Resource-Bounded Kolmogorov Complexity Revisited

Harry Buhrman* Lance Fortnow!
CWI University of Chicago
PO Box 94079 Department of Computer Science
1090 GB Amsterdam 1100 E. 58th St.
The Netherlands Chicago, IL 60637 USA

Sophie Laplante?
LRI
Université Paris-Sud, Batiment 490
91405 Orsay, France

May 23, 2001

Abstract

We take a fresh look at CD complexity, where CD*(z) is the size of the smallest program
that distinguishes z from all other strings in time #(]z|). We also look at CND complexity,
a new nondeterministic variant of CD complexity, and time-bounded Kolmogorov complexity,
denoted by C complexity.

We show several results relating time-bounded C, CD and CND complexity and their
applications to a variety of questions in computational complexity theory, including;:

e Showing how to approximate the size of a set using CD complexity without using the
random string as needed in Sipser’s earlier proof of a similar result. Also we give a new
simpler proof of this result of Sipser’s.

e Improving these bounds for almost all strings, using extractors.

e A proof of the Valiant-Vazirani lemma directly from Sipser’s earlier CD lemma.
e A relativized lower bound for CND complexity.

e Exact characterizations of equivalences between C, CD and CND complexity.

e Showing that satisfying assignments of a satisfiable Boolean formula can be enumerated in
time polynomial in the size of the output if and only if a unique assignment can be found
quickly. This answers an open question of Papadimitriou.

e A new Kolmogorov complexity based proof that BPP C X7,
e New Kolmogorov complexity based constructions of the following relativized worlds:

— There exists an infinite set in P with no sparse infinite NP subsets.

— EXP = NEXP but there exists a NEXP machine whose accepting paths cannot be
found in exponential time.
— Satisfying assignments cannot be found with nonadaptive queries to SAT.

“E-mail: buhrman@cwi.nl. Part of this research was done while visiting The University of Chicago. Partially
supported by the Dutch foundation for scientific research (NWO) through NFI Project ALADDIN, under contract
number NF 62-376.

"Email: fortnow@cs.uchicago.edu. Supported in part by NSF grant CCR 92-53582.

{Email: laplante@Iri.fr. Work done while at the University of Chicago.

1 Introduction

Originally designed to measure the randomness of strings, Kolmogorov complexity has become an
important tool in computability and complexity theory. A simple lower bound showing that there
exist random strings of every length has had several important applications (see [LV97, Chapter
6]).

Early in the history of computational complexity theory, many people naturally looked at
resource-bounded versions of Kolmogorov complexity. This line of research was initially fruitful and
led to some interesting results. In particular, Sipser [Sip83] invented a new variation of resource-
bounded complexity, CD complexity, where one considers the size of the smallest program that
accepts one specific string and no others. Sipser used CD complexity for the first proof that BPP
is contained in the polynomial-time hierarchy.

Complexity theory has marched on for the past two decades, but resource-bounded Kolmogorov
complexity has seen little interest. Now that computational complexity theory has matured a bit,
we ought to look back at resource-bounded Kolmogorov complexity and see what new results and
applications we can draw from it.

First, we use algebraic techniques to give a new upper bound lemma for CD complexity without
the additional advice required of Sipser’s lemma [Sip83]. With this lemma, we can approximately
measure the size of a set using CD complexity.

We obtain better bounds on CD complexity using extractor graphs. These graphs are usually
used for derandomization. However these improved bounds only apply to most of the strings.

We also give a new simpler proof of Sipser’s Lemma and show how it implies the important
Valiant-Vazirani lemma [VV85] that randomly isolates satisfying assignments. Surprisingly, Sipser’s
paper predates the result of Valiant and Vazirani.

We define CND complexity, a variation of CD complexity where we allow nondeterministic
computation. We prove a lower bound for CND complexity where we show that there exists an
infinite set A such that every string in A has high CND complexity even if we allow access to
A as an oracle. We use this lemma to prove some negative results on nondeterministic search vs.
deterministic decision.

Once we have these tools in place, we use them to unify several important theorems in complexity
theory. We answer an open question of Papadimitriou [Pap96] characterizing exactly when the set
of satisfying assignments of a formula can be enumerated in output polynomial time. We also
give straightforward proofs that BPP is in ¥} (first proven by Gécs (see [Sip83])) and create
relativized worlds where assignments to SAT cannot be found with non adaptive queries to SAT
(first proven by Buhrman and Thierauf [BT96]), and where EXP = NEXP but there exists
a NEXP machine whose accepting paths cannot be found in exponential time (first proven by
Impagliazzo and Tardos [IT89]).

These results in their original form require a great deal of time to fully understand the proof
because either the ideas and/or technical details are quite complex. We show that by understand-
ing resource-bounded Kolmogorov complexity, one can see full and complete proofs of these results
without much additional effort. We also look at when polynomial-time C, CD and CND com-
plexity coincide. We give a precise characterization of when we have equality of these measures,
and some interesting consequences thereof.

2 Preliminaries

We use basic concepts and notation from computational complexity theory texts like Balcazar,
Diaz, and Gabarré [BDG88] and Kolmogorov complexity from the excellent book by Li and
Vitdnyi [LV97]. We use |z| to represent the length of a string = and |A| to represent the number
of elements in the set A. A™" is the set of strings in A of length n. [N] denotes the set of integers
between 1 and N. All of the logarithms are base 2.

Formally, we define the Kolmogorov complexity function Cy4(x|y) by Cgy(z|y) = miny{|p| :
¢(p,y) = x}. The exists a universal machine U such that for all ¢ there is a constant ¢ such that
for all and y, Cy(z|y) < Cy(z|y) + c. We fix such a U and let C(z|y) = Cy(z|y). We define
unconditional Kolmogorov complexity by C(z) = C(z|e).

A few basic facts about Kolmogorov complexity:

e The choice of U affects the Kolmogorov complexity by at most an additive constant.
e For some constant ¢, C(x) < |z| + ¢ for every z.
e For every n and every y, there is an x such that |z| = n and C(z|y) > n.

We will also use time-bounded Kolmogorov complexity. Fix a fully time-constructible function
t(n) > n. We define the C'(z|y) complexity function as

C'(z|y) = min{|p| : U(p,y) = = and U(p) runs in at most ¢(|z| + |y|) steps}.
P

As before we let C'(z) = C'(z]e). A different universal U may affect the complexity by at most a
constant additive term and the time by a log(¢) factor.

While the usual Kolmogorov complexity asks about the smallest program to produce a given
string, we may also want to know about the smallest program to distinguish a string. While this
difference affects the unbounded Kolmogorov complexity by only a constant it can make a difference
for the time-bounded case. Sipser [Sip83] defined the distinguishing complexity CD’ by

(1) U(p, z,y) accepts.
CD'(z|y) = min{ |p| : (2) U(p,z,vy) rejects for all z # z.
P (3) U(p, z,y) runs in at most ¢(|z| + |y|) steps for all z € ¥*.

When the auxiliary input string y is the empty string, we write CD'(z).
Fix a universal nondeterministic Turing machine U,,. We define the nondeterministic distin-
guishing complexity CND! by

(1) Un(p;z,y) accepts.
CND!(zly) =min{ [p| : (2) Un(p,2,9) rejects for all z # z.
P (3) Upn(p, z,y) runs in at most ¢(|z| + |y|) steps for all z € ¥*.

