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The complexity of algorithms tax even the re-
sources of sixty billion gigabits—or of a universe
full of bits; Meyer and Stockmeyer had proved,
long ago, that, regardless of computer power,
problems existed which could not be solved in
the life of the universe.

Frederic Pohl, Beyond the Blue Event Horizon [45]

ABSTRACT
Shortly after Steven Cook and Richard Karp showed the ex-
istence of many natural NP-complete languages, researchers
started to realize the great importance of the P versus NP
problem and the difficulty of settling it. One graduate stu-
dent at the Massachusetts Institute of Technology started
to look beyond NP, asking what problems have a higher
complexity and how do we classify them. Larry Stockmeyer
discovered an amazing structure of complexity classes that
continues to direct the research in complexity to this day.
Stockmeyer passed away on July 31, 2004 at the age of 55
and in this paper we review some of his research and the
legacy he has left on the community.
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1. INTRODUCTION
Larry Stockmeyer started graduate school right at the be-

ginning of the P versus NP era. While many computer scien-
tists started to grapple with the importance and inherent dif-
ficulty of that question, Stockmeyer started to ask “What’s
next?”. This retrospective follows Stockmeyer’s early re-
search journeys towards finding answers to that question.

In Section 2 we look at how Stockmeyer with his advi-
sor Albert Meyer searched for natural problems that one
could prove cannot have efficient solutions. They show the
equivalence problem for regular expressions with squaring
is EXPSPACE-complete, which implies no polynomial-time
(or even polynomial-space) algorithm can determine equiv-
alence.

Stockmeyer and Meyer building on Meyer’s lower bounds
for a logical theory of numbers EWS1S, show that for some
specific reasonable-size inputs, any computer that could de-
termine true formulas for those inputs could not fit inside
the known universe.

Meyer and Stockmeyer also attempted to classify the lan-
guage MINIMAL consisting of formulas not equivalent to
any smaller formula. These attempts led to the develop-
ment of the polynomial-time hierarchy, which we recount in
Section 3. Work by Stockmeyer, Meyer and Celia Wrathall
give several different characterizations of the hierarchy and
show exactly how it could collapse.

Meyer and Stockmeyer give complete sets for the levels
of the polynomial-time hierarchy (Section 3.1) and gener-
alize this notion to create a PSPACE-complete set based
on quantified Boolean formulas. This result sets the stage
for the classic work of Ashok Chandra, Dexter Kozen and
Stockmeyer on alternation (Section 4). Chandra, Kozen and
Stockmeyer show that alternating time gives you the equiv-
alent space class and that alternating space gives you an
exponentially larger time class.

The work on alternation leads to new ways to find natu-
ral complete problems for polynomial space and exponential
time (Section 4.1), which continues Meyer and Stockmeyer’s
original search for hard natural problems. Chandra and
Stockmeyer exhibit a combinatorial game where it is EXP-
complete to determine the winner. This led to researchers
finding a number of natural games whose winners cannot be
determined in polynomial time.

In Section 5 we look at how Stockmeyer used the poly-
nomial-time hierarchy to approximately count the number
of solutions to NP problems. This work led to uniform sam-
pling with an NP oracle and helped us understand the power
of several complexity classes.



To understand the legacy of Stockmeyer’s work, one needs
only to pick up any textbook on computational complexity.
Much of complexity builds on one or more ideas originally
due to Stockmeyer and his colleagues. In Section 6 we review
a few of the many areas where Stockmeyer’s research has set
the direction of future research in computational complexity.

I focused this retrospective on a few major themes in
Stockmeyer’s research: the search for hard natural prob-
lems, the polynomial-time hierarchy and alternation and
approximate counting within the hierarchy. No survey of
Stockmeyer’s work can adequately cover all of his work in
computational complexity and theoretical computer science.
In addition to the work presented in this paper, Stockmeyer
has had important research in areas like automata theory
and parallel and distributed computing that I could not do
justice to in this space.

Larry Stockmeyer had the wisdom to look beyond the
P versus NP question and found a beautiful structure and
amazing theorems that has allowed us to better understand
the power and limitations of efficient computation. Hope-
fully Stockmeyer has moved to a place where all the secrets
of complexity are revealed while the rest of us continue to
pursue Stockmeyer’s visions.

