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1 Introdu
tionOriginally designed to measure the randomness of strings, Kolmogorov 
omplexity has be
ome animportant tool in 
omputability and 
omplexity theory. A simple lower bound showing that thereexist random strings of every length has had several important appli
ations (see [LV97, Chapter6℄).Early in the history of 
omputational 
omplexity theory, many people naturally looked atresour
e-bounded versions of Kolmogorov 
omplexity. This line of resear
h was initially fruitful andled to some interesting results. In parti
ular, Sipser [Sip83℄ invented a new variation of resour
e-bounded 
omplexity, CD 
omplexity, where one 
onsiders the size of the smallest program thata

epts one spe
i�
 string and no others. Sipser used CD 
omplexity for the �rst proof that BPPis 
ontained in the polynomial-time hierar
hy.Complexity theory has mar
hed on for the past two de
ades, but resour
e-bounded Kolmogorov
omplexity has seen little interest. Now that 
omputational 
omplexity theory has matured a bit,we ought to look ba
k at resour
e-bounded Kolmogorov 
omplexity and see what new results andappli
ations we 
an draw from it.First, we use algebrai
 te
hniques to give a new upper bound lemma for CD 
omplexity withoutthe additional advi
e required of Sipser's lemma [Sip83℄. With this lemma, we 
an approximatelymeasure the size of a set using CD 
omplexity.We obtain better bounds on CD 
omplexity using extra
tor graphs. These graphs are usuallyused for derandomization. However these improved bounds only apply to most of the strings.We also give a new simpler proof of Sipser's Lemma and show how it implies the importantValiant-Vazirani lemma [VV85℄ that randomly isolates satisfying assignments. Surprisingly, Sipser'spaper predates the result of Valiant and Vazirani.We de�ne CND 
omplexity, a variation of CD 
omplexity where we allow nondeterministi

omputation. We prove a lower bound for CND 
omplexity where we show that there exists anin�nite set A su
h that every string in A has high CND 
omplexity even if we allow a

ess toA as an ora
le. We use this lemma to prove some negative results on nondeterministi
 sear
h vs.deterministi
 de
ision.On
e we have these tools in pla
e, we use them to unify several important theorems in 
omplexitytheory. We answer an open question of Papadimitriou [Pap96℄ 
hara
terizing exa
tly when the setof satisfying assignments of a formula 
an be enumerated in output polynomial time. We alsogive straightforward proofs that BPP is in �p2 (�rst proven by G�a
s (see [Sip83℄)) and 
reaterelativized worlds where assignments to SAT 
annot be found with non adaptive queries to SAT(�rst proven by Buhrman and Thierauf [BT96℄), and where EXP = NEXP but there existsa NEXP ma
hine whose a

epting paths 
annot be found in exponential time (�rst proven byImpagliazzo and Tardos [IT89℄).These results in their original form require a great deal of time to fully understand the proofbe
ause either the ideas and/or te
hni
al details are quite 
omplex. We show that by understand-ing resour
e-bounded Kolmogorov 
omplexity, one 
an see full and 
omplete proofs of these resultswithout mu
h additional e�ort. We also look at when polynomial-time C, CD and CND 
om-plexity 
oin
ide. We give a pre
ise 
hara
terization of when we have equality of these measures,and some interesting 
onsequen
es thereof.
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2 PreliminariesWe use basi
 
on
epts and notation from 
omputational 
omplexity theory texts like Bal
�azar,D��az, and Gabarr�o [BDG88℄ and Kolmogorov 
omplexity from the ex
ellent book by Li andVit�anyi [LV97℄. We use jxj to represent the length of a string x and jjAjj to represent the numberof elements in the set A. A=n is the set of strings in A of length n. [N ℄ denotes the set of integersbetween 1 and N . All of the logarithms are base 2.Formally, we de�ne the Kolmogorov 
omplexity fun
tion C�(xjy) by C�(xjy) = minpfjpj :�(p; y) = xg. The exists a universal ma
hine U su
h that for all � there is a 
onstant 
 su
h thatfor all x and y, CU (xjy) � C�(xjy) + 
. We �x su
h a U and let C(xjy) = CU (xjy). We de�neun
onditional Kolmogorov 
omplexity by C(x) = C(xj�).A few basi
 fa
ts about Kolmogorov 
omplexity:� The 
hoi
e of U a�e
ts the Kolmogorov 
omplexity by at most an additive 
onstant.� For some 
onstant 
, C(x) � jxj+ 
 for every x.� For every n and every y, there is an x su
h that jxj = n and C(xjy) � n.We will also use time-bounded Kolmogorov 
omplexity. Fix a fully time-
onstru
tible fun
tiont(n) � n. We de�ne the Ct(xjy) 
omplexity fun
tion asCt(xjy) = minp fjpj : U(p; y) = x and U(p) runs in at most t(jxj+ jyj) stepsg:As before we let Ct(x) = Ct(xj�). A di�erent universal U may a�e
t the 
omplexity by at most a
onstant additive term and the time by a log(t) fa
tor.While the usual Kolmogorov 
omplexity asks about the smallest program to produ
e a givenstring, we may also want to know about the smallest program to distinguish a string. While thisdi�eren
e a�e
ts the unbounded Kolmogorov 
omplexity by only a 
onstant it 
an make a di�eren
efor the time-bounded 
ase. Sipser [Sip83℄ de�ned the distinguishing 
omplexity CDt byCDt(xjy) = minp 8><>: (1) U(p; x; y) a

epts.jpj : (2) U(p; z; y) reje
ts for all z 6= x.(3) U(p; z; y) runs in at most t(jzj+ jyj) steps for all z 2 ��. 9>=>;When the auxiliary input string y is the empty string, we write CDt(x).Fix a universal nondeterministi
 Turing ma
hine Un. We de�ne the nondeterministi
 distin-guishing 
omplexity CNDt byCNDt(xjy) = minp 8><>: (1) Un(p; x; y) a

epts.jpj : (2) Un(p; z; y) reje
ts for all z 6= x.(3) Un(p; z; y) runs in at most t(jzj+ jyj) steps for all z 2 ��. 9>=>;In this de�nition, we mean that the nondeterministi
 Turing ma
hine a

epts or reje
ts in the usualsense of nondeterministi
 
omputation. On
e again we let CNDt(x) = CNDt(xj�).We 
an also allow for relativized Kolmogorov 
omplexity. For example, CDt;A(xjy) is de�nedas above ex
ept that the universal ma
hine U has a

ess to A as an ora
le.One 
an distinguish a string by generating it then 
omparing it with the input, as stated in thefollowing lemma.Lemma 2.1 8t 9
 8x; y : CD
t log t(x j y) � Ct(x j y) + 
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where 
 is a 
onstant. Likewise, every deterministi
 