In this definition, we mean that the nondeterministic Turing machine accepts or rejects in the usual
sense of nondeterministic computation. Once again we let CND'(z) = CND'(x|e).

We can also allow for relativized Kolmogorov complexity. For example, CD"*(z|y) is defined
as above except that the universal machine U has access to A as an oracle.

One can distinguish a string by generating it then comparing it with the input, as stated in the
following lemma.

Lemma 2.1 V¢ 3¢ Vz,y: CD8! (1 | 4) < Cl(z | y) + ¢

where ¢ is a constant. Likewise, every deterministic computation is also a nondeterministic com-
putation, hence the lemma that follows.

Lemma 2.2 V¢ 3¢ Vz,y : CND®8! (5 |) < CD!(z | y) +c.

In Section 7 we examine the consequences of the converses of these lemmas.

3 Approximating Sets with Distinguishing Complexity

In this section we derive a lemma that enables one to deterministically approximate the density of
a set, using polynomial-time distinguishing complexity. The technique we use of considering values
modulo a prime is reminiscent of the hashing via the division method (see [Knu98, p. 515]).

Lemma 3.1 Let S = {z1,...,2q4} C{0,...,2" —1}. For all x; € S and at least half of the primes
p < 4dn?, z; # xj mod p for all j # 1.

Proof: For each z;,z; € S, © # j, it holds that for at most n different prime numbers p,
x; = xj mod p by the Chinese Remainder Theorem. (Alternatively, |z; — z;| < 2", so it can not
have more than n prime factors.) For z; there are at most dn primes p such that z; = z; mod p for
some z; € S. The Prime Number Theorem [Ing32] (see also [HW79]) states that for any mn there are
approximately m/ In(m) > m/log(m) primes less than m. There are at least 4dn?/ log(4dn?) > 2dn
primes less than 4dn®. So at least half of these primes p must have z; # zj mod p for all j # 4. O

Lemma 3.2 Let A be any set. For all strings = € A=" it holds that CDPA™" (z) < 2log(|A="]) +
O(log(n)) for some polynomial p.

Proof: Fixn andlet S= A=". Fix £ € S and a prime p, fulfilling the conditions of Lemma 3.1
for x.
The CDP?4 program for z works as follows:

input y

If y ¢ A=" then REJECT

else if y mod p, = z mod p, then ACCEPT
else REJECT

The size of the above program is |p,;| + |« mod p,|+ O(1). This is 21log(|A]) + O(log(n)). It is clear
that the program runs in polynomial time, and only accepts . O

We note that Lemma 3.2 also works for CND? complexity for p some polynomial.

Buhrman, Laplante and Miltersen [BLMO00] show that Lemma 3.2 is tight.

Theorem 3.3 (Buhrman-Laplante-Miltersen) For every polynomial p and sufficiently large n
there exists a set of strings A C {0,1}" containing more than 21/50 strings such that there is an x
in A with

CD (z) > 2log(|4~"]) — O(1)

Corollary 3.4 Let A be a set in P. For each string © € A it holds that: CDP(z) < 2log(]|A~"|)+
O(log(n)) for some polynomial p.

Proof: We will use the same scheme as in Lemma 3.2, now using that A € P and specifying
the length of z, yielding an extra log(n) term for |z| plus an additional 2loglog(n) penalty for
concatenating the strings. O

Theorem 3.3 also gives a relativized tightness result for Corollary 3.4.

Corollary 3.5 1. A set S is sparse if and only if for all z € S, CDP(z) < O(log(|z])), for
some polynomial p.

2. A set S € P is sparse if and only if for all x € S, CDP(z) < O(log(|z|)), for some polynomial
.

3. A set S € NP is sparse if and only if for all x € S, CND?(z) < O(log(|z|)), for some
polynomial p.

Proof: Lemma 3.2 yields that all strings in a sparse set have O(log(n)) CDP complexity. On
the other hand simple counting shows that for any set A there must be a string z € A such that
CND"(z) > log(|A=I"|). O

3.1 Sipser’s Lemma

We can also use Lemma 3.1 to give a simple proof of the following important result due to
Sipser [Sip83].

Lemma 3.6 (Sipser) For every polynomial-time computable set A there exists a polynomial p and
constant ¢ such that for every n, for most r in L2 and every x € A=",

CDP " (zfr) < log(|A™"]) + clog(n)

Proof: For each k, 1 < k < n, let r; be a list of 4k(n + 1) randomly chosen numbers less
than 2. Let 7 be the concatenation of all of the ry.

Fix € A™™. Let d = |A™"|. Fix k such that 2¢~! < 4dn? < 2*. Consider one of the numbers
y listed in rg. By the Prime Number Theorem [HWT79], the probability that y is prime and less
than 4dn? is at least WZW)- The probability that y fulfills the conditions of Lemma 3.1 for z is

at least leldnz) > ﬁ. With probability about 1 — 1/e"*t! > 1 —1/2"*! we have that some ¥ in
rp. fulfills the condition of Lemma 3.1.

With probability at least 1/2, for every z € A there is some y listed in 7y fulfilling the conditions
of Lemma 3.1 for z.

We can now describe z by £ mod y and the pointer to y in r. O

Note: Sipser’s original proof gives a tighter bound than clog(n) but for most applications the
additional O(log(n)) additive factor makes no substantial difference.

Comparing our Lemma 3.2 with Sipser’s lemma (Lemma 3.6,) we are able to eliminate the
random string required by Sipser at the cost of an additional log(|A="|) bits.

4 Approximating sets with Extractors

By using extractors, we can obtain nearly the bound of Sipser’s lemma 3.6 without the random
string it requires. However, our result only works for most strings in A.

Theorem 4.1 For any set A, any function £(n), ‘there is a polynomial p such that for all n and
for all but a 2¢(n) fraction of the x € A=", CDPA™" () < log |A="| + log® V) (n/e(n)).

We give a nondeterministic version of this result and give a bound on CND complexity. We
also give a randomized version of these theorems, stating that the shorter string can be chosen at
random and the probability of getting a short string which encodes as much information as the
original string is bounded away from 1/2.

4.1 Extractors

An extractor can be thought of as a bipartite graph, whose first color class is larger than the second
color class. By convention we think of the first color class as being on the left, and the second on
the right. The vertices on the left side are all the strings of length n. so the first color class can be
equated with the set [IV], where N = 2". Likewise, the vertices on the right side of the graph are
labeled by strings of length m < n, so we let M = 2™ and [M] is equated with the vertices in the
second color class.

4.1.1 Distributions

We will be choosing a node on the left side of the graph at random according to a distribution X.
The result of choosing a neighbor uniformly at random in the graph will produce a distribution Y
on vertices on the right.

The min-entropy of a distribution X over [N] is defined as min{— log, (X (z))|z € [N]}. The
min-entropy of X can be thought of as a measure of the randomness present in a string = chosen
according to X.

A distribution Y is said to be e-close to Z if both distributions are over the same space [M],
and that for any S C [M],|Y (S) — Z(5)| < e.

