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1 IntrodutionOriginally designed to measure the randomness of strings, Kolmogorov omplexity has beome animportant tool in omputability and omplexity theory. A simple lower bound showing that thereexist random strings of every length has had several important appliations (see [LV97, Chapter6℄).Early in the history of omputational omplexity theory, many people naturally looked atresoure-bounded versions of Kolmogorov omplexity. This line of researh was initially fruitful andled to some interesting results. In partiular, Sipser [Sip83℄ invented a new variation of resoure-bounded omplexity, CD omplexity, where one onsiders the size of the smallest program thataepts one spei� string and no others. Sipser used CD omplexity for the �rst proof that BPPis ontained in the polynomial-time hierarhy.Complexity theory has marhed on for the past two deades, but resoure-bounded Kolmogorovomplexity has seen little interest. Now that omputational omplexity theory has matured a bit,we ought to look bak at resoure-bounded Kolmogorov omplexity and see what new results andappliations we an draw from it.First, we use algebrai tehniques to give a new upper bound lemma for CD omplexity withoutthe additional advie required of Sipser's lemma [Sip83℄. With this lemma, we an approximatelymeasure the size of a set using CD omplexity.We obtain better bounds on CD omplexity using extrator graphs. These graphs are usuallyused for derandomization. However these improved bounds only apply to most of the strings.We also give a new simpler proof of Sipser's Lemma and show how it implies the importantValiant-Vazirani lemma [VV85℄ that randomly isolates satisfying assignments. Surprisingly, Sipser'spaper predates the result of Valiant and Vazirani.We de�ne CND omplexity, a variation of CD omplexity where we allow nondeterministiomputation. We prove a lower bound for CND omplexity where we show that there exists anin�nite set A suh that every string in A has high CND omplexity even if we allow aess toA as an orale. We use this lemma to prove some negative results on nondeterministi searh vs.deterministi deision.One we have these tools in plae, we use them to unify several important theorems in omplexitytheory. We answer an open question of Papadimitriou [Pap96℄ haraterizing exatly when the setof satisfying assignments of a formula an be enumerated in output polynomial time. We alsogive straightforward proofs that BPP is in �p2 (�rst proven by G�as (see [Sip83℄)) and reaterelativized worlds where assignments to SAT annot be found with non adaptive queries to SAT(�rst proven by Buhrman and Thierauf [BT96℄), and where EXP = NEXP but there existsa NEXP mahine whose aepting paths annot be found in exponential time (�rst proven byImpagliazzo and Tardos [IT89℄).These results in their original form require a great deal of time to fully understand the proofbeause either the ideas and/or tehnial details are quite omplex. We show that by understand-ing resoure-bounded Kolmogorov omplexity, one an see full and omplete proofs of these resultswithout muh additional e�ort. We also look at when polynomial-time C, CD and CND om-plexity oinide. We give a preise haraterization of when we have equality of these measures,and some interesting onsequenes thereof.
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2 PreliminariesWe use basi onepts and notation from omputational omplexity theory texts like Bal�azar,D��az, and Gabarr�o [BDG88℄ and Kolmogorov omplexity from the exellent book by Li andVit�anyi [LV97℄. We use jxj to represent the length of a string x and jjAjj to represent the numberof elements in the set A. A=n is the set of strings in A of length n. [N ℄ denotes the set of integersbetween 1 and N . All of the logarithms are base 2.Formally, we de�ne the Kolmogorov omplexity funtion C�(xjy) by C�(xjy) = minpfjpj :�(p; y) = xg. The exists a universal mahine U suh that for all � there is a onstant  suh thatfor all x and y, CU (xjy) � C�(xjy) + . We �x suh a U and let C(xjy) = CU (xjy). We de�neunonditional Kolmogorov omplexity by C(x) = C(xj�).A few basi fats about Kolmogorov omplexity:� The hoie of U a�ets the Kolmogorov omplexity by at most an additive onstant.� For some onstant , C(x) � jxj+  for every x.� For every n and every y, there is an x suh that jxj = n and C(xjy) � n.We will also use time-bounded Kolmogorov omplexity. Fix a fully time-onstrutible funtiont(n) � n. We de�ne the Ct(xjy) omplexity funtion asCt(xjy) = minp fjpj : U(p; y) = x and U(p) runs in at most t(jxj+ jyj) stepsg:As before we let Ct(x) = Ct(xj�). A di�erent universal U may a�et the omplexity by at most aonstant additive term and the time by a log(t) fator.While the usual Kolmogorov omplexity asks about the smallest program to produe a givenstring, we may also want to know about the smallest program to distinguish a string. While thisdi�erene a�ets the unbounded Kolmogorov omplexity by only a onstant it an make a di�erenefor the time-bounded ase. Sipser [Sip83℄ de�ned the distinguishing omplexity CDt byCDt(xjy) = minp 8><>: (1) U(p; x; y) aepts.jpj : (2) U(p; z; y) rejets for all z 6= x.(3) U(p; z; y) runs in at most t(jzj+ jyj) steps for all z 2 ��. 9>=>;When the auxiliary input string y is the empty string, we write CDt(x).Fix a universal nondeterministi Turing mahine Un. We de�ne the nondeterministi distin-guishing omplexity CNDt byCNDt(xjy) = minp 8><>: (1) Un(p; x; y) aepts.jpj : (2) Un(p; z; y) rejets for all z 6= x.(3) Un(p; z; y) runs in at most t(jzj+ jyj) steps for all z 2 ��. 9>=>;In this de�nition, we mean that the nondeterministi Turing mahine aepts or rejets in the usualsense of nondeterministi omputation. One again we let CNDt(x) = CNDt(xj�).We an also allow for relativized Kolmogorov omplexity. For example, CDt;A(xjy) is de�nedas above exept that the universal mahine U has aess to A as an orale.One an distinguish a string by generating it then omparing it with the input, as stated in thefollowing lemma.Lemma 2.1 8t 9 8x; y : CDt log t(x j y) � Ct(x j y) + 3