omputation is also a nondeterministi
 
om-putation, hen
e the lemma that follows.Lemma 2.2 8t 9
 8x; y : CND
t log t(x j y) � CDt(x j y) + 
.In Se
tion 7 we examine the 
onsequen
es of the 
onverses of these lemmas.3 Approximating Sets with Distinguishing ComplexityIn this se
tion we derive a lemma that enables one to deterministi
ally approximate the density ofa set, using polynomial-time distinguishing 
omplexity. The te
hnique we use of 
onsidering valuesmodulo a prime is reminis
ent of the hashing via the division method (see [Knu98, p. 515℄).Lemma 3.1 Let S = fx1; : : : ; xdg � f0; : : : ; 2n � 1g. For all xi 2 S and at least half of the primesp � 4dn2, xi 6� xj mod p for all j 6= i.Proof: For ea
h xi; xj 2 S, i 6= j, it holds that for at most n di�erent prime numbers p,xi � xj mod p by the Chinese Remainder Theorem. (Alternatively, jxi � xj j < 2n, so it 
an nothave more than n prime fa
tors.) For xi there are at most dn primes p su
h that xi � xj mod p forsome xj 2 S. The Prime Number Theorem [Ing32℄ (see also [HW79℄) states that for anym there areapproximatelym= ln(m) > m= log(m) primes less thanm. There are at least 4dn2= log(4dn2) > 2dnprimes less than 4dn2. So at least half of these primes p must have xi 6� xj mod p for all j 6= i. 2Lemma 3.2 Let A be any set. For all strings x 2 A=n it holds that CDp;A=n(x) � 2 log(jjA=njj) +O(log(n)) for some polynomial p.Proof: Fix n and let S = A=n. Fix x 2 S and a prime px ful�lling the 
onditions of Lemma 3.1for x.The CDpoly;A program for x works as follows:input yIf y 62 A=n then REJECTelse if y mod px = x mod px then ACCEPTelse REJECTThe size of the above program is jpxj+ jx mod pxj+O(1). This is 2 log(jjAjj)+O(log(n)). It is 
learthat the program runs in polynomial time, and only a

epts x. 2We note that Lemma 3.2 also works for CNDp 
omplexity for p some polynomial.Buhrman, Laplante and Miltersen [BLM00℄ show that Lemma 3.2 is tight.Theorem 3.3 (Buhrman-Laplante-Miltersen) For every polynomial p and suÆ
iently large nthere exists a set of strings A � f0; 1gn 
ontaining more than 2n=50 strings su
h that there is an xin A with CDp;A(x) � 2 log(jjA=njj)�O(1)Corollary 3.4 Let A be a set in P. For ea
h string x 2 A it holds that: CDp(x) � 2 log(jjA=njj)+O(log(n)) for some polynomial p.
4



Proof: We will use the same s
heme as in Lemma 3.2, now using that A 2 P and spe
ifyingthe length of x, yielding an extra log(n) term for jxj plus an additional 2 log log(n) penalty for
on
atenating the strings. 2Theorem 3.3 also gives a relativized tightness result for Corollary 3.4.Corollary 3.5 1. A set S is sparse if and only if for all x 2 S, CDp;S(x) � O(log(jxj)), forsome polynomial p.2. A set S 2 P is sparse if and only if for all x 2 S, CDp(x) � O(log(jxj)), for some polynomialp.3. A set S 2 NP is sparse if and only if for all x 2 S, CNDp(x) � O(log(jxj)), for somepolynomial p.Proof: Lemma 3.2 yields that all strings in a sparse set have O(log(n)) CDp 
omplexity. Onthe other hand simple 
ounting shows that for any set A there must be a string x 2 A su
h thatCNDA(x) � log(jjA=jxjjj). 23.1 Sipser's LemmaWe 
an also use Lemma 3.1 to give a simple proof of the following important result due toSipser [Sip83℄.Lemma 3.6 (Sipser) For every polynomial-time 
omputable set A there exists a polynomial p and
onstant 
 su
h that for every n, for most r in �p(n) and every x 2 A=n,CDp;A=n(xjr) � log(jjA=njj) + 
 log(n)Proof: For ea
h k, 1 � k � n, let rk be a list of 4k(n + 1) randomly 
hosen numbers lessthan 2k. Let r be the 
on
atenation of all of the rk.Fix x 2 A=n. Let d = jjA=njj. Fix k su
h that 2k�1 < 4dn2 � 2k. Consider one of the numbersy listed in rk. By the Prime Number Theorem [HW79℄, the probability that y is prime and lessthan 4dn2 is at least 12 log(4dn2) . The probability that y ful�lls the 
onditions of Lemma 3.1 for x isat least 14 log(4dn2) > 14k . With probability about 1 � 1=en+1 > 1 � 1=2n+1 we have that some y inrk ful�lls the 
ondition of Lemma 3.1.With probability at least 1=2, for every x 2 A there is some y listed in rk ful�lling the 
onditionsof Lemma 3.1 for x.We 
an now des
ribe x by x mod y and the pointer to y in r. 2Note: Sipser's original proof gives a tighter bound than 
 log(n) but for most appli
ations theadditional O(log(n)) additive fa
tor makes no substantial di�eren
e.Comparing our Lemma 3.2 with Sipser's lemma (Lemma 3.6,) we are able to eliminate therandom string required by Sipser at the 
ost of an additional log(jjA=njj) bits.4 Approximating sets with Extra
torsBy using extra
tors, we 
an obtain nearly the bound of Sipser's lemma 3.6 without the randomstring it requires. However, our result only works for most strings in A.5



Theorem 4.1 For any set A, any fun
tion "(n), there is a polynomial p su
h that for all n andfor all but a 2"(n) fra
tion of the x 2 A=n, CDp;A=n(x) � log jjA=njj+ logO(1)(n="(n)).We give a nondeterministi
 version of this result and give a bound on CND 
omplexity. Wealso give a randomized version of these theorems, stating that the shorter string 
an be 
hosen atrandom and the probability of getting a short string whi
h en
odes as mu
h information as theoriginal string is bounded away from 1=2.4.1 Extra
torsAn extra
tor 
an be thought of as a bipartite graph, whose �rst 
olor 
lass is larger than the se
ond
olor 
lass. By 
onvention we think of the �rst 
olor 
lass as being on the left, and the se
ond onthe right. The verti
es on the left side are all the strings of length n, so the �rst 
olor 
lass 
an beequated with the set [N ℄, where N = 2n. Likewise, the verti
es on the right side of the graph arelabeled by strings of length m � n, so we let M = 2m and [M ℄ is equated with the verti
es in these
ond 
olor 
lass.4.1.1 DistributionsWe will be 
hoosing a node on the left side of the graph at random a

ording to a distribution X.The result of 
hoosing a neighbor uniformly at random in the graph will produ
e a distribution Yon verti
es on the right.The min-entropy of a distribution X over [N ℄ is de�ned as minf� log2(X(x))jx 2 [N ℄g. Themin-entropy of X 
an be thought of as a measure of the randomness present in a string x 
hosena