4.1.2 Definition of extractors

A bipartite graph G with (independent) vertex sets [N] and [M], N = 2", M = 2™ and for which
the degree of all the vertices in the first color class is bounded by D = 2% is an (n, k,d, m,) extractor
if given any distribution X on the N vertices whose min-entropy is at least k, the result of choosing
an ¢ according to this distribution and a random neighbor y of x in the graph is e-close to the
uniform distribution over [M]. In our setting, the distribution X will be the uniform distribution
over a subset A C [N], so k will be log (]| A]).

I'(z) denotes the set of neighbors of z in G when z is a vertex on the left side of the graph. The
number of edges originating at some vertex x on the left side of the graph is called the outdegree
of z, whereas the number w(y) of edges adjacent with a vertex y on the right side of the graph is
called the indegree (or weight) of y. G(x,r) represents the rth neighbor of x in the graph, where
multiple edges are allowed. When y is a vertex on the right side of the graph, le(y) is the subset
of preimages of y which lie in A. The notation extends to sets in the natural way.

4.1.3 Best known explicit constructions

The results we state are subject to improvement if better explicit extractor constructions are found.
We have stated our results in general terms so that new results on extractors will be immediately
applicable.

The current best known explicit constructions for extractors are due to Ta-Shma, Zuckerman,
Trevisan, and Raz, Reingold and Vadhan [Ta-96, Zuc96, Tre99, RRV99]. The extractors best
suited for our purposes are the ones which can be constructed for any k, and with m = k, with the
smallest amount of additional randomness. We illustrate our results with the parameters obtained
from Ta-Shma’s construction.

Theorem 4.2 (Ta-Shma) There is an explicit construction that for every n and for any function
e(n) and every m = m(n) < n yields an extractor with parameters (n,m,log®M (n/e(n)), m,e(n)).

It is useful to compare this construction to the current lower bound on extractors, due to Nisan
and Zuckerman [NZ93].

Theorem 4.3 (Nisan-Zuckerman) There is a constant ¢ such that for all nym,k <mn—1,e <
1/2, if there is an extractor whose parameters are (n,k,d,m,e), then it must be the case that
d > min{m, clog (n/e)}.

This lower bound also gives a good indication as to the limits of the techniques described in
this paper.

4.2 Extracting CD complexity

Theorem 4.1 follows immediately from the following result, using the explicit extractor construction
of Ta-Shma. For this theorem we assume that there is an explicit extractor construction whose
parameters are (n, k,d,m,¢e), and we write M = 2.

Theorem 4.4 Fiz a set A, a polynomial g(n) and € = e(n). Then there is a polynomial p(n) such
that for all n and for all but a 2¢ fraction of the x € A=", there is a y such that

1. ly| =m
2. CP(ylz) <d+ O(1)
3. CDPA™" () < C(y) + 3d + 2log(|A="|/M) + clog(n + d + log(| A="|/M)) + O(1),

where the underlying extractor’s parameters are determined by n and k = log(|A™"|), and ¢ is a
small absolute constant.

For the remainder of this section, we fix n and we let S = |A™"|. In our setting, we will think
of the set A=" as defining a distribution of min-entropy k& = log(S). The string x represents an
element of A" and y is one of its neighbors in the graph G. Hence y has length m; computing y
from z requires knowing only a short (“random”) string of length d; and as we will see, y together
with some short additional distinguishing information will suffice to distinguish the string z (in the
sense of CD complexity).

The following lemmas are at the heart of the argument. They allow us to upper-bound the
number of “bad” elements in A=", where “bad” means the strings = for which Theorem 4.4 will
not apply.

In order to get a short description for z, we need to find a string y in its range which has small
indegree (counting only those edges originating in A=".)

In Lemma 4.5, we use the properties of the extractor to obtain an upper bound on the number
of y which have large indegree. In the statement of the lemma, we use the variable wg to represent

the threshold on degree: any vertex with degree larger than wy has large degree. A typical value
for wy is twice the average degree of the graph.

Lemma 4.6 gives an upper bound on the number of z on the left side of the extractor whose
neighbors all lie within a small subset of the right side of the graph. When the small subset is the
set of vertices with large indegree, these z are the “bad” x to which the theorem will not apply.

Lemma 4.5 Consider the restriction of the extractor to the set of edges originating in A=™. Recall
that the degree of the graph is bounded by D = 2%. In this restricted graph, let wy be an indegree
threshold, DWS < wy < DS, and Y be a subset of vertices on the right hand side of the extractor

-1
graph. If Vy € Y, w(y) > wy, then |Y| <€ (% — ﬁ) .

Proof: Let Y be the set of vertices whose indegree (in the restricted graph) exceeds wg. Because the
wl) w) 1Y Since w(Y) > wy|Y],

Y] \
(A=) M 2 DS M-

graph is an extractor, it must be the case that ¢ >

-1
we get [V <e (% - %) as claimed. O

Lemma 4.6 In the restricted graph, if Y is a set on the right side of the graph, then

{xe A7 :T'(x) CY}| < (6 + L”) S.
M
Proof: Let X = {z € A7 : I'(z) C Y}. The distribution which consists of picking a random
element of A=" and then choosing a random neighbor gives measure at least | X|/S to the set Y.
Because of the extractor property, @ — % <e. O
To conclude, we give the proof of Theorem 4.4.

Proof: Let A be a set and ,n be given as in the statement of the theorem. By Lemma 4.5, applied
with wy = 2DS/M (D = 2%) and Lemma 4.6 with Y as in the hypothesis of Lemma 4.5, the size of
the subset B C A=" such that Vz € B, Vy € I'(z), y has indegree at least wy can have size at most
2eS. Therefore for all but 2eS of the 2 in A=", there is a y in its range whose indegree is at most
2DS/M. For each such z, let r, be the label of one of the edges in G which connects = to such a
y. We need to verify 3 properties for each of these pairs z, y.

1. |y| = m : This is by choice of the extractor G.

2. CP(ylz) <d+O(1) : y = G(x,ry) for some 7, € X% so the algorithm to print y will contain
an encoding of r,, and on input z computes G(x,7;) and outputs the result.

3. CDPA7" () < CY(y) + 3d + 21og(S/M) + clog(n) + O(1) : The program to recognize z will
contain an encoding for an r, and y for which G(z,r,) = y and the indegree of y is at most
2DS/M. 1t must also contain a distinguishing program p, which recognizes z among the
2DS/M vertices on the left originating in A that are adjacent to y. (The encoding of r, is
required to test that x is adjacent to y, but may be omitted if the degree of the graph is
polynomial. This is not the case in the current explicit, efficient extractors, whose degree
is on the order of 2196°”(")) The length of p, is bounded by 2log(2DS/M) + O(log(n +
log(2DS/M))), by Lemma 3.2. (An additional logarithmic term is needed to encode the
lengths of the various components of the encoding, but this is bundled in the O notation.)

The algorithm follows:

input z

If z ¢ A=" then REJECT

else if G(z,7;) # y then REJECT
else if p(z) = 1 then ACCEPT
else REJECT

So the program requires an encoding of y, r, and the distinguishing program p,, for a total
length of C(y) + d + 2log(2DS/M) + clog(n + log(2DS/M)) + O(1).