where  is a onstant. Likewise, every deterministi omputation is also a nondeterministi om-putation, hene the lemma that follows.Lemma 2.2 8t 9 8x; y : CNDt log t(x j y) � CDt(x j y) + .In Setion 7 we examine the onsequenes of the onverses of these lemmas.3 Approximating Sets with Distinguishing ComplexityIn this setion we derive a lemma that enables one to deterministially approximate the density ofa set, using polynomial-time distinguishing omplexity. The tehnique we use of onsidering valuesmodulo a prime is reminisent of the hashing via the division method (see [Knu98, p. 515℄).Lemma 3.1 Let S = fx1; : : : ; xdg � f0; : : : ; 2n � 1g. For all xi 2 S and at least half of the primesp � 4dn2, xi 6� xj mod p for all j 6= i.Proof: For eah xi; xj 2 S, i 6= j, it holds that for at most n di�erent prime numbers p,xi � xj mod p by the Chinese Remainder Theorem. (Alternatively, jxi � xj j < 2n, so it an nothave more than n prime fators.) For xi there are at most dn primes p suh that xi � xj mod p forsome xj 2 S. The Prime Number Theorem [Ing32℄ (see also [HW79℄) states that for anym there areapproximatelym= ln(m) > m= log(m) primes less thanm. There are at least 4dn2= log(4dn2) > 2dnprimes less than 4dn2. So at least half of these primes p must have xi 6� xj mod p for all j 6= i. 2Lemma 3.2 Let A be any set. For all strings x 2 A=n it holds that CDp;A=n(x) � 2 log(jjA=njj) +O(log(n)) for some polynomial p.Proof: Fix n and let S = A=n. Fix x 2 S and a prime px ful�lling the onditions of Lemma 3.1for x.The CDpoly;A program for x works as follows:input yIf y 62 A=n then REJECTelse if y mod px = x mod px then ACCEPTelse REJECTThe size of the above program is jpxj+ jx mod pxj+O(1). This is 2 log(jjAjj)+O(log(n)). It is learthat the program runs in polynomial time, and only aepts x. 2We note that Lemma 3.2 also works for CNDp omplexity for p some polynomial.Buhrman, Laplante and Miltersen [BLM00℄ show that Lemma 3.2 is tight.Theorem 3.3 (Buhrman-Laplante-Miltersen) For every polynomial p and suÆiently large nthere exists a set of strings A � f0; 1gn ontaining more than 2n=50 strings suh that there is an xin A with CDp;A(x) � 2 log(jjA=njj)�O(1)Corollary 3.4 Let A be a set in P. For eah string x 2 A it holds that: CDp(x) � 2 log(jjA=njj)+O(log(n)) for some polynomial p.
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Proof: We will use the same sheme as in Lemma 3.2, now using that A 2 P and speifyingthe length of x, yielding an extra log(n) term for jxj plus an additional 2 log log(n) penalty foronatenating the strings. 2Theorem 3.3 also gives a relativized tightness result for Corollary 3.4.Corollary 3.5 1. A set S is sparse if and only if for all x 2 S, CDp;S(x) � O(log(jxj)), forsome polynomial p.2. A set S 2 P is sparse if and only if for all x 2 S, CDp(x) � O(log(jxj)), for some polynomialp.3. A set S 2 NP is sparse if and only if for all x 2 S, CNDp(x) � O(log(jxj)), for somepolynomial p.Proof: Lemma 3.2 yields that all strings in a sparse set have O(log(n)) CDp omplexity. Onthe other hand simple ounting shows that for any set A there must be a string x 2 A suh thatCNDA(x) � log(jjA=jxjjj). 23.1 Sipser's LemmaWe an also use Lemma 3.1 to give a simple proof of the following important result due toSipser [Sip83℄.Lemma 3.6 (Sipser) For every polynomial-time omputable set A there exists a polynomial p andonstant  suh that for every n, for most r in �p(n) and every x 2 A=n,CDp;A=n(xjr) � log(jjA=njj) +  log(n)Proof: For eah k, 1 � k � n, let rk be a list of 4k(n + 1) randomly hosen numbers lessthan 2k. Let r be the onatenation of all of the rk.Fix x 2 A=n. Let d = jjA=njj. Fix k suh that 2k�1 < 4dn2 � 2k. Consider one of the numbersy listed in rk. By the Prime Number Theorem [HW79℄, the probability that y is prime and lessthan 4dn2 is at least 12 log(4dn2) . The probability that y ful�lls the onditions of Lemma 3.1 for x isat least 14 log(4dn2) > 14k . With probability about 1 � 1=en+1 > 1 � 1=2n+1 we have that some y inrk ful�lls the ondition of Lemma 3.1.With probability at least 1=2, for every x 2 A there is some y listed in rk ful�lling the onditionsof Lemma 3.1 for x.We an now desribe x by x mod y and the pointer to y in r. 2Note: Sipser's original proof gives a tighter bound than  log(n) but for most appliations theadditional O(log(n)) additive fator makes no substantial di�erene.Comparing our Lemma 3.2 with Sipser's lemma (Lemma 3.6,) we are able to eliminate therandom string required by Sipser at the ost of an additional log(jjA=njj) bits.4 Approximating sets with ExtratorsBy using extrators, we an obtain nearly the bound of Sipser's lemma 3.6 without the randomstring it requires. However, our result only works for most strings in A.5



Theorem 4.1 For any set A, any funtion "(n), there is a polynomial p suh that for all n andfor all but a 2"(n) fration of the x 2 A=n, CDp;A=n(x) � log jjA=njj+ logO(1)(n="(n)).We give a nondeterministi version of this result and give a bound on CND omplexity. Wealso give a randomized version of these theorems, stating that the shorter string an be hosen atrandom and the probability of getting a short string whih enodes as muh information as theoriginal string is bounded away from 1=2.4.1 ExtratorsAn extrator an be thought of as a bipartite graph, whose �rst olor lass is larger than the seondolor lass. By onvention we think of the �rst olor lass as being on the left, and the seond onthe right. The verties on the left side are all the strings of length n, so the �rst olor lass an beequated with the set [N ℄, where N = 2n. Likewise, the verties on the right side of the graph arelabeled by strings of length m � n, so we let M = 2m and [M ℄ is equated with the verties in theseond olor lass.4.1.1 DistributionsWe will be hoosing a node on the left side of the graph at random aording to a distribution X.The result of hoosing a neighbor uniformly at random in the graph will produe a distribution Yon verties on the right.The min-entropy of a distribution X over [N ℄ is de�ned as minf� log2(X(x))jx 2 [N ℄g. Themin-entropy of X an be thought of as a measure of the randomness present in a string x hosenaording to X.A distribution Y is said to be "-lose to Z if both distributions are over the same spae [M ℄,and that for any S � [M ℄; jY (S)� Z(S)j � ".4.1.2 De�nition of extratorsA bipartite graph G with (independent) vertex sets [N ℄ and [M ℄, N = 2n;M = 2m, and for whihthe degree of all the verties in the �rst olor lass is bounded byD = 2d is an (n; k; d;m; ") extratorif given any distributionX on the N verties whose min-entropy is at least k, the result of hoosingan x aording to this distribution and a random neighbor y of x in the graph is "-lose to theuniform distribution over [M ℄. In our setting, the distribution X will be the uniform distributionover a subset A � [N ℄, so k will be log(jjAjj).�(x) denotes the set of neighbors of x in G when x is a vertex on the left side of the graph. Thenumber of edges originating at some vertex x on the left side of the graph is alled the outdegreeof x, whereas the number w(y) of edges adjaent with a vertex y on the right side of the graph isalled the indegree (or weight) of y. G(x; r) represents the rth neighbor of x in the graph, wheremultiple edges are allowed. When y is a vertex on the right side of the graph, ��1A (y) is the subsetof preimages of y whih lie in A. The notation extends to sets in the natural way.4.1.3 Best known expliit onstrutionsThe results we state are subjet to improvement if better expliit extrator onstrutions are found.We have stated our results in general terms so that new results on extrators will be immediatelyappliable. 6



The urrent best known expliit onstrutions for extrators are due to Ta-Shma, Zukerman,Trevisan, and Raz, Reingold and Vadhan [Ta-96, Zu96, Tre99, RRV99℄. The extrators bestsuited for our purposes are the ones whih an be onstruted for any k, and with m = k, with thesmallest amount of additional randomness. We illustrate our results with the parameters obtainedfrom Ta-Shma's onstrution.Theorem 4.2 (Ta-Shma) There is an expliit onstrution that for every n and for any funtion"(n) and every m = m(n) � n yields an extrator with parameters (n;m; logO(1)(n="(n));m; "(n)):It is useful to ompare this onstrution to the urrent lower bound on extrators, due to Nisanand Zukerman [NZ93℄.Theorem 4.3 (Nisan-Zukerman) There is a onstant  suh that for all n;m; k � n� 1; " <1=2, if there is an extrator whose parameters are (n; k; d;m; "), then it must be the ase thatd � minfm;  log (n=")g.This lower bound also gives a good indiation as to the limits of the tehniques desribed inthis paper.4.2 Extrating CD omplexityTheorem 4.1 follows immediately from the following result, using the expliit extrator onstrutionof Ta-Shma. For this theorem we assume that there is an expliit extrator onstrution whoseparameters are (n; k; d;m; "), and we write M = 2m.Theorem 4.4 Fix a set A, a polynomial q(n) and " = "(n). Then there is a polynomial p(n) suhthat for all n and for all but a 2" fration of the x 2 A=n, there is a y suh that1. jyj = m2. Cp(yjx) � d+O(1)3. CDp;A=n(x) � Cq(y) + 3d+ 2 log(jjA=njj=M) +  log(n+ d+ log(jjA=njj=M)) +O(1),where the underlying extrator's parameters are determined by n and k = log(jjA=njj), and  is asmall absolute onstant.For the remainder of this setion, we �x n and we let S = jjA=njj. In our setting, we will thinkof the set A=n as de�ning a distribution of min-entropy k = log(S). The string x represents anelement of A=n and y is one of its neighbors in the graph G. Hene y has length m; omputing yfrom x requires knowing only a short (\random") string of length d; and as we will see, y togetherwith some short additional distinguishing information will suÆe to distinguish the string x (in thesense of CD omplexity).The following lemmas are at the heart of the argument. They allow us to upper-bound thenumber of \bad" elements in A=n, where \bad" means the strings x for whih Theorem 4.4 willnot apply.In order to get a short desription for x, we need to �nd a string y in its range whih has smallindegree (ounting only those edges originating in A=n.)In Lemma 4.5, we use the properties of the extrator to obtain an upper bound on the numberof y whih have large indegree. In the statement of the lemma, we use the variable w0 to represent7



the threshold on degree: any vertex with degree larger than w0 has large degree. A typial valuefor w0 is twie the average degree of the graph.Lemma 4.6 gives an upper bound on the number of x on the left side of the extrator whoseneighbors all lie within a small subset of the right side of the graph. When the small subset is theset of verties with large indegree, these x are the \bad" x to whih the theorem will not apply.Lemma 4.5 Consider the restrition of the extrator to the set of edges originating in A=n. Reallthat the degree of the graph is bounded by D = 2d. In this restrited graph, let w0 be an indegreethreshold, DSM < w0 � DS, and Y be a subset of verties on the right hand side of the extratorgraph. If 8y 2 Y;w(y) > w0, then jjY jj � " � w0DS � 1M ��1.Proof: Let Y be the set of verties whose indegree (in the restrited graph) exeeds w0. Beause thegraph is an extrator, it must be the ase that " � w(Y )�(A=n)� jjY jjM � w(Y )DS � jjY jjM . Sine w(Y ) � w0jjY jj,we get jjY jj � " � w0DS � 1M ��1 as laimed. 