ording to X.A distribution Y is said to be "-
lose to Z if both distributions are over the same spa
e [M ℄,and that for any S � [M ℄; jY (S)� Z(S)j � ".4.1.2 De�nition of extra
torsA bipartite graph G with (independent) vertex sets [N ℄ and [M ℄, N = 2n;M = 2m, and for whi
hthe degree of all the verti
es in the �rst 
olor 
lass is bounded byD = 2d is an (n; k; d;m; ") extra
torif given any distributionX on the N verti
es whose min-entropy is at least k, the result of 
hoosingan x a

ording to this distribution and a random neighbor y of x in the graph is "-
lose to theuniform distribution over [M ℄. In our setting, the distribution X will be the uniform distributionover a subset A � [N ℄, so k will be log(jjAjj).�(x) denotes the set of neighbors of x in G when x is a vertex on the left side of the graph. Thenumber of edges originating at some vertex x on the left side of the graph is 
alled the outdegreeof x, whereas the number w(y) of edges adja
ent with a vertex y on the right side of the graph is
alled the indegree (or weight) of y. G(x; r) represents the rth neighbor of x in the graph, wheremultiple edges are allowed. When y is a vertex on the right side of the graph, ��1A (y) is the subsetof preimages of y whi
h lie in A. The notation extends to sets in the natural way.4.1.3 Best known expli
it 
onstru
tionsThe results we state are subje
t to improvement if better expli
it extra
tor 
onstru
tions are found.We have stated our results in general terms so that new results on extra
tors will be immediatelyappli
able. 6



The 
urrent best known expli
it 
onstru
tions for extra
tors are due to Ta-Shma, Zu
kerman,Trevisan, and Raz, Reingold and Vadhan [Ta-96, Zu
96, Tre99, RRV99℄. The extra
tors bestsuited for our purposes are the ones whi
h 
an be 
onstru
ted for any k, and with m = k, with thesmallest amount of additional randomness. We illustrate our results with the parameters obtainedfrom Ta-Shma's 
onstru
tion.Theorem 4.2 (Ta-Shma) There is an expli
it 
onstru
tion that for every n and for any fun
tion"(n) and every m = m(n) � n yields an extra
tor with parameters (n;m; logO(1)(n="(n));m; "(n)):It is useful to 
ompare this 
onstru
tion to the 
urrent lower bound on extra
tors, due to Nisanand Zu
kerman [NZ93℄.Theorem 4.3 (Nisan-Zu
kerman) There is a 
onstant 
 su
h that for all n;m; k � n� 1; " <1=2, if there is an extra
tor whose parameters are (n; k; d;m; "), then it must be the 
ase thatd � minfm; 
 log (n=")g.This lower bound also gives a good indi
ation as to the limits of the te
hniques des
ribed inthis paper.4.2 Extra
ting CD 
omplexityTheorem 4.1 follows immediately from the following result, using the expli
it extra
tor 
onstru
tionof Ta-Shma. For this theorem we assume that there is an expli
it extra
tor 
onstru
tion whoseparameters are (n; k; d;m; "), and we write M = 2m.Theorem 4.4 Fix a set A, a polynomial q(n) and " = "(n). Then there is a polynomial p(n) su
hthat for all n and for all but a 2" fra
tion of the x 2 A=n, there is a y su
h that1. jyj = m2. Cp(yjx) � d+O(1)3. CDp;A=n(x) � Cq(y) + 3d+ 2 log(jjA=njj=M) + 
 log(n+ d+ log(jjA=njj=M)) +O(1),where the underlying extra
tor's parameters are determined by n and k = log(jjA=njj), and 
 is asmall absolute 
onstant.For the remainder of this se
tion, we �x n and we let S = jjA=njj. In our setting, we will thinkof the set A=n as de�ning a distribution of min-entropy k = log(S). The string x represents anelement of A=n and y is one of its neighbors in the graph G. Hen
e y has length m; 
omputing yfrom x requires knowing only a short (\random") string of length d; and as we will see, y togetherwith some short additional distinguishing information will suÆ
e to distinguish the string x (in thesense of CD 
omplexity).The following lemmas are at the heart of the argument. They allow us to upper-bound thenumber of \bad" elements in A=n, where \bad" means the strings x for whi
h Theorem 4.4 willnot apply.In order to get a short des
ription for x, we need to �nd a string y in its range whi
h has smallindegree (
ounting only those edges originating in A=n.)In Lemma 4.5, we use the properties of the extra
tor to obtain an upper bound on the numberof y whi
h have large indegree. In the statement of the lemma, we use the variable w0 to represent7



the threshold on degree: any vertex with degree larger than w0 has large degree. A typi
al valuefor w0 is twi
e the average degree of the graph.Lemma 4.6 gives an upper bound on the number of x on the left side of the extra
tor whoseneighbors all lie within a small subset of the right side of the graph. When the small subset is theset of verti
es with large indegree, these x are the \bad" x to whi
h the theorem will not apply.Lemma 4.5 Consider the restri
tion of the extra
tor to the set of edges originating in A=n. Re
allthat the degree of the graph is bounded by D = 2d. In this restri
ted graph, let w0 be an indegreethreshold, DSM < w0 � DS, and Y be a subset of verti
es on the right hand side of the extra
torgraph. If 8y 2 Y;w(y) > w0, then jjY jj � " � w0DS � 1M ��1.Proof: Let Y be the set of verti
es whose indegree (in the restri
ted graph) ex
eeds w0. Be
ause thegraph is an extra
tor, it must be the 
ase that " � w(Y )�(A=n)� jjY jjM � w(Y )DS � jjY jjM . Sin
e w(Y ) � w0jjY jj,we get jjY jj � " � w0DS � 1M ��1 as 
laimed. 2Lemma 4.6 In the restri
ted graph, if Y is a set on the right side of the graph, thenjjfx 2 A=n : �(x) � Y gjj � �"+ jjY jjM �S:Proof: Let X = fx 2 A=n : �(x) � Y g. The distribution whi
h 
onsists of pi
king a randomelement of A=n and then 
hoosing a random neighbor gives measure at least jjXjj=S to the set Y .Be
ause of the extra
tor property, jjXjjS � jjY jjM � ": 2To 
on
lude, we give the proof of Theorem 4.4.Proof: Let A be a set and "; n be given as in the statement of the theorem. By Lemma 4.5, appliedwith w0 = 2DS=M (D = 2d) and Lemma 4.6 with Y as in the hypothesis of Lemma 4.5, the size ofthe subset B � A=n su
h that 8x 2 B, 8y 2 �(x), y has indegree at least w0 
an have size at most2"S. Therefore for all but 2"S of the x in A=n, there is a y in its range whose indegree is at most2DS=M . For ea
h su
h x, let rx be the label of one of the edges in G whi
h 
onne
ts x to su
h ay. We need to verify 3 properties for ea
h of these pairs x; y.1. jyj = m : This is by 
hoi
e of the extra
tor G.2. Cp(yjx) � d+O(1) : y = G(x; rx) for some rx 2 �d, so the algorithm to print y will 
ontainan en
oding of rx, and on input x 
omputes G(x; rx) and outputs the result.3. CDp;A=n(x) � Cq(y) + 3d+ 2 log(S=M) + 
 log(n) +O(1) : The program to re
ognize x will
ontain an en
oding for an rx and y for whi
h G(x; rx) = y and the indegree of y is at most2DS=M . It must also 
ontain a distinguishing program px whi
h re
ognizes x among the2DS=M verti
es on the left originating in A that are adja
ent to y. (The en
oding of rx isrequired to test that x is adja
ent to y, but may be omitted if the degree of the graph ispolynomial. This is not the 
ase in the 
urrent expli
it, eÆ
ient extra
tors, whose degreeis on the order of 2logO(1)(n).) The length of px is bounded by 2 log(2DS=M) + O(log(n +log(2DS=M))), by Lemma 3.2. (An additional logarithmi
 term is needed to en
ode thelengths of the various 
omponents of the en
oding, but this is bundled in the O notation.)The algorithm follows: 8