O

4.3 Extracting CND complexity

A statement analogous to Theorem 4.4 can be made for CND complexity. Using a slight variant
of the proof of Theorem 4.4, we can get a bound which is smaller by a a term of d. Also in the
upper bound, CD?(y) is used instead of possibly larger term C9(y).

Theorem 4.7 Fiz a set A in NP, a polynomial q(n), and ¢ = £(n). Then there is a polynomial
p(n) such that for every n and for all but a 2¢ fraction of the x € A=", there is a y such that

1. Jy| = log(]A="])
2. CP(ylz) <d+ O(1)

3. CND”(z) < CD%(y) + 2d + clog(n + d) + O(1).

The proof is essentially the same as that of Theorem 4.4. To simplify the notation we make the
assumption that the extractor used achieves & = m, as does Ta-Shma’s construction. To obtain
property 3, we need only guess y, and verify our guess using a distinguishing program for y whose
length is bounded by CDY(y). Likewise, we can simply guess r and omit its encoding, and use the
distinguishing program p to verify our guess for r.

4.4 Randomly extracting CD complexity

Another variant that saves a d = log(D) term is to choose a counterpart y to a string x in a set
in P at random. We will only require that for most x, at least half of the edges from z map to a
“o00d” y. Although this comes at the cost of only applying to “most” strings xz, this improves upon
the result of Sipser [Sip83] by reducing the length of the random string from n°M) to log®(" (n/e).
The proof is similar to that of Theorem 4.4; it requires only a slight modification to the counting
argument.

Theorem 4.8 Fiz a set A inP, a polynomial q(n), and a function e(n). Then there is a polynomial
p(n) such that for every n and for all but a 4e(n) fraction of the x € A=", and at least half of the
strings v of length d, there is a y such that:

1. [y] = log(|4="])
2. CP(ylz,r) < O(1)

3. CDP(z|r) < Cy) + 2d + 2log(n + d) + O(1).

5 Extracting random strings

In the previous section, we used the fact that the strings examined were in a small set of bounded
complexity, and we showed the existence of strings for which the mutual information was roughly
the CND complexity of the original string. Here we use extractor techniques to a achieve a slightly
different goal. We obtain an incompressible string whose length is close to the CD complexity of x
and which can be computed from z using only log(n/e) bits.

In the case of unbounded Kolmogorov complexity, it is easy to see that the following proposition
is true.

Proposition 5.1 [LV97, Ex. 2.1.5, p. 102] For any string = of length n, there is a y such that:
1.y = Cla)
2. C(y|z) < log(n)
3. C(y) > [y| — O(1).

Namely, y is a minimal-length program for z, and can be obtained from z by dovetailing, given the
value of C(z). In the time-bounded setting however, this argument fails, since dovetailing would
take too much time. Our use of extractors is far afield from the above approach, yet it yields results
surprisingly close to Proposition 5.1. (Non-explicit extractors actually allow us to give an alternate
proof of Proposition 5.1, although this is more an artifact than a useful new proof.)

Theorem 5.2 For any polynomial q(n) and function e(n), then there exists a polynomial p(n) such
that for any string x of length n, there is a string y such that:

1. |y| = CNDP?(z)/2 — ¢; log(n)
2. CP(ylz) <log™(n/e(n))
3. Cl(y) > ly| — c,

where c1,co are absolute constants, and c. depends only on €.

Instead of giving the proof of Theorem 5.2, we prove the result in the following more general
form, which may be improved as explicit extractor constructions are improved.

Theorem 5.3 For any polynomial g(n) and € = £(n), there exists a polynomial p(n) such that for
any string x, there is a string y such that:

1. ly| =m
2. CP(ylz) <d+ a1

3. Cl(y) > ly| — c,

where c1 15 an absolute constant, c. is a constant depending only on ¢, k = %(CNDZd"’(.’L‘) —
2log(n) — ¢1 — 1) and (n,k,d, m,e) are the parameters of an explicit extractor.

10

Theorem 5.2 follows by applying Theorem 5.3 with parameters obtained from Ta-Shma’s ex-
tractor [Ta-96].
Proof: (Sketch) Consider a family of extractors with parameters n, k, m(k). Fix any n,k and let
G = Gy m,m = m(k), be the extractor with parameters n,m,k. (Later we will fix k to be a
specific value.) Let A, ., = {z|['(z) C Clg(n),m — ¢}, where C[t,l] = {z|C'(z) < I}, and c. is
chosen so that ¢, > log(l—ig) for large enough n.

The fact that G is an extractor prohibits the set A, ,, from being large, as we see now. If
| An.m| > 2%, then by the properties of the extractor,

la(n),m —)|

€
1—¢e< om

But [C[g(n),m — c.]| < 2™ %, and we have chosen c. > log(t2-) in order to get a contradiction.
Hence we must conclude that |A,, | < 2.

Now we may apply Lemma 3.2 for CND to conclude that all z € A, , must have small
CND complexity. First notice that verifying membership in A, ,, is in NTIME[2¢ - p] for some
polynomial p, since it suffices to guess, for each neighbor y of = in Gy, a program of length
m — ¢, which prints out y. Hence, there exists a constant ¢; such that for every = € A, .,
CND?'?(z) < 2log(|Anml) + 2log(n) + c1.

Now consider x with respect to the extractor Gn’fc’m(];), where k = %(CNDQd'p(:r) — 2log(n) —
c1 — 1) and m is maximal for this k. By the observation above, it must be the case that & A, .
Therefore there must be a y not in Cg(n), m — c.] to which z is mapped under G, ; . It is easy
to verify that y satisfies the properties claimed in the statement of the theorem. O

6 Lower Bounds

In this section we show that there exists an infinite set A such that every string in A has high
CND complexity, even relative to A.
Fortnow and Kummer [FK96] prove the following result about relativized CD complexity:

Theorem 6.1 There is an infinite set A such that for every polynomial p, CDP*(z) > |z|/5 for
almost all x € A.

We extend and strengthen their result for CND complexity:

Theorem 6.2 There is an infinite set A such that CNDQW’A(.'I:) > |z|/4 for all z € A.
The proof of Fortnow and Kummer of Theorem 6.1 uses the fact that one can start with a large
set A of strings of the same length such that any polynomial-time algorithm on an input z in A
cannot query any other y in A. However, a nondeterministic machine may query every string of a
given length. Thus we need a more careful proof.

This proof is based on the proof of a result due to Goldsmith, Hemachandra and Kunen [GHK92]
which we obtain as Corollary 6.3 below. In Section 9, we will also describe a rough equivalence
between this result and an “X-search” theorem of Impagliazzo and Tardos [IT89].

Proof of Theorem 6.2:

We create our set A in stages. In stage k, we pick a large n and add to A a nonempty set of
strings B of length n such that for all nondeterministic programs p running in time 2V™ such that
Ip| < n/4, pPU4 accepts either zero or more than one strings in A. We first create a B that makes

11

as many programs as possible accept zero strings in B. After that we carefully remove some strings
from B to guarantee that the rest of the programs accept at least two strings.

Let P be the set of nondeterministic programs of size less than n/4. We have | P| < 2"/%. We
will clock all of these programs so that they will reject if they take time more than 2V We also
assume that on every program p in P, input z and oracle O, p®(z) queries .

