sets are exponentially dense unless coNP is
contained in NP/poly. In: Computational Complexity, 2008. CCC ’08. 23rd Annual
IEEE Conference on. IEEE, New York (June 2008) 1 –7

8. Drucker, A.: New limits to classical and quantum instance compression. SIAM
Journal on Computing 44(5) (2015) 1443–1479

9. Post, E.: Recursively enumerable sets of positive integers and their decision prob-
lems. Bulletin of the American Mathematical Society 50(5) (1944) 284–316

10. Soare, R.: Recursively Enumerable Sets and Degrees. Springer, Berlin (1987)
11. Cook, S.: The complexity of theorem-proving procedures. In: Proceedings of the

3rd ACM Symposium on the Theory of Computing. ACM, New York (1971) 151–
158

12. Karp, R.: Reducibility among combinatorial problems. In Miller, R., Thatcher, J.,
eds.: Complexity of Computer Computations. Plenum Press (1972) 85–103

13. Ladner, R.: On the structure of polynomial time reducibility. Journal of the ACM
22 (1975) 155–171

14. Fortnow, L., Santhanam, R. In: Robust Simulations and Significant Separations.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011) 569–580

15. Fortnow, L., Santhanam, R.: New Non-Uniform Lower Bounds for Uniform Classes.
In Raz, R., ed.: 31st Conference on Computational Complexity (CCC 2016). Vol-
ume 50 of Leibniz International Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2016) 19:1–19:14