2Lemma 4.6 In the restrited graph, if Y is a set on the right side of the graph, thenjjfx 2 A=n : �(x) � Y gjj � �"+ jjY jjM �S:Proof: Let X = fx 2 A=n : �(x) � Y g. The distribution whih onsists of piking a randomelement of A=n and then hoosing a random neighbor gives measure at least jjXjj=S to the set Y .Beause of the extrator property, jjXjjS � jjY jjM � ": 2To onlude, we give the proof of Theorem 4.4.Proof: Let A be a set and "; n be given as in the statement of the theorem. By Lemma 4.5, appliedwith w0 = 2DS=M (D = 2d) and Lemma 4.6 with Y as in the hypothesis of Lemma 4.5, the size ofthe subset B � A=n suh that 8x 2 B, 8y 2 �(x), y has indegree at least w0 an have size at most2"S. Therefore for all but 2"S of the x in A=n, there is a y in its range whose indegree is at most2DS=M . For eah suh x, let rx be the label of one of the edges in G whih onnets x to suh ay. We need to verify 3 properties for eah of these pairs x; y.1. jyj = m : This is by hoie of the extrator G.2. Cp(yjx) � d+O(1) : y = G(x; rx) for some rx 2 �d, so the algorithm to print y will ontainan enoding of rx, and on input x omputes G(x; rx) and outputs the result.3. CDp;A=n(x) � Cq(y) + 3d+ 2 log(S=M) +  log(n) +O(1) : The program to reognize x willontain an enoding for an rx and y for whih G(x; rx) = y and the indegree of y is at most2DS=M . It must also ontain a distinguishing program px whih reognizes x among the2DS=M verties on the left originating in A that are adjaent to y. (The enoding of rx isrequired to test that x is adjaent to y, but may be omitted if the degree of the graph ispolynomial. This is not the ase in the urrent expliit, eÆient extrators, whose degreeis on the order of 2logO(1)(n).) The length of px is bounded by 2 log(2DS=M) + O(log(n +log(2DS=M))), by Lemma 3.2. (An additional logarithmi term is needed to enode thelengths of the various omponents of the enoding, but this is bundled in the O notation.)The algorithm follows: 8



input zIf z 62 A=n then REJECTelse if G(z; rx) 6= y then REJECTelse if px(z) = 1 then ACCEPTelse REJECTSo the program requires an enoding of y, r, and the distinguishing program px, for a totallength of Cq(y) + d+ 2 log(2DS=M) +  log(n+ log(2DS=M)) +O(1).24.3 Extrating CND omplexityA statement analogous to Theorem 4.4 an be made for CND omplexity. Using a slight variantof the proof of Theorem 4.4, we an get a bound whih is smaller by a a term of d. Also in theupper bound, CDq(y) is used instead of possibly larger term Cq(y).Theorem 4.7 Fix a set A in NP, a polynomial q(n), and " = "(n). Then there is a polynomialp(n) suh that for every n and for all but a 2" fration of the x 2 A=n, there is a y suh that1. jyj = log(jjA=njj)2. Cp(yjx) � d+O(1)3. CNDp(x) � CDq(y) + 2d+  log(n+ d) +O(1).The proof is essentially the same as that of Theorem 4.4. To simplify the notation we make theassumption that the extrator used ahieves k = m, as does Ta-Shma's onstrution. To obtainproperty 3, we need only guess y, and verify our guess using a distinguishing program for y whoselength is bounded by CDq(y). Likewise, we an simply guess r and omit its enoding, and use thedistinguishing program p to verify our guess for r.4.4 Randomly extrating CD omplexityAnother variant that saves a d = log(D) term is to hoose a ounterpart y to a string x in a setin P at random. We will only require that for most x, at least half of the edges from x map to a\good" y. Although this omes at the ost of only applying to \most" strings x, this improves uponthe result of Sipser [Sip83℄ by reduing the length of the random string from nO(1) to logO(1)(n=").The proof is similar to that of Theorem 4.4; it requires only a slight modi�ation to the ountingargument.Theorem 4.8 Fix a set A in P, a polynomial q(n), and a funtion "(n). Then there is a polynomialp(n) suh that for every n and for all but a 4"(n) fration of the x 2 A=n, and at least half of thestrings r of length d, there is a y suh that:1. jyj = log(jjA=njj)2. Cp(yjx; r) � O(1)3. CDp(xjr) � Cq(y) + 2d+ 2 log(n+ d) +O(1).9



5 Extrating random stringsIn the previous setion, we used the fat that the strings examined were in a small set of boundedomplexity, and we showed the existene of strings for whih the mutual information was roughlythe CND omplexity of the original string. Here we use extrator tehniques to a ahieve a slightlydi�erent goal. We obtain an inompressible string whose length is lose to the CD omplexity of xand whih an be omputed from x using only log(n=") bits.In the ase of unbounded Kolmogorov omplexity, it is easy to see that the following propositionis true.Proposition 5.1 [LV97, Ex. 2.1.5, p. 102℄ For any string x of length n, there is a y suh that:1. jyj = C(x)2. C(yjx) � log(n)3. C(y) > jyj �O(1).Namely, y is a minimal-length program for x, and an be obtained from x by dovetailing, given thevalue of C(x). In the time-bounded setting however, this argument fails, sine dovetailing wouldtake too muh time. Our use of extrators is far a�eld from the above approah, yet it yields resultssurprisingly lose to Proposition 5.1. (Non-expliit extrators atually allow us to give an alternateproof of Proposition 5.1, although this is more an artifat than a useful new proof.)Theorem 5.2 For any polynomial q(n) and funtion "(n), then there exists a polynomial p(n) suhthat for any string x of length n, there is a string y suh that:1. jyj = CNDp(x)=2 � 1 log(n)2. Cp(yjx) � log2(n="(n))3. Cq(y) > jyj � ",where 1; 2 are absolute onstants, and " depends only on ".Instead of giving the proof of Theorem 5.2, we prove the result in the following more generalform, whih may be improved as expliit extrator onstrutions are improved.Theorem 5.3 For any polynomial q(n) and " = "(n), there exists a polynomial p(n) suh that forany string x, there is a string y suh that:1. jyj = m2. Cp(yjx) � d+ 13. Cq(y) > jyj � ",where 1 is an absolute onstant, " is a onstant depending only on ", k = 12(CND2d�p(x) �2 log(n)� 1 � 1) and (n; k; d;m; ") are the parameters of an expliit extrator.