Let v = 2Vt | P| and w = | P|v2V™. Pick sets A C P and H C ¥" that maximizes |A| + |H|
such that |H| < w|A[, and for all X C " — H and p € A, X N pAYX = .

Note that H # %" since |H| < w|A| < w|P| < 22V7+1230/4 < 97 Since some small program
p always accepts we have that A # P.

Our final B will be a subset of ¥ — H which guarantees that for all p € A, pA“P will not accept
any strings in B. We will create B such that for all p € P — A, p“P accepts at least two strings in
B. Initially let B = X" — H. For each p € P — A and for each integer ¢, 1 <14 < v do the following:

Pick a minimal X C B such that for some y € X, p“X(y) accepts. Fix an accepting
path and let @), be all the queries made on that path. Let y,;, =y, X,,; = X and
B =B — Q-

Note that [@Q,] < 2V™. We remove no more than |P[v2Y" < w strings in total. So if we cannot
find an appropriate X, we have violated the maximality of |A|+ |H|. Note that y,; € X,,; C Qp.
and all of the X, ; are disjoint.

Initially set all of the X, ; as unmarked. For each p € P — A do the following twice:

Pick an unmarked X, ;. Mark all X, ; such that X, ;N Q,; # 0. Let B = BU X, ;.

We have that y,; € B and p“B(y, ;) accepts for every X, ; processed.

At most 2-2V"|P| —1 < v of the X, ;’s get marked before we have finished, we always can find
an unmarked X, ;.

Finally note that B C X — H and for every p € P — A we have at least two y € B, such that
pAYB(y) accepts. Since P — A #) this also guarantees that B # (). Thus we have fulfilled the
requirements for stage k. O

Using Theorem 6.2 we get the following corollary first proved by Goldsmith, Hemachandra and
Kunen [GHK92].

Corollary 6.3 (Goldsmith-Hemachandra-Kunen) Relative to some oracle, there ezists an in-
finite polynomial-time computable set with no infinite sparse NP subsets.

Proof: Let A from Theorem 6.2 be both the oracle and the set in P4. Suppose A has an
infinite sparse subset S in NP4, Pick a large = such that 2 € S. Applying Corollary 3.5(3) it
follows that CNDA? () < O(log(n)). This contradicts the fact that € § C A and Theorem 6.2.
O

The above argument shows actually something stronger:

Corollary 6.4 Relative to some oracle, there exists an infinite polynomial-time computable set
with no infinite subset in NP of density less than 2"/°.

It remains open whether Corollary 6.4 holds for 29" for % <d< 1.

12

7 CD vs. C and CND

This section deals with the consequences of the assumption that one of the complexity measures C,
CD, and CND coincide for polynomial time. We will see that these assumptions are equivalent to
well-studied complexity-theoretic assumptions. This allows us to apply the machinery developed
in the previous sections. We will use the following function classes:

Definition 7.1 1. The class FPNPIeMI o the class of functions computable in polynomial
time that can adaptively access an oracle in NP at most clog(n) times, for some c.

2. The class FPEIP 15 the class of functions computable in polynomial time that can non-
adaptively access an oracle in NP.

Theorem 7.2 The following are equivalent:
1. Vpy 3p1, ¢ Va,y : C (z | y) < CND”*(z | y) + clog(|z] + [yl).
2. Vpy Ip1,c Vr,y: CDP (x| y) < CNDP*(x | y) + clog(|z| + |y|).

3. FPNPlog(n)] — ppNP,

Proof: (1 = 2) is trivial.
(2 = 3) We will first need the following lemma due to Lozano (see [JT95, pp. 184-185]).

Lemma 7.3 FPNPlos(?)] — FPYY if and only if for every f in FPNY there exists a function
g € FP, that generates a polynomial-size set such that f(x) € g(x).

In the following let f € FPYP. Let f(z) = y. We will see that there exists a p and ¢ such
that CNDP(y | z) < clog(|z|). We can assume that the machine computing f(z) produces a list
of queries Q = {q1,...,q} to SAT. Let w be the exact number of queries in @) that are in SAT.
Thus w = |[Q () SAT|. Consider the following CND? program given z:

input z

use f(z) to generate Q.

guess ¢',...,q" € Q that are in SAT

guess satisfying assignments for ¢', ..., ¢%.

REJECT if not all ¢',...,q" are satisfiable.

compute f(z) with ¢',...,¢" answered YES and ¢; € Q \ {¢',...,¢"} answered NO
ACCEPT if and only if f(z) = 2

The size of the above program is clog(|z|), accepts only y, and runs in time p, for some poly-
nomial p and constant ¢ depending only on f. It follows that also all the prefixes of y have CND?”
complexity bounded by clog(|z|) 4+ log(|z|) + O(1). By assumption there exists a polynomial p’ and
constant d such that CD? (z | z) < dlog(|z|) for z a prefix of 3. For each of these z there is some
program r such that

1 Ir] < dlog(Jz]).
2. U(r, z,z) accepts,

3. U(r,u,x) rejects for each u # z and

13

4. U(r,u,z) runs in time at most p'(|z|) for each |u| < |z|.
We can use the following procedure to enumerate possibilities for y.

Let Sg = {6}
For m =1 to |y|.
Let S}, consist of all strings u of length m such that u extends some string in S, 1.
Let Sy, consist of all strings w in S}, such that there is some r, |r| < dlog(|z|),
such that U(r,u,z) accepts in p'(|z|) steps and
for all v € S}, — {u}, U(r,v,z) does not accept in p'(|z|) steps.

Note for all m, S,,, and S/, will have size bounded by 2|z|? so the above algorithm runs in polynomial
time. By our discussion, y will belong to S, so it follows using Lemma 7.3 that FPNPllog(n)] —
FPLP.

(3 = 1) Let y be a string such that CNDP (y |) = k. Let e be the program of length k that
witnesses this. Consider the following function:

f(<e,04,0™, 2>) = wyw; . .. wy,

where
1 if there is a z of length m with the i bit equal to one

w; = such that U, (e, z,) nondeterministically accepts in [steps.
0 otherwise.

Note that if ¢ is a CND program, that runs in [steps, then it accepts exactly one string, w of
length m. Hence f(<r, Op/(‘y‘+‘“”‘),0‘y‘,ﬂ:>) = y. It is not hard to see that in general f is in FPEIP
and by assumption in FPNPIs()] via machine M. Next given e = r, m = |y|, | = p'(jy| + |z|), =
and the clog(|y| + |z|) answers to the NP oracle that M makes we can generate y in polynomial
time. We have that CP(y | z) < CND? (y | z) + clog(|y| + |z|) O

For the next corollary we will use some results from [JT95]. We will use the following class of
limited nondeterminism defined in [DT90].

Definition 7.4 Let f(n) be a function from IN — IN. The class NP[f(n)] denotes that class of
languages that are accepted by polynomial-time bounded nondeterministic machines that on inputs
of length n make at most f(n) nondeterministic moves.

Jenner and Toran [JT95] show a series of consequences of the assumption FPNPllog(n)] — FPEP.
By Theorem 7.2 we also get these consequences from a collapse of CD and CND complexity.