input zIf z 62 A=n then REJECTelse if G(z; rx) 6= y then REJECTelse if px(z) = 1 then ACCEPTelse REJECTSo the program requires an en
oding of y, r, and the distinguishing program px, for a totallength of Cq(y) + d+ 2 log(2DS=M) + 
 log(n+ log(2DS=M)) +O(1).24.3 Extra
ting CND 
omplexityA statement analogous to Theorem 4.4 
an be made for CND 
omplexity. Using a slight variantof the proof of Theorem 4.4, we 
an get a bound whi
h is smaller by a a term of d. Also in theupper bound, CDq(y) is used instead of possibly larger term Cq(y).Theorem 4.7 Fix a set A in NP, a polynomial q(n), and " = "(n). Then there is a polynomialp(n) su
h that for every n and for all but a 2" fra
tion of the x 2 A=n, there is a y su
h that1. jyj = log(jjA=njj)2. Cp(yjx) � d+O(1)3. CNDp(x) � CDq(y) + 2d+ 
 log(n+ d) +O(1).The proof is essentially the same as that of Theorem 4.4. To simplify the notation we make theassumption that the extra
tor used a
hieves k = m, as does Ta-Shma's 
onstru
tion. To obtainproperty 3, we need only guess y, and verify our guess using a distinguishing program for y whoselength is bounded by CDq(y). Likewise, we 
an simply guess r and omit its en
oding, and use thedistinguishing program p to verify our guess for r.4.4 Randomly extra
ting CD 
omplexityAnother variant that saves a d = log(D) term is to 
hoose a 
ounterpart y to a string x in a setin P at random. We will only require that for most x, at least half of the edges from x map to a\good" y. Although this 
omes at the 
ost of only applying to \most" strings x, this improves uponthe result of Sipser [Sip83℄ by redu
ing the length of the random string from nO(1) to logO(1)(n=").The proof is similar to that of Theorem 4.4; it requires only a slight modi�
ation to the 
ountingargument.Theorem 4.8 Fix a set A in P, a polynomial q(n), and a fun
tion "(n). Then there is a polynomialp(n) su
h that for every n and for all but a 4"(n) fra
tion of the x 2 A=n, and at least half of thestrings r of length d, there is a y su
h that:1. jyj = log(jjA=njj)2. Cp(yjx; r) � O(1)3. CDp(xjr) � Cq(y) + 2d+ 2 log(n+ d) +O(1).9



5 Extra
ting random stringsIn the previous se
tion, we used the fa
t that the strings examined were in a small set of bounded
omplexity, and we showed the existen
e of strings for whi
h the mutual information was roughlythe CND 
omplexity of the original string. Here we use extra
tor te
hniques to a a
hieve a slightlydi�erent goal. We obtain an in
ompressible string whose length is 
lose to the CD 
omplexity of xand whi
h 
an be 
omputed from x using only log(n=") bits.In the 
ase of unbounded Kolmogorov 
omplexity, it is easy to see that the following propositionis true.Proposition 5.1 [LV97, Ex. 2.1.5, p. 102℄ For any string x of length n, there is a y su
h that:1. jyj = C(x)2. C(yjx) � log(n)3. C(y) > jyj �O(1).Namely, y is a minimal-length program for x, and 
an be obtained from x by dovetailing, given thevalue of C(x). In the time-bounded setting however, this argument fails, sin
e dovetailing wouldtake too mu
h time. Our use of extra
tors is far a�eld from the above approa
h, yet it yields resultssurprisingly 
lose to Proposition 5.1. (Non-expli
it extra
tors a
tually allow us to give an alternateproof of Proposition 5.1, although this is more an artifa
t than a useful new proof.)Theorem 5.2 For any polynomial q(n) and fun
tion "(n), then there exists a polynomial p(n) su
hthat for any string x of length n, there is a string y su
h that:1. jyj = CNDp(x)=2 � 
1 log(n)2. Cp(yjx) � log
2(n="(n))3. Cq(y) > jyj � 
",where 
1; 
2 are absolute 
onstants, and 
" depends only on ".Instead of giving the proof of Theorem 5.2, we prove the result in the following more generalform, whi
h may be improved as expli
it extra
tor 
onstru
tions are improved.Theorem 5.3 For any polynomial q(n) and " = "(n), there exists a polynomial p(n) su
h that forany string x, there is a string y su
h that:1. jyj = m2. Cp(yjx) � d+ 
13. Cq(y) > jyj � 
",where 
1 is an absolute 
onstant, 
" is a 
onstant depending only on ", k = 12(CND2d�p(x) �2 log(n)� 
1 � 1) and (n; k; d;m; ") are the parameters of an expli
it extra
tor.
10