2. HARD NATURAL PROBLEMS
In 1971, Cook [16] showed the question of Boolean formula

tautology was hard for every problem in NP1. His proof gives
a reduction from an arbitrary NP machine to Boolean for-
mula satisfiability. Levin [40] independently proved similar
results but these results were not widely known outside of
Russia until years later.

In 1972, Karp [34] defined NP-completeness as we know
it today and showed that that a number of well-known com-
binatorial problems like colorability and clique were NP-
complete. This started an industry in showing problems
NP-complete as illustrated in the 1979 book of Garey and
Johnson [24].

Quickly the importance and difficulty of the P versus NP
problem became evident. Larry Stockmeyer, then a student
at MIT, and his advisor Albert Meyer started asking: if
we cannot show that NP-complete problems do not have
efficient algorithms what problems can we show cannot be
solved quickly?

Hartmanis and Stearns in their seminal paper in computa-
tional complexity [28] showed how to construct computable
languages using diagonalization that cannot be solved in any
fixed time bound. These languages were quite artificial, ba-
sically simulating machines with the smaller time bound and
doing the opposite. No one had yet came up with a natural
example of a computable hard language.

In 1972, Meyer and Stockmeyer [42] found such a prob-
lem, the equivalence of regular expressions with squaring.
Recall that a regular expression consists of the operations +
(union), · (concatenation) and ∗ (Kleene closure) over some
finite alphabet Σ, for example (0+1)∗ ·0·0·(0+1)∗ represents
the set of strings containing two consecutive zeros. Meyer
and Stockmeyer looked at a variation that also allows the
squaring operation, R2 = R · R, where we could now write
the previous expression as (0 + 1)∗ · 02 · (0 + 1)∗. Regular
expressions with squaring have no more expressive power

1See Aaronson’s Complexity Zoo [1] for full definitions and
references for complexity classes mentioned in this survey.

than regular expressions but can often be written more suc-
cinctly, especially if squaring is used recursively, for example
expressing the singleton set {0128} as ((((((02)2)2)2)2)2)2.

Meyer and Stockmeyer define a language RSQ as the set
of regular expressions with squaring not equivalent to Σ∗.
They show how to reduce any exponential space computa-
tion to an RSQ question and thus any algorithm that solves
RSQ must require space (and thus time) exponential in n.

In a future paper [61] Meyer and Stockmeyer would char-
acterize the complexity of equivalence and membership of
several other variations of regular expressions.

While Meyer and Stockmeyer’s result on RSQ implies ex-
ponential time computation in the limit, Stockmeyer wanted
to show a problem with a strong lower bound for a spe-
cific size. For that he turned to the EWS1S problem, the
true sentences in the theory of WS1S, the weak monadic
second-order theory of the natural numbers and successor.
Meyer [43] had shown that no algorithm solving EWS1S has
an elementary recursive time bound.

In a result first appearing in Stockmeyer’s thesis [57] and
published in J. ACM nearly three decades later [62], Stock-
meyer and Meyer do a careful analysis and show that any
circuit computing EWS1S on inputs of size 616 would re-
quire a circuit of more than 10123 gates. Why show such a
bound? From Stockmeyer’s Ph.D. thesis [57]:

Thus if a circuit C accepts EWS1S restricted to
sentences of length not exceeding 616, and if each
gate is the size of a proton, then to accommodate
C the entire known universe would be packed
with gates.

Stockmeyer assumed a radius of the universe of only 11 bil-
lion light years. Current estimates [11] give a radius of 78
billion light years. Using a formula from the thesis we can
recompute the lower bound so now you will need sentences of
619 characters to require packing the universe with proton-
sized gates.

Based on work on alternation, Stockmeyer and Chan-
dra [60] show certain combinatorial games are EXP-complete
and thus one cannot determine the winner efficiently. More
in Section 4.1.

3. POLYNOMIAL-TIME HIERARCHY
Meyer and Stockmeyer’s paper [42] entitled “The Equiv-

alence problem for Regular Expressions with Squaring Re-
quires Exponential Space” appeared in the 1972 Symposium
on Switching and Automata Theory (SWAT), a conference
which later became the Symposium on Foundations of Com-
puter Science (FOCS). The paper would go on to become
one of the most influential papers in complexity, but not so
much for the title result.