Corollary 7.5 If Vps 3p1,c Vz,y : CDP' (2 | y) < CNDP(z | y) + clog(|z| + |y|) then for any k:
1. NP[logk(n)] is included in P.
n
2. SAT € NP[]
O(l/loglog(n)))

3. SAT € DTIME(2"

4. There exists a polynomial q such that for every m formulae ¢1,..., ¢, of n variables each
such that at least one is satisfiable, there exists an i such that ¢; is satisfiable and

CND(¢il(¢1, .-, dm)) < O(loglog(n + m))

14

The last consequence simply restates one of the Jenner-Tordn results in the notation of this paper.
We can use Corollary 7.5 to get a complete collapse if there is only a constant difference between
CD and CND complexity.

Theorem 7.6 The following are equivalent:
1. Vpg Ip1,c Vz,y: CP (x| y) < CNDP*(z | y) + c.
2. Vpy Ip1,¢ Vz,y: CDP(z | y) < CNDP?(z | y) + c.

3. P =NP.

Proof Sketch: (1 = 2) and (3 = 1) are easy.
(2 = 3) By Corollary 7.5(4) combined with the the assumption we have for any formulae
¢1,...,¢m where at least one is satisfiable that

CD? (¢l (1. ., $m)) < cloglog(n +m)

for some satisfiable ¢;. We can enumerate all the programs p of length at most ¢loglog(n +m) and
find all the formula ¢; such that p(¢s, (¢1,...,¢m)) =1 and p(¢;, (¢d1,...,¢m)) =0 for j #i.

Thus given ¢1, ..., ¢, we can in polynomial-time create a subset of size log®(n+m) that contains
a satisfiable formula if the original list did. We then apply a standard tree-pruning algorithm to
find the satisfying assignment of any satisfiable formula. O

A simple modification of the proof shows that Theorem 7.6 holds if we replace the constant ¢
with alog(n) for any a < 1.
For the next corollary we will need the following definition (see [ESY84]).

Definition 7.7 A promise problem is a pair of sets (Q,R). A set L is called a solution to the
promise problem (Q, R) if Ve(r € Q = (x € L < x € R)). For any function f, fSAT denotes the
set of Boolean formulas with at most f(n) satisfying assignments for formulae of length n.

The next theorem states that nondeterministic computations that have few accepting computa-
tions can be “compressed” to nondeterministic computations that have few nondeterministic moves
if and only if CP?% < CDPW.

Theorem 7.8 The following are equivalent:
1. ¥py Ip1,c Va,y : CP (x| y) < CDP*(z | y) + c.
2. (1SAT,SAT) has a solution in P.
3. For all time constructible f, (fSAT,SAT) has a solution in NP[2log(f(n)) + O(log(n))].

Proof: (1 <= 2) This was proven in [FK96].

(3 = 2) Take f(n) =1 and the fact [DT90] that NP[O(log(n))] = P.

(2 = 3) Let ¢ be a formula with at most f(|¢|) satisfying assignments. Lemma 3.2 yields that for ev-
ery satisfying assignment a to ¢, there exists a polynomial p such that CDP(a | ¢) < 2log(f(|¢])) +
O(log(|¢|)). Hence (using that 1 <= 2) it follows that C” (a | ¢) < 2log(f(|¢])) + clog(|¢|)
for some constant ¢ and polynomial p’. The limited nondeterministic machine now guesses a CP
program program e of size at most 2log(f(|¢|)) + clog(]¢|), and runs it (relative to ¢) and accepts
iff the generated string is a satisfying assignment to ¢. O

)
!

15

Corollary 7.9 FPNPllos(n)] — FPYY implies the following:
1. For any k the promise problem (21°gk(")SAT, SAT) has a solution in P.

2. For any k, the class of languages that is accepted by nondeterministic machines that have at
most 298" (") qccepting paths on inputs of length n is included in P.

Proof: This follows from Theorem 7.2, Theorem 7.8, and Corollary 7.5. O

8 Satisfying Assignments

We show several connections between CD complexity and finding satisfying assignments of Boolean
formulae. By Cook’s Theorem [Coo71], finding satisfying assignments is equivalent to finding
accepting computation paths of any NP computation.

8.1 Enumerating Satisfying Assignments

Papadimitriou [Pap96] mentioned the following proposition:

Proposition 8.1 There exists a Turing machine that given a formula ¢ will output the set A of
satisfying assignments of ¢ in time polynomial in |¢| and |A].

We can use CD complexity to show the following.
Theorem 8.2 Proposition 8.1 is equivalent to (1SAT,SAT) has a solution in P.

In Proposition 8.1, we do not require the machine to halt after printing out the assignments.
If the machine is required to halt in time polynomial in ¢ and |A| we have that Proposition 8.1 is
equivalent to P = NP.

Proof of Theorem 8.2: The implication of (1SAT,SAT) having a solution in P is straight-
forward. We concentrate on the other direction.

Let d = |A|. By Lemma 3.2 and Theorem 7.8 we have that for every element z of A, C!(z|¢) <
2log(d) + clog(n) for some polynomial g and constant c¢. We simply now try every program p in
length increasing order and enumerate p(¢) if it is a satisfying assignment of ¢. O

8.2 Computing Satisfying Assignments

In this section we turn our attention to the question of the complexity of generating a satisfying
assignment for a satisfiable formula [WT93, HNOS96, Ogi96, BKT94]. It is well known [Kre88]
that one can generate (the leftmost) satisfying assignment in FPNP . A tantalizing open question
is whether one can compute some (not necessary the leftmost) satisfying assignment in FPNF.
Formalizing this question, define the function class Fgq by f € Fgq if when ¢ € SAT then f(¢)
is a satisfying assignment of ¢.

The question now becomes F,; FPgIP = ()7 Translating this to a CND setting we have the
following.

Lemma 8.3 F,,; ﬂFPBIP # 0 if and only if for all ¢ € SAT there exists a satisfying assignment
a of ¢ such that CNDP?(a | ¢) < clog(|¢|) for some polynomial p and constant c.

16

Lemma 8.3 relativizes where we consider a relativized version of SAT# [GJ93] by adding a series
of extra predicates Ag, Ay, Ag,... such that A, (z1,...,zy) is true if z; ...z, is in A.

Toda and Watanabe [WT93] showed that relative to a random oracle Fyq; N FPRE # (. On the
other hand Buhrman and Thierauf [BT96] showed that there exists an oracle where Fgq; FPEIP =
(). Their result also holds relative to the set constructed in Theorem 6.2.

Theorem 8.4 Relative to the set A constructed in Theorem 6.2, FsatﬂFPgP = 0.

Proof: For some n, let ¢ be the formula on n variables such that ¢(z) is true if and only if
z € A. Suppose F,o; NFPYF £ (0. It now follows by Lemma 8.3 that there exists an z € A such
that CNDP4(z) < O(log(|z])) for some polynomial p, contradicting the fact that for all z € A,

cND?V" A (z) > |z]/4. O

8.3 Isolating Satisfying Assignments

In this section we take a Kolmogorov complexity view of the statement and proof of the famous
Valiant-Vazirani lemma [VV85]. The Valiant-Vazirani lemma gives a randomized reduction from
a satisfiable formula to another formula that with a non negligible probability has exactly one
satisfying assignment.

We state the lemma in terms of Kolmogorov complexity.