Theorem 5.2 follows by applying Theorem 5.3 with parameters obtained from Ta-Shma's ex-tra
tor [Ta-96℄.Proof: (Sket
h) Consider a family of extra
tors with parameters n; k;m(k). Fix any n; k and letG = Gn;k;m;m = m(k); be the extra
tor with parameters n;m; k. (Later we will �x k to be aspe
i�
 value.) Let An;m = fxj�(x) � C[q(n);m � 
"℄g, where C[t; l℄ = fzjCt(z) � lg, and 
" is
hosen so that 
" > log( 11�") for large enough n.The fa
t that G is an extra
tor prohibits the set An;m from being large, as we see now. IfjjAn;mjj > 2k, then by the properties of the extra
tor,1� " � jjC[q(n);m� 
"℄jj2m :But jjC[q(n);m� 
"℄jj � 2m�
" , and we have 
hosen 
" > log( 11�") in order to get a 
ontradi
tion.Hen
e we must 
on
lude that jjAn;mjj � 2k.Now we may apply Lemma 3.2 for CND to 
on
lude that all x 2 An;m must have smallCND 
omplexity. First noti
e that verifying membership in An;m is in NTIME[2d � p℄ for somepolynomial p, sin
e it suÆ
es to guess, for ea
h neighbor y of x in Gn;m a program of lengthm � 
" whi
h prints out y. Hen
e, there exists a 
onstant 
1 su
h that for every x 2 An;m,CND2d�p(x) � 2 log(jjAn;mjj) + 2 log(n) + 
1:Now 
onsider x with respe
t to the extra
tor Gn;k̂;m(k̂), where k̂ = 12(CND2d�p(x)� 2 log(n)�
1 � 1) and m is maximal for this k. By the observation above, it must be the 
ase that x 62 An;m.Therefore there must be a y not in C[q(n);m� 
"℄ to whi
h x is mapped under Gn;k;m. It is easyto verify that y satis�es the properties 
laimed in the statement of the theorem. 26 Lower BoundsIn this se
tion we show that there exists an in�nite set A su
h that every string in A has highCND 
omplexity, even relative to A.Fortnow and Kummer [FK96℄ prove the following result about relativized CD 
omplexity:Theorem 6.1 There is an in�nite set A su
h that for every polynomial p, CDp;A(x) � jxj=5 foralmost all x 2 A.We extend and strengthen their result for CND 
omplexity:Theorem 6.2 There is an in�nite set A su
h that CND2pjxj;A(x) � jxj=4 for all x 2 A.The proof of Fortnow and Kummer of Theorem 6.1 uses the fa
t that one 
an start with a largeset A of strings of the same length su
h that any polynomial-time algorithm on an input x in A
annot query any other y in A. However, a nondeterministi
 ma
hine may query every string of agiven length. Thus we need a more 
areful proof.This proof is based on the proof of a result due to Goldsmith, Hema
handra and Kunen [GHK92℄whi
h we obtain as Corollary 6.3 below. In Se
tion 9, we will also des
ribe a rough equivalen
ebetween this result and an \X-sear
h" theorem of Impagliazzo and Tardos [IT89℄.Proof of Theorem 6.2:We 
reate our set A in stages. In stage k, we pi
k a large n and add to A a nonempty set ofstrings B of length n su
h that for all nondeterministi
 programs p running in time 2pn su
h thatjpj < n=4, pB[A a

epts either zero or more than one strings in A. We �rst 
reate a B that makes11



as many programs as possible a

ept zero strings in B. After that we 
arefully remove some stringsfrom B to guarantee that the rest of the programs a

ept at least two strings.Let P be the set of nondeterministi
 programs of size less than n=4. We have jjP jj < 2n=4. Wewill 
lo
k all of these programs so that they will reje
t if they take time more than 2pn. We alsoassume that on every program p in P , input x and ora
le O, pO(x) queries x.Let v = 2pn+1jjP jj and w = jjP jjv2pn. Pi
k sets � � P and H � �n that maximizes jj�jj+ jjHjjsu
h that jjHjj � wjj�jj, and for all X � �n �H and p 2 �, X \ pA[X = ;.Note that H 6= �n sin
e jjHjj � wjj�jj � wjjP jj � 22pn+123n=4 < 2n. Sin
e some small programp always a

epts we have that � 6= P .Our �nal B will be a subset of �n�H whi
h guarantees that for all p 2 �, pA[B will not a

eptany strings in B. We will 
reate B su
h that for all p 2 P ��, pA[B a

epts at least two strings inB. Initially let B = �n�H. For ea
h p 2 P �� and for ea
h integer i, 1 � i � v do the following:Pi
k a minimal X � B su
h that for some y 2 X, pA[X(y) a

epts. Fix an a

eptingpath and let Qpi be all the queries made on that path. Let yp;i = y, Xp;i = X andB = B �Qp;i.Note that jjQp;ijj � 2pn. We remove no more than jjP jjv2pn � w strings in total. So if we 
annot�nd an appropriate X, we have violated the maximality of jj�jj+ jjHjj. Note that yp;i 2 Xp;i � Qp;iand all of the Xp;i are disjoint.Initially set all of the Xp;i as unmarked. For ea
h p 2 P �� do the following twi
e:Pi
k an unmarked Xp;i. Mark all Xq;j su
h that Xq;j \Qp;i 6= ;. Let B = B [Xp;i.We have that yp;i 2 B and pA[B(yp;i) a

epts for every Xp;i pro
essed.At most 2 � 2pnjjP jj � 1 < v of the Xq;j's get marked before we have �nished, we always 
an �ndan unmarked Xp;i.Finally note that B � �n �H and for every p 2 P �� we have at least two y 2 B, su
h thatpA[B(y) a

epts. Sin
e P � � 6= ; this also guarantees that B 6= ;. Thus we have ful�lled therequirements for stage k. 2Using Theorem 6.2 we get the following 
orollary �rst proved by Goldsmith, Hema
handra andKunen [GHK92℄.Corollary 6.3 (Goldsmith-Hema
handra-Kunen) Relative to some ora
le, there exists an in-�nite polynomial-time 
omputable set with no in�nite sparse NP subsets.Proof: Let A from Theorem 6.2 be both the ora
le and the set in PA. Suppose A has anin�nite sparse subset S in NPA. Pi
k a large x su
h that x 2 S. Applying Corollary 3.5(3) itfollows that CNDA;p(x) � O(log(n)). This 
ontradi
ts the fa
t that x 2 S � A and Theorem 6.2.2 The above argument shows a
tually something stronger:Corollary 6.4 Relative to some ora
le, there exists an in�nite polynomial-time 
omputable setwith no in�nite subset in NP of density less than 2n=9.It remains open whether Corollary 6.4 holds for 2Æn for 19 < Æ < 1.
12



7 CD vs. C and CNDThis se
tion deals with the 
onsequen
es of the assumption that one of the 
omplexity measures C,CD, and CND 
oin
ide for polynomial time. We will see that these assumptions are equivalent towell-studied 
omplexity-theoreti
 assumptions. This allows us to apply the ma
hinery developedin the previous se
tions. We will use the following fun
tion 
lasses:De�nition 7.1 1. The 
lass FPNP[log(n)℄ is the 
lass of fun
tions 
omputable in polynomialtime that 
an adaptively a

ess an ora
le in NP at most 
 log(n) times, for some 
.2. The 
lass FPNPtt is the 
lass of fun
tions 
omputable in polynomial time that 
an non-adaptively a

ess an ora
le in NP.Theorem 7.2 The following are equivalent:1. 8p2 9p1; 
 8x; y : Cp1(x j y) � CNDp2(x j y) + 
 log(jxj+ jyj).2. 8p2 9p1; 
 8x; y : CDp1(x j y) � CNDp2(x j y) + 
 log(jxj+ jyj).3. FPNP[log(n)℄ = FPNPtt .Proof: (1 ) 2) is trivial.(2 ) 3) We will �rst need the following lemma due to Lozano (see [JT95, pp. 184{185℄).Lemma 7.3 FPNP[log(n)℄ = FPNPtt if and only if for every f in FPNPtt there exists a fun
tiong 2 FP, that generates a polynomial-size set su
h that f(x) 2 g(x).In the following let f 2 FPNPtt . Let f(x) = y. We will see that there exists a p and 
 su
hthat CNDp(y j x) � 
 log(jxj). We 
an assume that the ma
hine 
omputing f(x) produ
es a listof queries Q = fq1; : : : ; qlg to SAT. Let w be the exa
t number of queries in Q that are in SAT.Thus w = jjQTSATjj. Consider the following CNDp program given x:input zuse f(x) to generate Q.guess q1; : : : ; qw 2 Q that are in SATguess satisfying assignments for q1; : : : ; qw.REJECT if not all q1; : : : ; qw are satis�able.
ompute f(x) with q1; : : : ; qw answered YES and qj 2 Q n fq1; : : : ; qwg answered NOACCEPT if and only if f(x) = zThe size of the above program is 
 log(jxj), a