10



Theorem 5.2 follows by applying Theorem 5.3 with parameters obtained from Ta-Shma's ex-trator [Ta-96℄.Proof: (Sketh) Consider a family of extrators with parameters n; k;m(k). Fix any n; k and letG = Gn;k;m;m = m(k); be the extrator with parameters n;m; k. (Later we will �x k to be aspei� value.) Let An;m = fxj�(x) � C[q(n);m � "℄g, where C[t; l℄ = fzjCt(z) � lg, and " ishosen so that " > log( 11�") for large enough n.The fat that G is an extrator prohibits the set An;m from being large, as we see now. IfjjAn;mjj > 2k, then by the properties of the extrator,1� " � jjC[q(n);m� "℄jj2m :But jjC[q(n);m� "℄jj � 2m�" , and we have hosen " > log( 11�") in order to get a ontradition.Hene we must onlude that jjAn;mjj � 2k.Now we may apply Lemma 3.2 for CND to onlude that all x 2 An;m must have smallCND omplexity. First notie that verifying membership in An;m is in NTIME[2d � p℄ for somepolynomial p, sine it suÆes to guess, for eah neighbor y of x in Gn;m a program of lengthm � " whih prints out y. Hene, there exists a onstant 1 suh that for every x 2 An;m,CND2d�p(x) � 2 log(jjAn;mjj) + 2 log(n) + 1:Now onsider x with respet to the extrator Gn;k̂;m(k̂), where k̂ = 12(CND2d�p(x)� 2 log(n)�1 � 1) and m is maximal for this k. By the observation above, it must be the ase that x 62 An;m.Therefore there must be a y not in C[q(n);m� "℄ to whih x is mapped under Gn;k;m. It is easyto verify that y satis�es the properties laimed in the statement of the theorem. 26 Lower BoundsIn this setion we show that there exists an in�nite set A suh that every string in A has highCND omplexity, even relative to A.Fortnow and Kummer [FK96℄ prove the following result about relativized CD omplexity:Theorem 6.1 There is an in�nite set A suh that for every polynomial p, CDp;A(x) � jxj=5 foralmost all x 2 A.We extend and strengthen their result for CND omplexity:Theorem 6.2 There is an in�nite set A suh that CND2pjxj;A(x) � jxj=4 for all x 2 A.The proof of Fortnow and Kummer of Theorem 6.1 uses the fat that one an start with a largeset A of strings of the same length suh that any polynomial-time algorithm on an input x in Aannot query any other y in A. However, a nondeterministi mahine may query every string of agiven length. Thus we need a more areful proof.This proof is based on the proof of a result due to Goldsmith, Hemahandra and Kunen [GHK92℄whih we obtain as Corollary 6.3 below. In Setion 9, we will also desribe a rough equivalenebetween this result and an \X-searh" theorem of Impagliazzo and Tardos [IT89℄.Proof of Theorem 6.2:We reate our set A in stages. In stage k, we pik a large n and add to A a nonempty set ofstrings B of length n suh that for all nondeterministi programs p running in time 2pn suh thatjpj < n=4, pB[A aepts either zero or more than one strings in A. We �rst reate a B that makes11



as many programs as possible aept zero strings in B. After that we arefully remove some stringsfrom B to guarantee that the rest of the programs aept at least two strings.Let P be the set of nondeterministi programs of size less than n=4. We have jjP jj < 2n=4. Wewill lok all of these programs so that they will rejet if they take time more than 2pn. We alsoassume that on every program p in P , input x and orale O, pO(x) queries x.Let v = 2pn+1jjP jj and w = jjP jjv2pn. Pik sets � � P and H � �n that maximizes jj�jj+ jjHjjsuh that jjHjj � wjj�jj, and for all X � �n �H and p 2 �, X \ pA[X = ;.Note that H 6= �n sine jjHjj � wjj�jj � wjjP jj � 22pn+123n=4 < 2n. Sine some small programp always aepts we have that � 6= P .Our �nal B will be a subset of �n�H whih guarantees that for all p 2 �, pA[B will not aeptany strings in B. We will reate B suh that for all p 2 P ��, pA[B aepts at least two strings inB. Initially let B = �n�H. For eah p 2 P �� and for eah integer i, 1 � i � v do the following:Pik a minimal X � B suh that for some y 2 X, pA[X(y) aepts. Fix an aeptingpath and let Qpi be all the queries made on that path. Let yp;i = y, Xp;i = X andB = B �Qp;i.Note that jjQp;ijj � 2pn. We remove no more than jjP jjv2pn � w strings in total. So if we annot�nd an appropriate X, we have violated the maximality of jj�jj+ jjHjj. Note that yp;i 2 Xp;i � Qp;iand all of the Xp;i are disjoint.Initially set all of the Xp;i as unmarked. For eah p 2 P �� do the following twie:Pik an unmarked Xp;i. Mark all Xq;j suh that Xq;j \Qp;i 6= ;. Let B = B [Xp;i.We have that yp;i 2 B and pA[B(yp;i) aepts for every Xp;i proessed.At most 2 � 2pnjjP jj � 1 < v of the Xq;j's get marked before we have �nished, we always an �ndan unmarked Xp;i.Finally note that B � �n �H and for every p 2 P �� we have at least two y 2 B, suh thatpA[B(y) aepts. Sine P � � 6= ; this also guarantees that B 6= ;. Thus we have ful�lled