Lemma 8.5 There is some polynomial p such that for all ¢ in SAT and all r such that |r| = p(|$])
and C(r) > |r|, there is some satisfying assignment a of ¢ such that CDP(a|(¢,r)) < O(log(|¢])).

The usual Valiant-Vazirani lemma follows from the statement of Lemma 8.5 by choosing r and
the O(log(|¢|))-size program randomly.

We show how to derive the Valiant-Vazirani Lemma from Sipser’s Lemma (Lemma 3.6). Note
that Sipser’s result predates Valiant-Vazirani by a couple of years.

Proof of Lemma 8.5: Let n = |¢|.

Consider the set A of satisfying assignments of ¢. We can apply Lemma 3.6 conditioned on ¢
using part of r as the random strings. Let d = [log(|A])]. We get that every element of A has a
CD program of length bounded by d + clog(n) for some constant c¢. Since two different elements
from A must have different programs, we have at least 1/n® of the strings of length d + clog(n)
must distinguish some assignment in A.

We use the rest of r to list n?¢ different strings of length d + clog(n). Since r is random, one of
these strings w must be a program that distinguishes some assignment o in A. We can give a CD
program for a in O(log(n)) bits by giving d and a pointer to w in r. O

9 Search vs. Decision in Exponential-Time

If P = NP then given a satisfiable formula, one can use binary search to find the assignment.
One might expect a similar result for exponential-time computation, i.e., if EXP = NEXP
then one should find a witness of a NEXP computation in exponential time. However, the proof
for polynomial-time breaks down because as one does the binary search the input questions get too
long. Impagliazzo and Tardos [IT89] give relativized evidence that this problem is indeed hard.

Theorem 9.1 ([IT89]) There exists a relativized world where EXP = NEXP but there exists a
NEXP machine whose accepting paths cannot be found in exponential time.

17

We can give a short proof of this theorem using Theorem 6.2.

Proof of Theorem 9.1: Let A be from Theorem 6.2.

We will encode a tally set T such that EXPA9T = NEXPA®7T Let M be a nondeterministic
oracle machine such that M runs in time 2" and for all B, M? is NEXP?-complete.

Initially let 7' = (. For every string w in lexicographic order, put 12 into T if MA®T(z)
accepts.

Let B = A®T at the end of the construction. Since M (w) could only query strings with length
at most 2/ < w, this construction will give us EXP? = NEXP?,

We will show that there exists a NEXP? machine whose accepting paths cannot be found in
time exponential relative to B.

Consider the NEXP? machine M that on input n guesses a string y of length n and accepts
if y is in A. Note that M runs in time 2"l < n.

Suppose accepting computations of M P can be found in time glnl* — 9log"(n) yelative to B. By
Theorem 6.2, we can fix some large n such that A" # () and for all z € A™",

0, k n
CNDZ* " A(z) > n/4. (1)
l‘ prm— m i o~ J . .
Let w; = [{1™ | 1™ € T and 2* < m < 2'*!}|. We will show the following lemma

Lemma 9.2 k
CND2™ (n),A(.,L,‘wl’ e Wigk () < log(n) +O(1)

Assuming Lemma 9.2, Theorem 9.1 follows since for each 7, |w;| < i+ 1. We thus have our
contradiction with Equation (1).

Proof of Lemma 9.2: We will construct a program p” to nondeterministically distinguish z.
We use log(n) bits to encode n. First p will reconstruct T' using the w;’s.

Suppose we have reconstructed 7' up to length 2°. By our construction of T, strings of T of
length at most 2*! can only depend on oracle strings of length at most 2'*1/2 = 2'. We guess w;
strings of the form 1™ for 2¢ < m < 2! and nondeterministically verify that these are the strings
in T. Once we have T, we also have B = A ® T so in time 2l0g"(n) we can find 2. O

Impagliazzo and Tardos [IT89] prove Theorem 9.1 using an “X-search” problem. We can also
relate this problem to CND complexity and Theorem 6.2.

Definition 9.3 The X-search problem has a player who given N input variables not all zero, wants
to find a one. The player can ask r rounds of | parallel queries of a certain type each and wins if
the player discovers a one.

Impagliazzo and Tardos use the following result about the X-search problem to prove Theo-
rem 9.1.

Theorem 9.4 ([IT89]) If the queries are restricted to k-DNFs and N > 2(klr)2(l + 1)" then the
player will lose on some non-zero setting of the variables.

One can use a proof similar to that of Theorem 9.1 to prove a similar bound for Theorem 9.4.
One needs just to apply Theorem 6.2 relative to the strategy of the player.

One can also use Theorem 9.4 to prove a weaker version of Theorem 6.2. Pick a large n and a
time bound ¢. Let N = 2" and suppose for all B C X" there is an z in B, CND"?(z) < w. Let
N =2".

18

For a fixed B and z, let p be the CND program that distinguishes z. Nondeterministically
we can find the ith bit of = using t queries to B by guessing z and the accepting computation of
U, (p,x). We can express this computation as the complement of a --DNF question.

We now build a strategy for X-search: Try all p and 4, |p| < 2Pl and 1 < i < n in the first round
using the --DNF described above. This gives us a list of 2/ possible z’s. We just try them all.

This solves the X-search problem using &k = ¢, [= n2l“l and r = 2. By Theorem 9.4 we have
N < 2(tn2%2)%(n2%)%. Taking logarithms we get n < 2(logt + logn + w + log 2) + 2(logn + w).
Thus we have a contradiction whenever w = an and ¢t = 2" for 4a + 2b < 1. In particular this

n1/6
gives us an infinite set A such that CND?" 4(z) > ||/7 for all z in A.

10 BPP in the second level of the polynomial hierarchy

One of the applications of Sipser’s [Sip83] randomized version of Lemma 3.2 is the proof that BPP
is in X5, We will show that the approach taken in Lemma 3.2 yields a new proof of this result. We
will first prove the following variation of Lemma 3.1.

Lemma 10.1 Let S = {z1,...,24} C{0,...,n—1}. There exists a prime number p such that for
all z;,x; € S (i # j) : x; Z z; mod p, such that p < 2d*log(n).

Proof: We consider only prime numbers between ¢ and 2¢. For z;,x; € S it holds that for at

most log,.(n) = 1122((2)) different prime number p z; = z; mod p. Moreover there are at most d(d — 1)

different pairs of strings in S, so there exists a prime number p among the first d(d — 1) 112%;((23 +1

prime numbers such that for all z;,2; € S(i # j) it holds that z; # z; mod p. Applying again the
prime number Theorem [HW79] it follows that if we take ¢ > d(d — 1) log(n), p < 2d*log(n). O

The idea is to use Lemma 10.1 as a way to approximate the number of accepting paths of a
BPP machine M. Note that the set of accepting paths ACCEPT);(,) of M on z is in P. If
this set is “small” then there exists a prime number satisfying Lemma 10.1. On the other hand if
the set is “big” no such prime number exists. This can be verified in $5: There exists a number
p such that for all pairs of accepting paths z;,z; of M, z; Z z; mod p. In order to apply this
idea we need the gap between the number of accepting paths when z is in the set and when it
is not to be a square: if z is not in the set then [ACCEPT (.| < k(|z]) and if z is in the set
|ACCEPT ;)| > k*(|z|). We will apply Zuckerman’s [Zuc96] oblivious sampler construction to
obtain this gap.