Meyer and Stockmeyer also considered the complexity of
another natural problem MINIMAL consisting of the set of
Boolean formulas for which there is no shorter equivalent
formula. Neither MINIMAL nor its complement appear to
sit in NP but we can test MINIMAL in NP with an “ora-
cle” for testing equivalence (or non-equivalence) of formulas.
The non-equivalence problem is also in NP so we can solve
MINIMAL in NPNP. This suggests a “hierarchy” of classes
above NP and thus the polynomial-time hierarchy was born.

In Cook’s paper [16] on NP-completeness he used a reduc-
tion from one language A to a language B by a polynomial-
time machine that could make arbitrary queries to B. Such



reductions are now called Cook or Turing reductions. Baker,
Gill and Solovay [7] formalized a notion of oracle considering
classes like PA and NPA as problems computable in poly-
nomial-time with access to an oracle A, i.e., they have the
ability to make arbitrary adaptive queries written on a spe-
cial oracle tape that go into a special yes/no state depending
on whether the query sits in A.

Meyer and Stockmeyer [42] predate Baker-Gill-Solovay
and have to define a nondeterministic polynomial-time re-
duction. Stockmeyer’s later paper on the polynomial-time
hierarchy [58] makes use of the Baker-Gill-Solovay setup and
we will review the definition of the hierarchy from that pa-
per.

For a class C we define PC and NPC as

PC =
⋃

A∈C

PA NPC =
⋃

A∈C

NPA

We can now define the polynomial-time hierarchy classes
Σp

k, Πp
k and ∆p

k inductively as follows:

• Σp
0 = Πp

0 = ∆p
0 = P,

• ∆p
k+1 = PΣ

p
k ,

• Σp
k+1 = NPΣ

p
k and

• Πp
k+1 = coNPΣ

p
k

Note ∆p
1 = P, Σp

1 = NP, Πp
1 = coNP and Πp

k = coΣp
k,

∆p
k ⊆ Σp

k ∩Πp
k and Σp

k ∪Πp
k ⊆ ∆p

k+1.
The Meyer-Stockmeyer paper first defined the hierarchy

and proved that if Σp
k = ∆p

k then Σp
j = Πp

j = ∆p
j for all

j ≥ k. In particular if P = NP then every level of the
hierarchy equals P.

Stockmeyer [58] and Wrathall [70] had papers appear-
ing back to back in Theoretical Computer Science in 1977
both going more in depth on the polynomial-time hierarchy.
These papers mostly extend the ideas and proofs from the
Meyer-Stockmeyer paper. They do give a second character-
ization of the Σp

k classes.

Theorem 1. L is in Σp
k if there is is a k-ary polynomial-

time computable relation R such that for all x in Σ∗,

x ∈ A⇔ ∃y1∀y2 . . . QkykR(x, y1, . . . , yk)

where the quantifiers alternate and the yi’s range over all
strings bounded in length by some fixed polynomial in |x|.

This characterization comes from the Bk sets of Meyer-
Stockmeyer and formally proved by Wrathall [70].

They also note that PH = ∪k≥1Σ
p
k is contained in PSPACE

and if PH = PSPACE then PH = Σp
k for some k.

Stockmeyer’s later work on alternation leads to another
characterization of the polynomial-time hierarchy as we will
see in Section 4. Stockmeyer also gives another characteri-
zation of the hierarchy using second-order predicate calculus
building on ideas of Fagin [20].

3.1 Complete Sets in the Hierarchy
Meyer and Stockmeyer [42] give complete sets for the lev-

els of the hierarchy, showing that for every k the set Bk of
true quantified Boolean formula starting with ∃ and having
k− 1 alternations of quantifiers is Σp

k-complete. B1 has just
existential quantifiers and is the same as SAT.

We do not claim that the languages Bk are natu-
ral problems. However they may provide a useful
intermediate step in exhibiting natural problems
which are complete in some class above NP, just
as Cook’s proof of the k = 1 case provided a
handle on the class NP. [42, p. 128]

Stockmeyer [58] gives a slightly more “natural” Σp
2-complete

set N-INEQ, the inequivalence of expressions over sets of
integers built up by union and sums.