therequirements for stage k. 2Using Theorem 6.2 we get the following orollary �rst proved by Goldsmith, Hemahandra andKunen [GHK92℄.Corollary 6.3 (Goldsmith-Hemahandra-Kunen) Relative to some orale, there exists an in-�nite polynomial-time omputable set with no in�nite sparse NP subsets.Proof: Let A from Theorem 6.2 be both the orale and the set in PA. Suppose A has anin�nite sparse subset S in NPA. Pik a large x suh that x 2 S. Applying Corollary 3.5(3) itfollows that CNDA;p(x) � O(log(n)). This ontradits the fat that x 2 S � A and Theorem 6.2.2 The above argument shows atually something stronger:Corollary 6.4 Relative to some orale, there exists an in�nite polynomial-time omputable setwith no in�nite subset in NP of density less than 2n=9.It remains open whether Corollary 6.4 holds for 2Æn for 19 < Æ < 1.
12



7 CD vs. C and CNDThis setion deals with the onsequenes of the assumption that one of the omplexity measures C,CD, and CND oinide for polynomial time. We will see that these assumptions are equivalent towell-studied omplexity-theoreti assumptions. This allows us to apply the mahinery developedin the previous setions. We will use the following funtion lasses:De�nition 7.1 1. The lass FPNP[log(n)℄ is the lass of funtions omputable in polynomialtime that an adaptively aess an orale in NP at most  log(n) times, for some .2. The lass FPNPtt is the lass of funtions omputable in polynomial time that an non-adaptively aess an orale in NP.Theorem 7.2 The following are equivalent:1. 8p2 9p1;  8x; y : Cp1(x j y) � CNDp2(x j y) +  log(jxj+ jyj).2. 8p2 9p1;  8x; y : CDp1(x j y) � CNDp2(x j y) +  log(jxj+ jyj).3. FPNP[log(n)℄ = FPNPtt .Proof: (1 ) 2) is trivial.(2 ) 3) We will �rst need the following lemma due to Lozano (see [JT95, pp. 184{185℄).Lemma 7.3 FPNP[log(n)℄ = FPNPtt if and only if for every f in FPNPtt there exists a funtiong 2 FP, that generates a polynomial-size set suh that f(x) 2 g(x).In the following let f 2 FPNPtt . Let f(x) = y. We will see that there exists a p and  suhthat CNDp(y j x) �  log(jxj). We an assume that the mahine omputing f(x) produes a listof queries Q = fq1; : : : ; qlg to SAT. Let w be the exat number of queries in Q that are in SAT.Thus w = jjQTSATjj. Consider the following CNDp program given x:input zuse f(x) to generate Q.guess q1; : : : ; qw 2 Q that are in SATguess satisfying assignments for q1; : : : ; qw.REJECT if not all q1; : : : ; qw are satis�able.ompute f(x) with q1; : : : ; qw answered YES and qj 2 Q n fq1; : : : ; qwg answered NOACCEPT if and only if f(x) = zThe size of the above program is  log(jxj), aepts only y, and runs in time p, for some poly-nomial p and onstant  depending only on f . It follows that also all the pre�xes of y have CNDpomplexity bounded by  log(jxj)+ log(jxj)+O(1). By assumption there exists a polynomial p0 andonstant d suh that CDp0(z j x) � d log(jxj) for z a pre�x of y. For eah of these z there is someprogram r suh that1. jrj � d log(jxj),2. U(r; z; x) aepts,3. U(r; u; x) rejets for eah u 6= z and 13



4. U(r; u; x) runs in time at most p0(jxj) for eah juj � jxj.We an use the following proedure to enumerate possibilities for y.Let S0 = f�g.For m = 1 to jyj.Let S0m onsist of all strings u of length m suh that u extends some string in Sm�1.Let Sm onsist of all strings u in S0m suh that there is some r, jrj � d log(jxj),suh that U(r; u; x) aepts in p0(jxj) steps andfor all v 2 S0m � fug, U(r; v; x) does not aept in p0(jxj) steps.Note for allm, Sm and S0m will have size bounded by 2jxjd so the above algorithm runs in polynomialtime. By our disussion, y will belong to Sjyj so it follows using Lemma 7.3 that FPNP[log(n)℄ =FPNPtt .(3 ) 1) Let y be a string suh that CNDp0(y j x) = k. Let e be the program of length k thatwitnesses this. Consider the following funtion:f(<e; 0l; 0m; x>) = w1w2 : : : wmwhere wi = 8><>: 1 if there is a z of length m with the ith bit equal to onesuh that Un(e; z; x) nondeterministially aepts in l steps.0 otherwise.Note that if e is a CND program, that runs in l steps, then it aepts exatly one string, w oflength m. Hene f(<r; 0p0(jyj+jxj); 0jyj; x>) = y. It is not hard to see that in general f is in FPNPttand by assumption in FPNP[log(n)℄ via mahine M . Next given e = r, m = jyj, l = p0(jyj + jxj), xand the  log(jyj + jxj) answers to the NP orale that M makes we an generate y in polynomialtime. We have that Cp(y j x) � CNDp0(y j x) +  log(jyj+ jxj) 2For the next orollary we will use some results from [JT95℄. We will use the following lass oflimited nondeterminism de�ned in [DT90℄.De�nition 7.4 Let f(n) be a funtion from IN 7! IN . The lass NP[f(n)℄ denotes that lass oflanguages that are aepted by polynomial-time bounded nondeterministi mahines that on inputsof length n make at most f(n) nondeterministi moves.Jenner and Tor�an [JT95℄ show a series of onsequenes of the assumption FPNP[log(n)℄ = FPNPtt .By Theorem 7.2 we also get these onsequenes from a ollapse of CD and CND omplexity.Corollary 7.5 If 8p2 9p1;  8x; y : CDp1(x j y) � CNDp2(x j y) +  log(jxj+ jyj) then for any k:1. NP[logk(n)℄ is inluded in P.2. SAT 2 NP[ nlogk(n) ℄.3. SAT 2 DTIME(2nO(1= log log(n))).4. There exists a polynomial q suh that for every m formulae �1; : : : ; �m of n variables eahsuh that at least one is satis�able, there exists an i suh that �i is satis�able andCNDq(�ijh�1; : : : ; �mi) � O(log log(n+m))14