epts only y, and runs in time p, for some poly-nomial p and 
onstant 
 depending only on f . It follows that also all the pre�xes of y have CNDp
omplexity bounded by 
 log(jxj)+ log(jxj)+O(1). By assumption there exists a polynomial p0 and
onstant d su
h that CDp0(z j x) � d log(jxj) for z a pre�x of y. For ea
h of these z there is someprogram r su
h that1. jrj � d log(jxj),2. U(r; z; x) a

epts,3. U(r; u; x) reje
ts for ea
h u 6= z and 13



4. U(r; u; x) runs in time at most p0(jxj) for ea
h juj � jxj.We 
an use the following pro
edure to enumerate possibilities for y.Let S0 = f�g.For m = 1 to jyj.Let S0m 
onsist of all strings u of length m su
h that u extends some string in Sm�1.Let Sm 
onsist of all strings u in S0m su
h that there is some r, jrj � d log(jxj),su
h that U(r; u; x) a

epts in p0(jxj) steps andfor all v 2 S0m � fug, U(r; v; x) does not a

ept in p0(jxj) steps.Note for allm, Sm and S0m will have size bounded by 2jxjd so the above algorithm runs in polynomialtime. By our dis
ussion, y will belong to Sjyj so it follows using Lemma 7.3 that FPNP[log(n)℄ =FPNPtt .(3 ) 1) Let y be a string su
h that CNDp0(y j x) = k. Let e be the program of length k thatwitnesses this. Consider the following fun
tion:f(<e; 0l; 0m; x>) = w1w2 : : : wmwhere wi = 8><>: 1 if there is a z of length m with the ith bit equal to onesu
h that Un(e; z; x) nondeterministi
ally a

epts in l steps.0 otherwise.Note that if e is a CND program, that runs in l steps, then it a

epts exa
tly one string, w oflength m. Hen
e f(<r; 0p0(jyj+jxj); 0jyj; x>) = y. It is not hard to see that in general f is in FPNPttand by assumption in FPNP[log(n)℄ via ma
hine M . Next given e = r, m = jyj, l = p0(jyj + jxj), xand the 
 log(jyj + jxj) answers to the NP ora
le that M makes we 
an generate y in polynomialtime. We have that Cp(y j x) � CNDp0(y j x) + 
 log(jyj+ jxj) 2For the next 
orollary we will use some results from [JT95℄. We will use the following 
lass oflimited nondeterminism de�ned in [DT90℄.De�nition 7.4 Let f(n) be a fun
tion from IN 7! IN . The 
lass NP[f(n)℄ denotes that 
lass oflanguages that are a

epted by polynomial-time bounded nondeterministi
 ma
hines that on inputsof length n make at most f(n) nondeterministi
 moves.Jenner and Tor�an [JT95℄ show a series of 
onsequen
es of the assumption FPNP[log(n)℄ = FPNPtt .By Theorem 7.2 we also get these 
onsequen
es from a 
ollapse of CD and CND 
omplexity.Corollary 7.5 If 8p2 9p1; 
 8x; y : CDp1(x j y) � CNDp2(x j y) + 
 log(jxj+ jyj) then for any k:1. NP[logk(n)℄ is in
luded in P.2. SAT 2 NP[ nlogk(n) ℄.3. SAT 2 DTIME(2nO(1= log log(n))).4. There exists a polynomial q su
h that for every m formulae �1; : : : ; �m of n variables ea
hsu
h that at least one is satis�able, there exists an i su
h that �i is satis�able andCNDq(�ijh�1; : : : ; �mi) � O(log log(n+m))14



The last 
onsequen
e simply restates one of the Jenner-Tor�an results in the notation of this paper.We 
an use Corollary 7.5 to get a 
omplete 
ollapse if there is only a 
onstant di�eren
e betweenCD and CND 
omplexity.Theorem 7.6 The following are equivalent:1. 8p2 9p1; 
 8x; y : Cp1(x j y) � CNDp2(x j y) + 
.2. 8p2 9p1; 
 8x; y : CDp1(x j y) � CNDp2(x j y) + 
.3. P = NP.Proof Sket
h: (1 ) 2) and (3 ) 1) are easy.(2 ) 3) By Corollary 7.5(4) 
ombined with the the assumption we have for any formulae�1; : : : ; �m where at least one is satis�able thatCDp1(�ijh�1; : : : ; �mi) � 
 log log(n+m)for some satis�able �i. We 
an enumerate all the programs p of length at most 
 log log(n+m) and�nd all the formula �i su
h that p(�i; h�1; : : : ; �mi) = 1 and p(�j ; h�1; : : : ; �mi) = 0 for j 6= i.Thus given �1; : : : ; �m we 
an in polynomial-time 
reate a subset of size log
(n+m) that 
ontainsa satis�able formula if the original list did. We then apply a standard tree-pruning algorithm to�nd the satisfying assignment of any satis�able formula. 2A simple modi�
ation of the proof shows that Theorem 7.6 holds if we repla
e the 
onstant 
with a log(n) for any a < 1.For the next 
orollary we will need the following de�nition (see [ESY84℄).De�nition 7.7 A promise problem is a pair of sets (Q;R). A set L is 
alled a solution to thepromise problem (Q;R) if 8x(x 2 Q) (x 2 L, x 2 R)). For any fun
tion f , fSAT denotes theset of Boolean formulas with at most f(n) satisfying assignments for formulae of length n.The next theorem states that nondeterministi
 
omputations that have few a

epting 
omputa-tions 
an be \
ompressed" to nondeterministi
 
omputations that have few nondeterministi
 movesif and only if Cpoly � CDpoly.Theorem 7.8 The following are equivalent:1. 8p2 9p1; 
 8x; y : Cp1(x j y) � CDp2(x j y) + 
.2. (1SAT;SAT) has a solution in P.3. For all time 
onstru
tible f , (fSAT;SAT) has a solution in NP[2 log(f(n)) +O(log(n))℄.Proof: (1 () 2) This was proven in [FK96℄.(3 ) 2) Take f(n) = 1 and the fa
t [DT90℄ that NP[O(log(n))℄ = P.(2) 3) Let � be a formula with at most f(j�j) satisfying assignments. Lemma 3.2 yields that for ev-ery satisfying assignment a to �, there exists a polynomial p su
h that CDp(a j �) � 2 log(f(j�j))+O(log(j�j)). Hen
e (using that 1 () 2) it follows that Cp0(a j �) � 2 log(f(j�j)) + 
 log(j�j),for some 
onstant 
 and polynomial p0. The limited nondeterministi
 ma
hine now guesses a Cp0program program e of size at most 2 log(f(j�j)) + 
 log(j�j), and runs it (relative to �) and a