Only in the past decade have we really started to see a
number of natural problems complete for the second and
third levels of the polynomial-time hierarchy (see [51]). For
example, Succinct Set Cover is Σp

2-complete [66] and VC
Dimension (with sets described by a circuit) is Σp

3 com-
plete [50]. As predicted by Meyer and Stockmeyer all of
these results are proven from direct or indirect reductions
from B2 and B3.

The actual complexity of MINIMAL remains open for cir-
cuits or Boolean formula. Umans [67] shows the following
related problem is Σp

2-complete: Given a DNF formula φ
and an integer k, is there a formula ψ equivalent to φ of size
at most k?

4. ALTERNATION
Stockmeyer and Meyer [61, 58] define a set they called the

ω-jump of the polynomial-time hierarchy as

Bω =
⋃
k≥1

Bk

in an analogy to the ω-jump of the arithmetic hierarchy.
Bω is just the set of true quantified Boolean formula with

an arbitrary number of quantifiers, a set we now call TQBF
or just QBF.

Stockmeyer and Meyer show thatBω is PSPACE-complete
even when restricted to a 3CNF in the formula. Their proof
uses techniques from Savitch’s Theorem [49] that showed
how to simulate nondeterministic space s(n) in determinis-
tic space s2(n).

Stockmeyer and Meyer didn’t realize it at the time but
they discovered a whole new way to view space complexity
using alternation, an idea formalized in the now classic 1981
paper [14] on alternation by Ashok Chandra, Dexter Kozen
and Stockmeyer that combined the results of two 1976 FOCS
papers [15, 39].

A nondeterministic machine should really have the name
“existential machine” since it accepts if there exists an ac-
cepting computation. One can also imagine a universal ma-
chine that accepts if all of its computation paths accept.
One can then consider machines that alternate between ex-
istential and universal quantification. Chandra, Kozen and
Stockmeyer formally define these alternating Turing ma-
chines and prove some amazing connections to deterministic
time and space classes.

Theorem 2 (Chandra-Kozen-Stockmeyer). For rea-
sonable s(n) ≥ logn and t(n) ≥ n,

1. NSPACE(s(n)) ⊆ ATIME(s2(n)),

2. ATIME(t(n)) ⊆ DSPACE(t(n)) and

3. ASPACE(s(n)) = ∪c>0DTIME(cs(n)).



where ATIME and ASPACE are the alternating analogues
of DTIME and DSPACE.

If we stick an A in front of a class name to get the alternating
version, Theorem 2 gives us equivalences to deterministic
classes like AP = PSPACE, APSPACE = EXP and AL =
P. As Chandra, Kozen and Stockmeyer [14] put it: The
deterministic hierarchy

L ⊆ P ⊆ PSPACE ⊆ EXP ⊆ EXPSPACE ⊆ . . .

shifts by exactly one level when alternation is introduced.
Alternation has application to the earlier themes in Stock-

meyer’s research. Chandra, Kozen and Stockmeyer [14] give
another characterization of the polynomial-time hierarchy.
We define a Σk machine as one that has k layers of alterna-
tions starting with existential. For example a Σ2-machine
has existential configurations and then universal configura-
tions. We can define Πk machines the same way except it
starts with universal configurations.

Theorem 3 (Chandra-Kozen-Stockmeyer). For all
k, the class Σp

k is exactly the set of languages accepted by
polynomial-time Σk machines and Πp

k is exactly the set of
languages accepted by polynomial-time Πk machines.

The proof of Theorem 3 is by induction on k similar to the
proof of Theorem 1.

They also define a similar hierarchy for log-space. Seven
years later Immerman [30] and Szelepcsényi [63] would prove
NL = coNL and thus the whole log-space hierarchy collapses
to NL.

Chandra, Kozen and Stockmeyer [14] also formally define
alternating finite automata and show they accept the same
set as deterministic automata but with a possible double
exponential blowup in the number of states. Given an al-
ternating automata one defines an equivalent deterministic
automata by having a state for each function from the origi-
nal sets of states to {0, 1}. They also create a language over
a three-letter alphabet that has a k-state alternating au-

tomata but any deterministic automata requires 22k

states.