The last onsequene simply restates one of the Jenner-Tor�an results in the notation of this paper.We an use Corollary 7.5 to get a omplete ollapse if there is only a onstant di�erene betweenCD and CND omplexity.Theorem 7.6 The following are equivalent:1. 8p2 9p1;  8x; y : Cp1(x j y) � CNDp2(x j y) + .2. 8p2 9p1;  8x; y : CDp1(x j y) � CNDp2(x j y) + .3. P = NP.Proof Sketh: (1 ) 2) and (3 ) 1) are easy.(2 ) 3) By Corollary 7.5(4) ombined with the the assumption we have for any formulae�1; : : : ; �m where at least one is satis�able thatCDp1(�ijh�1; : : : ; �mi) �  log log(n+m)for some satis�able �i. We an enumerate all the programs p of length at most  log log(n+m) and�nd all the formula �i suh that p(�i; h�1; : : : ; �mi) = 1 and p(�j ; h�1; : : : ; �mi) = 0 for j 6= i.Thus given �1; : : : ; �m we an in polynomial-time reate a subset of size log(n+m) that ontainsa satis�able formula if the original list did. We then apply a standard tree-pruning algorithm to�nd the satisfying assignment of any satis�able formula. 2A simple modi�ation of the proof shows that Theorem 7.6 holds if we replae the onstant with a log(n) for any a < 1.For the next orollary we will need the following de�nition (see [ESY84℄).De�nition 7.7 A promise problem is a pair of sets (Q;R). A set L is alled a solution to thepromise problem (Q;R) if 8x(x 2 Q) (x 2 L, x 2 R)). For any funtion f , fSAT denotes theset of Boolean formulas with at most f(n) satisfying assignments for formulae of length n.The next theorem states that nondeterministi omputations that have few aepting omputa-tions an be \ompressed" to nondeterministi omputations that have few nondeterministi movesif and only if Cpoly � CDpoly.Theorem 7.8 The following are equivalent:1. 8p2 9p1;  8x; y : Cp1(x j y) � CDp2(x j y) + .2. (1SAT;SAT) has a solution in P.3. For all time onstrutible f , (fSAT;SAT) has a solution in NP[2 log(f(n)) +O(log(n))℄.Proof: (1 () 2) This was proven in [FK96℄.(3 ) 2) Take f(n) = 1 and the fat [DT90℄ that NP[O(log(n))℄ = P.(2) 3) Let � be a formula with at most f(j�j) satisfying assignments. Lemma 3.2 yields that for ev-ery satisfying assignment a to �, there exists a polynomial p suh that CDp(a j �) � 2 log(f(j�j))+O(log(j�j)). Hene (using that 1 () 2) it follows that Cp0(a j �) � 2 log(f(j�j)) +  log(j�j),for some onstant  and polynomial p0. The limited nondeterministi mahine now guesses a Cp0program program e of size at most 2 log(f(j�j)) +  log(j�j), and runs it (relative to �) and aeptsi� the generated string is a satisfying assignment to �. 215



Corollary 7.9 FPNP[log(n)℄ = FPNPtt implies the following:1. For any k the promise problem (2logk(n)SAT;SAT) has a solution in P.2. For any k, the lass of languages that is aepted by nondeterministi mahines that have atmost 2logk(n) aepting paths on inputs of length n is inluded in P.Proof: This follows from Theorem 7.2, Theorem 7.8, and Corollary 7.5. 28 Satisfying AssignmentsWe show several onnetions between CD omplexity and �nding satisfying assignments of Booleanformulae. By Cook's Theorem [Coo71℄, �nding satisfying assignments is equivalent to �ndingaepting omputation paths of any NP omputation.8.1 Enumerating Satisfying AssignmentsPapadimitriou [Pap96℄ mentioned the following proposition:Proposition 8.1 There exists a Turing mahine that given a formula � will output the set A ofsatisfying assignments of � in time polynomial in j�j and jjAjj.We an use CD omplexity to show the following.Theorem 8.2 Proposition 8.1 is equivalent to (1SAT;SAT) has a solution in P.In Proposition 8.1, we do not require the mahine to halt after printing out the assignments.If the mahine is required to halt in time polynomial in � and jjAjj we have that Proposition 8.1 isequivalent to P = NP.Proof of Theorem 8.2: The impliation of (1SAT;SAT) having a solution in P is straight-forward. We onentrate on the other diretion.Let d = jjAjj. By Lemma 3.2 and Theorem 7.8 we have that for every element x of A, Cq(xj�) �2 log(d) +  log(n) for some polynomial q and onstant . We simply now try every program p inlength inreasing order and enumerate p(�) if it is a satisfying assignment of �. 