eptsi� the generated string is a satisfying assignment to �. 215



Corollary 7.9 FPNP[log(n)℄ = FPNPtt implies the following:1. For any k the promise problem (2logk(n)SAT;SAT) has a solution in P.2. For any k, the 
lass of languages that is a

epted by nondeterministi
 ma
hines that have atmost 2logk(n) a

epting paths on inputs of length n is in
luded in P.Proof: This follows from Theorem 7.2, Theorem 7.8, and Corollary 7.5. 28 Satisfying AssignmentsWe show several 
onne
tions between CD 
omplexity and �nding satisfying assignments of Booleanformulae. By Cook's Theorem [Coo71℄, �nding satisfying assignments is equivalent to �ndinga

epting 
omputation paths of any NP 
omputation.8.1 Enumerating Satisfying AssignmentsPapadimitriou [Pap96℄ mentioned the following proposition:Proposition 8.1 There exists a Turing ma
hine that given a formula � will output the set A ofsatisfying assignments of � in time polynomial in j�j and jjAjj.We 
an use CD 
omplexity to show the following.Theorem 8.2 Proposition 8.1 is equivalent to (1SAT;SAT) has a solution in P.In Proposition 8.1, we do not require the ma
hine to halt after printing out the assignments.If the ma
hine is required to halt in time polynomial in � and jjAjj we have that Proposition 8.1 isequivalent to P = NP.Proof of Theorem 8.2: The impli
ation of (1SAT;SAT) having a solution in P is straight-forward. We 
on
entrate on the other dire
tion.Let d = jjAjj. By Lemma 3.2 and Theorem 7.8 we have that for every element x of A, Cq(xj�) �2 log(d) + 
 log(n) for some polynomial q and 
onstant 
. We simply now try every program p inlength in
reasing order and enumerate p(�) if it is a satisfying assignment of �. 28.2 Computing Satisfying AssignmentsIn this se
tion we turn our attention to the question of the 
omplexity of generating a satisfyingassignment for a satis�able formula [WT93, HNOS96, Ogi96, BKT94℄. It is well known [Kre88℄that one 
an generate (the leftmost) satisfying assignment in FPNP. A tantalizing open questionis whether one 
an 
ompute some (not ne
essary the leftmost) satisfying assignment in FPNPtt .Formalizing this question, de�ne the fun
tion 
lass Fsat by f 2 Fsat if when ' 2 SAT then f(')is a satisfying assignment of '.The question now be
omes FsatTFPNPtt = ;? Translating this to a CND setting we have thefollowing.Lemma 8.3 FsatTFPNPtt 6= ; if and only if for all � 2 SAT there exists a satisfying assignmenta of � su
h that CNDp(a j �) � 
 log(j�j) for some polynomial p and 
onstant 
.16



Lemma 8.3 relativizes where we 
onsider a relativized version of SATA [GJ93℄ by adding a seriesof extra predi
ates A0; A1; A2; : : : su
h that An(x1; : : : ; xn) is true if x1 : : : xn is in A.Toda and Watanabe [WT93℄ showed that relative to a random ora
le FsatTFPNPtt 6= ;. On theother hand Buhrman and Thierauf [BT96℄ showed that there exists an ora
le where FsatTFPNPtt =;. Their result also holds relative to the set 
onstru
ted in Theorem 6.2.Theorem 8.4 Relative to the set A 
onstru
ted in Theorem 6.2, FsatTFPNPtt = ;.Proof: For some n, let � be the formula on n variables su
h that �(x) is true if and only ifx 2 A. Suppose FsatTFPNPtt 6= ;. It now follows by Lemma 8.3 that there exists an x 2 A su
hthat CNDp;A(x) � O(log(jxj)) for some polynomial p, 
ontradi
ting the fa
t that for all x 2 A,CND2pjxj;A(x) � jxj=4. 28.3 Isolating Satisfying AssignmentsIn this se
tion we take a Kolmogorov 
omplexity view of the statement and proof of the famousValiant-Vazirani lemma [VV85℄. The Valiant-Vazirani lemma gives a randomized redu
tion froma satis�able formula to another formula that with a non negligible probability has exa
tly onesatisfying assignment.We state the lemma in terms of Kolmogorov 
omplexity.Lemma 8.5 There is some polynomial p su
h that for all � in SAT and all r su
h that jrj = p(j�j)and C(r) � jrj, there is some satisfying assignment a of � su
h that CDp(ajh�; ri) � O(log(j�j)).The usual Valiant-Vazirani lemma follows from the statement of Lemma 8.5 by 
hoosing r andthe O(log(j�j))-size program randomly.We show how to derive the Valiant-Vazirani Lemma from Sipser's Lemma (Lemma 3.6). Notethat Sipser's result predates Valiant-Vazirani by a 
ouple of years.Proof of Lemma 8.5: Let n = j�j.Consider the set A of satisfying assignments of �. We 
an apply Lemma 3.6 
onditioned on �using part of r as the random strings. Let d = blog(jjAjj)
. We get that every element of A has aCD program of length bounded by d + 
 log(n) for some 
onstant 
. Sin
e two di�erent elementsfrom A must have di�erent programs, we have at least 1=n
 of the strings of length d + 
 log(n)must distinguish some assignment in A.We use the rest of r to list n2
 di�erent strings of length d+ 
 log(n). Sin
e r is random, one ofthese strings w must be a program that distinguishes some assignment a in A. We 
an give a CDprogram for a in O(log(n)) bits by giving d and a pointer to w in r. 29 Sear
h vs. De
ision in Exponential-TimeIf P = NP then given a satis�able formula, one 
an use binary sear
h to �nd the assignment.One might expe
t a similar result for exponential-time 
omputation, i.e., if EXP = NEXPthen one should �nd a witness of a NEXP 
omputation in exponential time. However, the prooffor polynomial-time breaks down be
ause as one does the binary sear
h the input questions get toolong. Impagliazzo and Tardos [IT89℄ give relativized eviden
e that this problem is indeed hard.Theorem 9.1 ([IT89℄) There exists a relativized world where EXP = NEXP but there exists aNEXP ma
hine whose a

epting paths 
annot be found in exponential time.17



We 
an give a short proof of this theorem using Theorem 6.2.Proof of Theorem 9.1: Let A be from Theorem 6.2.We will en
ode a tally set T su
h that EXPA�T = NEXPA�T . Let M be a nondeterministi
ora
le ma
hine su
h that M runs in time 2n and for all B, MB is NEXPB-
omplete.Initially let T = ;. For every string w in lexi
ographi
 order, put 12w into T if MA�T (x)a

epts.Let B = A�T at the end of the 
onstru
tion. Sin
eM(w) 
ould only query strings with lengthat most 2jwj � w, this 
onstru
tion will give us EXPB = NEXPB .We will show that there exists a NEXPB ma
hine whose a

epting paths 
annot be found intime exponential relative to B.Consider the NEXPB ma
hine M that on input n guesses a string y of length n and a