4.1 Complete Sets for PSPACE and EXP
While computer scientists discovered many NP-complete

problems in the early 70’s (see Garey and Johnson [24]),
they found very few natural problems complete for PSPACE
and EXP. Stockmeyer and Meyer [61, 58] gave a PSPACE-
complete problem Bω (now TQBF) by generalizing the com-
plete sets developed by Meyer and Stockmeyer [42] for lev-
els of the polynomial-time hierarchy. While most PSPACE-
hardness results are proven from direct or indirect reductions
from TQBF it was the work on alternation by Chandra,
Kozen and Stockmeyer [14] that developed the intuition for
understanding PSPACE-hardness results for many natural
problems.

We can view the alternating Turing model of Chandra,
Kozen and Stockmeyer as a game. For example consider the
following setup: We have two players who alternate writing
down bits for some polynomial number of steps. A fixed
polynomial-time computable judge looks at the bits writ-
ten and determines a winner. Determining whether the first
player has a winning strategy is equivalent to an alternating
Turing machine where player 1 plays the existential alter-
natives and player 2 plays the universal. So by Chandra-
Kozen-Stockmeyer we have that determining the winner of
the game is PSPACE-complete.

This view helped produce a large number of natural PSPACE-
hard problems usually from reductions from TQBF. Even
and Tarjan [19] gave an early example, showing a general-
ization of Hex is PSPACE-complete. Schaefer [52] showed
a number of other games, like Generalized Geography and
Kayles, are also PSPACE-complete.

Let’s consider a popular perfect information game like
checkers. Checkers is played on 8 × 8 board so there are
only a finite number of possible positions and the compu-
tational complexity question is not interesting. Instead you
can generalize checkers to an N ×N board in a reasonable
way. Fraenkel, Garey, Johnson, Schaefer and Yesha [22]
showed that generalized checkers is PSPACE-hard. Gener-
alized Checkers would be PSPACE-complete if the the num-
ber of turns is bounded by a polynomial in the board size
but the rules of checkers do not require this.

Stockmeyer and Chandra [60] show that one can use the
Chandra-Kozen-Stockmeyer [14] characterization of EXP as
alternating polynomial space to show that some games are
EXP-complete and thus provably do not have an efficient
algorithm to determine the winner. Stockmeyer and Chan-
dra give an example of such a combinatorial game. Many
researchers used the tools of Stockmeyer and Chandra to
show the EXP-completeness of many natural games. In
1984, Robson [46] showed that generalized checkers is in-
deed EXP-complete.

Eppstein maintains a web page [18] surveying the com-
putational complexity of many common games, several of
which are PSPACE and EXP complete.

5. APPROXIMATE COUNTING
In 1979 Valiant [68] considered the problem of comput-

ing a permanent of a matrix, which for zero-one matrices
is equivalent to counting the number of perfect matchings
in a bipartite graph. Valiant defined the counting class #P
containing the functions f such that f(x) is the number of
accepting computations of M(x) for some NP machine M .
Valiant showed that the permanent as well as many other
related problems are #P-complete [68, 69].

In particular Valiant’s result meant that computing the
permanent was as hard as counting the number of satisfy-
ing assignments of a Boolean formula. Many researchers
felt that if we couldn’t compute the permanent exactly, per-
haps we can get a good approximation. Early algorithms
had either high variances or long running times (see [59] for
discussion).

Stockmeyer tackled a broader question of approximating
any counting problem, i.e., approximating a #P function.
Building on ideas of Sipser [56], Stockmeyer showed that
one can approximate the permanent within the polynomial-
time hierarchy.

Theorem 4 (Stockmeyer). For any #P function f
and every polynomial p there exists a function g computable
in polynomial-time with a Σp

2 oracle such that

f(x) ≤ g(x) ≤ (1 + 1/p(|x|))f(x)

A randomized algorithm only needs an NP oracle to achieve
the approximation with high probability.

Stockmeyer also gave a relativized world where one could not
deterministically approximate an arbitrary #P function.

Stockmeyer noted that approximating the number of sat-
isfying assignments would mean you could solve satisfia-



bility, and so approximating arbitrary #P functions is NP
hard. You can check in polynomial time whether the perma-
nent of a 0-1 matrix is positive (this is just bipartite match-
ing) so Stockmeyer asked whether approximating the perma-
nent is NP-hard. Recently Jerrum, Sinclair and Vigoda [31]
found an efficient probabilistic algorithm for approximating
the permanent using rapidly-mixing Markov chains. Thus
approximating the permanent is not NP-hard unless NP is
in BPP and the polynomial-time hierarchy collapses.