Theorem 10.2 Let M be a probabilistic machine that witnesses that some set A is in BPP. As-

. . . 1——1
sume that M (z) uses m random bits. There exists a machine M' that uses 3m + 9m~ Zle™(m) ran-

dom bits such that if z € A then Pr[M'(z) accepts] > 1 — 5 and if x ¢ A then Pr[M’(z)accepts] <

1
5% -

1
Proof: Use the sampler in [Zuc96] with € < 1/6, v = o, and o = 3m 2o () .0
Let A € BPP witnessed by probabilistic machine M. Apply Theorem 10.2 to obtain M’. The
3P algorithm for A works as follows:

input z

1
Guess p < 22m+18m' TE 0 (37, 4 g1~ 715 T
If for all u,v € ACCEPT p(y) u # v mod p ACCEPT else REJECT

19

_ 1
2 log* (m)

— 1
If € A then [ACCEPT ()| < 2mH9™ , and Lemma 10.1 guarantees that the above

- L
program accepts. On the other hand if 2 € A then [ACCEPT (| > 2°™+9™ st =1 and

o) RSN S
for every prime number p < 22m+18m 2logt(m) (3m + 9m' 2log™(m)) there will be a pair of strings
in ACCEPT) ;) that are not congruent modulo p. This follows because for every number p <
1

1— 1 1——L 1
g2m18m 1) (3, 4 g1 T) at most 22mH18m TS (3, L g ! 3T) different u and
v it holds that u Z v mod p. O
Goldreich and Zuckerman [GZ97] independently used Zuckerman’s sampler [Zuc96] to give an-
other proof that BPP is in 35.

Acknowledgments

We would like to thank José Balcidzar, Leen Torenvliet and David Zuckerman for their comments
on this subject. We thank John Tromp for the current presentation of the proof of Lemma 3.2.
We thank Richard Beigel, Bill Gasarch, Stuart Kurtz, Amber Settle, Leen Torenvliet and the two
anonymous referees for comments on earlier drafts.

References

[BDG88] J. Balcazar, J. Diaz, and J. Gabarr6. Structural Complezity I. Springer-Verlag, 1988.

[BKT94] H. Buhrman, J. Kadin, and T. Thierauf. On functions computable with nonadaptive
queries to NP. In Proceedings of the 9th IEEE Structure in Complexity Theory Conference,
pages 43 52. IEEE computer society press, 1994.

[BLMO00] H. Buhrman, S. Laplante, and P. Miltersen. New bounds for the language compression
problem. In Proceedings of the 15th IEEE Conference on Computational Complexity, pages
126-130. IEEE Computer Society, Los Alamitos, 2000.

[BT96] H. Buhrman and T. Thierauf. The complexity of generating and checking proofs of mem-
bership. In C. Pueach and R. Reischuk, editors, 13th Annual Symposium on Theoretical
Aspects of Computer Science, number 1046 in Lecture Notes in Computer Science, pages
75 86. Springer, 1996.

[Coo71] S. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd ACM
Symposium on the Theory of Computing, pages 151 158, Shaker Heights, Ohio, 1971.

[DT90] J. Diaz and J. Tordn. Classes of bounded nondeterminism. Math. Systems Theory, 23:21
32, 1990.

[ESY84] S. Even, A. L. Selman, and Y. Yacobi. The complexity of promise problems with appli-
cations to public-key cryptography. Information and Control, 61(2):159-173, May 1984.

[FK96] L. Fortnow and M. Kummer. Resource-bounded instance complexity. Theoretical Computer
Science A, 161:123 140, 1996.

[GHK92] J. Goldsmith, L. Hemachandra, and K. Kunen. Polynomial-time compression. Compu-
tational Complexity, 2(1):18 39, 1992.

20

[GJ93] J. Goldsmith and D. Joseph. Relativized isomorphisms of NP-complete sets. Computational
Complexity, 3:186 205, 1993.

[GZ97] O. Goldreich and D. Zuckerman. Another proof that BPP subseteq PH (and more). Elec-
tronic Colloquium on Computational Complexity, 97(045), 1997.

[HNOS96] L. Hemaspaandra, A. Naik, M. Ogihara, and A. Selman. Computing solutions uniquely
collapses the polynomial hierarchy. STAM J. Comput., 25(4):697 708, 1996.

[HW79] G. Hardy and E. Wright. An introduction to the theory of numbers. Oxford University
Press, London, 5th edition, 1979.

[Ing32] A. Ingham. The Distribution of Prime Numbers. Cambridge Tracts in Mathematics and
Mathematical Physics. Cambridge University Press, 1932.

[IT89] R. Impagliazzo and G. Tardos. Decision versus search problems in super-polynomial time.
In Proceedings of the 30th IEEE Symposium on Foundations of Computer Science, pages
222 227, 1989.

[JT95] B. Jenner and J. Toran. Computing functions with parallel queries to NP. Theoretical
Computer Science, 141, 1995.

[Knu98] D. Knuth. Sorting and Searching, volume 3 of The art of computer programming. Addison-
Wesley, second edition, 1998.

[Kre88] M. Krentel. The complexity of optimization problem. J. Computer and System Sciences,
36:490 509, 1988.

[LV97] M. Li and P. Vitdnyi. An Introduction to Kolmogorov Complezity and Its Applications.
Springer-Verlag, second edition, 1997.

[NZ93] N. Nisan and D. Zuckerman. More deterministic simulation in logspace. In Proceedings of
the 25th ACM Symposium on the Theory of Computing, pages 330-335, 1993.

[Ogi96] M. Ogihara. Functions computable with limited access to NP. Information Processing
Letters, 58:35—-38, 1996.

[Pap96] C. Papadimitriou. The complexity of knowledge representation. Invited Presentation at
the Eleventh Annual IEEE Conference on Computational Complexity, May 1996.

[RRV99] R. Raz, O. Reingold, and S. Vadhan. Extracting all the randomness and reducing the
error in trevisan’s extractors. In Proceedings of the 29th ACM Symposium on the Theory
of Computing, pages 149 158, 1999.

[Sip83] M. Sipser. A complexity theoretic approach to randomness. In Proceedings of the 15th
ACM Symposium on the Theory of Computing, pages 330-335, 1983.

[Ta-96] A. Ta-Shma. On extracting randomness from weak random sources (extended abstract).
In Proceedings of the 28th ACM Symposium on the Theory of Computing, pages 276—-285,
1996.

[Tre99] L. Trevisan. Construction of extractors using pseudo-random generators. In Proceedings of
the 29th ACM Symposium on the Theory of Computing, pages 141 148, 1999.

21

[VV85] L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. In Proceedings of
the 17th ACM Symposium on the Theory of Computing, pages 458 463, 1985.

[WT93] O. Watanabe and S. Toda. Structural analysis on the complexity of inverse functions.
Mathematical Systems Theory, 26:203-214, 1993.

[Zuc96] D. Zuckerman. Randomness-optimal sampling, extractors, and constructive leader election.

In Proceedings of the 28th ACM Symposium on the Theory of Computing, pages 286—295,
1996.

22