eptsif y is in A. Note that M runs in time 2jnj � n.Suppose a

epting 
omputations of MB 
an be found in time 2jnjk = 2logk(n) relative to B. ByTheorem 6.2, we 
an �x some large n su
h that A=n 6= ; and for all x 2 A=n,CND2logk(n);A(x) � n=4: (1)Let wi = jjf1m j 1m 2 T and 2i < m � 2i+1gjj. We will show the following lemma.Lemma 9.2 CND2logk(n);A(xjw1; : : : ; wlogk(n)) � log(n) +O(1)Assuming Lemma 9.2, Theorem 9.1 follows sin
e for ea
h i, jwij � i + 1. We thus have our
ontradi
tion with Equation (1).Proof of Lemma 9.2: We will 
onstru
t a program pA to nondeterministi
ally distinguish x.We use log(n) bits to en
ode n. First p will re
onstru
t T using the wi's.Suppose we have re
onstru
ted T up to length 2i. By our 
onstru
tion of T , strings of T oflength at most 2i+1 
an only depend on ora
le strings of length at most 2i+1=2 = 2i. We guess wistrings of the form 1m for 2i < m � 2i+1 and nondeterministi
ally verify that these are the stringsin T . On
e we have T , we also have B = A� T so in time 2logk(n) we 
an �nd x. 2Impagliazzo and Tardos [IT89℄ prove Theorem 9.1 using an \X-sear
h" problem. We 
an alsorelate this problem to CND 
omplexity and Theorem 6.2.De�nition 9.3 The X-sear
h problem has a player who given N input variables not all zero, wantsto �nd a one. The player 
an ask r rounds of l parallel queries of a 
ertain type ea
h and wins ifthe player dis
overs a one.Impagliazzo and Tardos use the following result about the X-sear
h problem to prove Theo-rem 9.1.Theorem 9.4 ([IT89℄) If the queries are restri
ted to k-DNFs and N > 2(klr)2(l + 1)r then theplayer will lose on some non-zero setting of the variables.One 
an use a proof similar to that of Theorem 9.1 to prove a similar bound for Theorem 9.4.One needs just to apply Theorem 6.2 relative to the strategy of the player.One 
an also use Theorem 9.4 to prove a weaker version of Theorem 6.2. Pi
k a large n and atime bound t. Let N = 2n and suppose for all B � �n there is an x in B, CNDt;B(x) � w. LetN = 2n. 18



For a �xed B and x, let p be the CND program that distinguishes x. Nondeterministi
allywe 
an �nd the ith bit of x using t queries to B by guessing x and the a

epting 
omputation ofUn(p; x). We 
an express this 
omputation as the 
omplement of a t-DNF question.We now build a strategy for X-sear
h: Try all p and i, jpj � 2jpj and 1 � i � n in the �rst roundusing the t-DNF des
ribed above. This gives us a list of 2jpj possible x's. We just try them all.This solves the X-sear
h problem using k = t, l = n2jwj and r = 2. By Theorem 9.4 we haveN � 2(tn2w2)2(n2w)2. Taking logarithms we get n � 2(log t + log n + w + log 2) + 2(log n + w).Thus we have a 
ontradi
tion whenever w = an and t = 2bn for 4a + 2b < 1. In parti
ular thisgives us an in�nite set A su
h that CND2n1=6 ;A(x) � jxj=7 for all x in A.10 BPP in the se
ond level of the polynomial hierar
hyOne of the appli
ations of Sipser's [Sip83℄ randomized version of Lemma 3.2 is the proof that BPPis in �p2. We will show that the approa
h taken in Lemma 3.2 yields a new proof of this result. Wewill �rst prove the following variation of Lemma 3.1.Lemma 10.1 Let S = fx1; : : : ; xdg � f0; : : : ; n� 1g. There exists a prime number p su
h that forall xi; xj 2 S (i 6= j) : xi 6� xj mod p, su
h that p � 2d2 log(n).Proof: We 
onsider only prime numbers between 
 and 2
. For xi; xj 2 S it holds that for atmost log
(n) = log(n)log(
) di�erent prime number p xi � xj mod p. Moreover there are at most d(d� 1)di�erent pairs of strings in S, so there exists a prime number p among the �rst d(d � 1) log(n)log(
) + 1prime numbers su
h that for all xi; xj 2 S(i 6= j) it holds that xi 6� xj mod p. Applying again theprime number Theorem [HW79℄ it follows that if we take 
 > d(d � 1) log(n), p � 2d2 log(n). 2The idea is to use Lemma 10.1 as a way to approximate the number of a

epting paths of aBPP ma
hine M . Note that the set of a

epting paths ACCEPTM(x) of M on x is in P. Ifthis set is \small" then there exists a prime number satisfying Lemma 10.1. On the other hand ifthe set is \big" no su
h prime number exists. This 
an be veri�ed in �p2: There exists a numberp su
h that for all pairs of a

epting paths xi; xj of M , xi 6� xj mod p. In order to apply thisidea we need the gap between the number of a

epting paths when x is in the set and when itis not to be a square: if x is not in the set then jjACCEPTM(x)jj � k(jxj) and if x is in the setjjACCEPTM(x)jj > k2(jxj). We will apply Zu
kerman's [Zu
96℄ oblivious sampler 
onstru
tion toobtain this gap.Theorem 10.2 Let M be a probabilisti
 ma
hine that witnesses that some set A is in BPP. As-sume that M(x) uses m random bits. There exists a ma
hine M 0 that uses 3m+9m1� 12 log�(m) ran-dom bits su
h that if x 2 A then Pr[M 0(x) a

epts℄ > 1� 122m and if x 62 A then Pr[M 0(x)a

epts℄ <122m .Proof: Use the sampler in [Zu
96℄ with � < 1=6, 
 = 122m , and � = 3m� 12 log�(m) .2Let A 2 BPP witnessed by probabilisti
 ma
hine M . Apply Theorem 10.2 to obtain M 0. The�p2 algorithm for A works as follows:input xGuess p � 22m+18m1� 12 log�(m) (3m+ 9m1� 12 log�(m) )If for all u; v 2 ACCEPTM 0(x) u 6� v mod p ACCEPT else REJECT19



If x 2 A then jjACCEPTM 0(x)jj � 2m+9m1� 12 log�(m) , and Lemma 10.1 guarantees that the aboveprogram a

epts. On the other hand if x 2 A then jjACCEPTM 0(x)jj > 23m+9m1� 12 log�(m)�1 andfor every prime number p � 22m+18m1� 12 log�(m) (3m + 9m1� 12 log�(m) ) there will be a pair of stringsin ACCEPTM 0(x) that are not 
ongruent modulo p. This follows be
ause for every number p �22m+18m1� 12 log�(m) (3m+9m1� 12 log�(m) ) at most 22m+18m1� 12 log�(m) (3m+9m1� 12 log�(m) ) di�erent u andv it holds that u 6� v mod p. 2Goldrei
h and Zu
kerman [GZ97℄ independently used Zu
kerman's sampler [Zu
96℄ to give an-other proof that BPP is in �p2.A
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