Stockmeyer’s result took on greater importance when a
few years later Toda [64] showed that every language in the
polynomial-time hierarchy reduces to #P. Thus computing
#P functions exactly are much harder than approximat-
ing them. If we can compute #P-complete functions like
the permanent exactly within the polynomial-time hierar-
chy then the hierarchy would collapse.

Jerrum, Valiant and Vazirani [32] and Bellare, Goldre-
ich and Petrank [8] give a randomized equivalence between
approximately counting the size of polynomial-time com-
putable sets and uniformly generating elements of such sets.
So Stockmeyer’s result now allows us to uniformly generate
elements of an easily computable set using an NP oracle.

Bshouty, Cleve, Gavaldà, Kannan and Tamon [12] use
uniform generation in their paper showing how to learn cir-
cuits with an NP oracle and equivalence queries. Köbler and
Watanabe [38] use Bshouty et. al. to show that if NP has
polynomial-size circuits then the polynomial-time hierarchy
collapses to ZPPNP, i.e., probabilistic algorithms with an
NP oracle that run in expected polynomial-time and never
err. This improves the original collapse due to Karp and
Lipton [35].

Cai [13] uses approximate counting to show that Sp
2 , a

class defined by Russell and Sundaram [47], is contained in
ZPPNP. Cai’s paper shows that if NP has polynomial-size
circuits then the polynomial-time hierarchy collapses to Sp

2 ,
the strongest known collapse.

Shaltiel and Umans [53] improving on Klivans and van
Melkebeek [36] show how to derandomize Stockmeyer’s ap-
proximate counting under reasonable assumptions.

6. LEGACY
Stockmeyer’s work permeates much of computational com-

plexity. Complexity theorists use the models, theorems and
techniques to help understand everything from circuit com-
plexity to interactive proof systems. In this section we de-
scribe the effect of Stockmeyer’s research on a few of the
many areas in recent research in complexity.

6.1 Circuit Complexity
One way we can measure the complexity of a Boolean

function is by studying the size of the circuits that compute
that function, sometimes with restrictions on the gate fan-in
and the depth. For example Stockmeyer and Meyer’s lower
bound for EWS1S [57, 62] mentioned in Section 2 shows a
lower bound on the number of gates with fan-in 2 needed by
a circuit to solve the problem.

Circuit complexity became popular in the mid-1980’s as a
potential way to attack the P versus NP problem (see [10])
but much of the circuit research actually came out of ques-
tions related to the polynomial-time hierarchy.

In the seminal paper on relativization, Baker, Gill and
Solovay [7] leave open whether there exists an oracle rela-
tive to which the polynomial-time hierarchy is infinite, i.e.,

an oracle A where Σp,A
k 6= Σp,A

k+1 for all k. Sipser [55] showed
that if one could prove that a certain class of functions
Fd required large enough (d − 1)-depth circuits then one
would have the desired oracle. Ajtai [2] and Furst, Saxe
and Sipser [23] proved nontrivial lower bounds on constant-
depth circuits but not strong enough for the oracle. Yao
first proved a strong enough lower bound in a paper [71]
entitled “Separating the Polynomial-Time Hierarchy by Or-
acles.” Thus modern circuit complexity was born by finding
oracles for the polynomial-time hierarchy.

H̊astad [29] developed a “switching lemma” to get nearly
tight bounds on constant-depth circuits. Ko [37] using care-
ful applications of the switching lemma showed that the
polynomial-time hierarchy could collapse at any level in some
relativized world: For every k ≥ 0 there were two oracles Ak

and Bk such that relative to Ak,

Σp
k 6= Σp

k+1 = Σp
k+2 = PSPACE

and relative to Bk,

Σp
k 6= Σp

k+1 = Σp
k+2 6= PSPACE.

Ruzzo [48] used alternating Turing machines based on
Chandra-Kozen-Stockmeyer [14] to define uniform circuit
classes. For example uniform constant depth circuits (AC0)
are defined by alternating log-time machines with a constant
number of alternations.

6.2 Infinite Hierarchy Conjecture
We say the polynomial-time hierarchy is infinite if Σp

k 6=
Σp

k+1 for all k > 0 and otherwise we say it collapses. While
Stockmeyer has often stated this as an open problem and
notes that the hierarchy separates in the arithmetic hier-
archy [58], to the best of my knowledge he has never con-
jectured whether or not the polynomial-time hierarchy is
infinite.

Given the lower bounds on constant-depth circuits by
Yao [71] and H̊astad [29] and their connection to the poly-
nomial-time hierarchy mentioned in Section 6.1, many com-
plexity theorists do now conjecture the hierarchy is infinite
and such a conjecture comes in quite useful in that it implies
many other conjectures in computational complexity. We
see many results, sometimes called “pigs can fly” theorems,
that show that if some conjecture does not hold then the
polynomial-time hierarchy collapses. When someone even-
tually does prove that the polynomial-time hierarchy is infi-
nite then we will immediately get that all these conjectures
are true. In this section we give a small sample of these
kinds of results.

Karp and Lipton [35] show that if NP-complete problems
have polynomial-size circuits then the polynomial-time hi-
erarchy collapses. This gives evidence that NP-complete
problems do not have polynomial-size circuits and led to the
approach of proving P 6= NP by trying to show super-poly-
nomial lower bounds for circuits for NP-complete problems.

One can define a Boolean Hierarchy above NP as fol-
lows: BH1 = NP and BHk+1 is the set of languages that
are the set difference of B and C for some B in NP and C
in BHk. Kadin [33] shows that if the Boolean hierarchy col-
lapses then the polynomial-time hierarchy collapses, giving
evidence that the Boolean hierarchy is infinite.

Babai [5, 6] defined the class AM (Arthur-Merlin) of prob-
lems that can be solved by verification of probabilistically
generated questions. Results from Goldreich, Micali and



Wigderson [25] and Goldwasser and Sipser [27] show that
Graph Non-Isomorphism sits in AM. Boppana, H̊astad and
Zachos [9] show that if co-NP is in AM then the polynomial-
time hierarchy collapses.

Putting these all together we get that if the polynomial-
time hierarchy is infinite then Graph Isomorphism is not
NP-complete, the best evidence we have that Graph Iso-
morphism is inherently easier than problems like Boolean-
Formula Satisfiability.

6.3 Interactive Proofs
Papadimitriou [44] developed a model of Games Against

Nature where he looks at alternating polynomial-time like
Chandra-Kozen-Stockmeyer [14] except that instead of a
universal player we have a player that just sends indepen-
dent uniform random bits. A string is in the language if the
first player wins with probability at least one half. Papadim-
itriou shows this model still captures exactly PSPACE.

Babai’s Arthur-Merlin model [5, 6] is essentially the same
as Papadimitriou’s Games Against Nature except that the
acceptance probability must be bounded away from one half.
Goldwasser and Sipser [27] showed the model equivalent to
an independently developed model of interactive proof sys-
tem by Goldwasser, Micali and Rackoff [26], which allowed
any probabilistic verifier possibly using hidden coins.

Shamir [54] showed how to extend the protocol of Lund
et. al. [41] to show every language in PSPACE has an in-
teractive proof, i.e., Papadimitriou’s result still holds if the
acceptance probabilities are bounded away from one half.
Shamir’s proof used properties of quantified Boolean for-
mulas and the fact that the set of true QBFs is PSPACE-
complete, first proven by Stockmeyer and Meyer [61, 58].

Dwork and Stockmeyer [17] consider interactive proof sys-
tems with verifiers, which are 2-way probabilistic finite state
automata. They show that the Goldwasser-Sipser [27] re-
sult does not hold in this model–private coin proof systems
are strictly more powerful than the public coin counterpart.
They also show every language in EXP has a private coin
proof system.

Interactive proof systems led to an connections to limita-
tions on approximation [21], which led to the theory of prob-
abilistically checkable proof systems [4, 3]. A large number
of important papers improved PCPs to prove stronger lower
bounds for approximation for specific problems.

7. CONCLUSION
When others asked what can we compute, Stockmeyer

started looking at what we can’t compute. Along the way
he developed the computational tools and models that have
guided complexity ever since. We lost one of the true giants
of computational complexity last summer but Stockmeyer’s
legacy will continue to grow with generations of theorists to
come.
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