28.2 Computing Satisfying AssignmentsIn this setion we turn our attention to the question of the omplexity of generating a satisfyingassignment for a satis�able formula [WT93, HNOS96, Ogi96, BKT94℄. It is well known [Kre88℄that one an generate (the leftmost) satisfying assignment in FPNP. A tantalizing open questionis whether one an ompute some (not neessary the leftmost) satisfying assignment in FPNPtt .Formalizing this question, de�ne the funtion lass Fsat by f 2 Fsat if when ' 2 SAT then f(')is a satisfying assignment of '.The question now beomes FsatTFPNPtt = ;? Translating this to a CND setting we have thefollowing.Lemma 8.3 FsatTFPNPtt 6= ; if and only if for all � 2 SAT there exists a satisfying assignmenta of � suh that CNDp(a j �) �  log(j�j) for some polynomial p and onstant .16



Lemma 8.3 relativizes where we onsider a relativized version of SATA [GJ93℄ by adding a seriesof extra prediates A0; A1; A2; : : : suh that An(x1; : : : ; xn) is true if x1 : : : xn is in A.Toda and Watanabe [WT93℄ showed that relative to a random orale FsatTFPNPtt 6= ;. On theother hand Buhrman and Thierauf [BT96℄ showed that there exists an orale where FsatTFPNPtt =;. Their result also holds relative to the set onstruted in Theorem 6.2.Theorem 8.4 Relative to the set A onstruted in Theorem 6.2, FsatTFPNPtt = ;.Proof: For some n, let � be the formula on n variables suh that �(x) is true if and only ifx 2 A. Suppose FsatTFPNPtt 6= ;. It now follows by Lemma 8.3 that there exists an x 2 A suhthat CNDp;A(x) � O(log(jxj)) for some polynomial p, ontraditing the fat that for all x 2 A,CND2pjxj;A(x) � jxj=4. 28.3 Isolating Satisfying AssignmentsIn this setion we take a Kolmogorov omplexity view of the statement and proof of the famousValiant-Vazirani lemma [VV85℄. The Valiant-Vazirani lemma gives a randomized redution froma satis�able formula to another formula that with a non negligible probability has exatly onesatisfying assignment.We state the lemma in terms of Kolmogorov omplexity.Lemma 8.5 There is some polynomial p suh that for all � in SAT and all r suh that jrj = p(j�j)and C(r) � jrj, there is some satisfying assignment a of � suh that CDp(ajh�; ri) � O(log(j�j)).The usual Valiant-Vazirani lemma follows from the statement of Lemma 8.5 by hoosing r andthe O(log(j�j))-size program randomly.We show how to derive the Valiant-Vazirani Lemma from Sipser's Lemma (Lemma 3.6). Notethat Sipser's result predates Valiant-Vazirani by a ouple of years.Proof of Lemma 8.5: Let n = j�j.Consider the set A of satisfying assignments of �. We an apply Lemma 3.6 onditioned on �using part of r as the random strings. Let d = blog(jjAjj). We get that every element of A has aCD program of length bounded by d +  log(n) for some onstant . Sine two di�erent elementsfrom A must have di�erent programs, we have at least 1=n of the strings of length d +  log(n)must distinguish some assignment in A.We use the rest of r to list n2 di�erent strings of length d+  log(n). Sine r is random, one ofthese strings w must be a program that distinguishes some assignment a in A. We an give a CDprogram for a in O(log(n)) bits by giving d and a pointer to w in r. 29 Searh vs. Deision in Exponential-TimeIf P = NP then given a satis�able formula, one an use binary searh to �nd the assignment.One might expet a similar result for exponential-time omputation, i.e., if EXP = NEXPthen one should �nd a witness of a NEXP omputation in exponential time. However, the prooffor polynomial-time breaks down beause as one does the binary searh the input questions get toolong. Impagliazzo and Tardos [IT89℄ give relativized evidene that this problem is indeed hard.Theorem 9.1 ([IT89℄) There exists a relativized world where EXP = NEXP but there exists aNEXP mahine whose aepting paths annot be found in exponential time.17



We an give a short proof of this theorem using Theorem 6.2.Proof of Theorem 9.1: Let A be from Theorem 6.2.We will enode a tally set T suh that EXPA�T = NEXPA�T . Let M be a nondeterministiorale mahine suh that M runs in time 2n and for all B, MB is NEXPB-omplete.Initially let T = ;. For every string w in lexiographi order, put 12w into T if MA�T (x)aepts.Let B = A�T at the end of the onstrution. SineM(w) ould only query strings with lengthat most 2jwj � w, this onstrution will give us EXPB = NEXPB .We will show that there exists a NEXPB mahine whose aepting paths annot be found intime exponential relative to B.Consider the NEXPB mahine M that on input n guesses a string y of length n and aeptsif y is in A. Note that M runs in time 2jnj � n.Suppose aepting omputations of MB an be found in time 2jnjk = 2logk(n) relative to B. ByTheorem 6.2, we an �x some large n suh that A=n 6= ; and for all x 2 A=n,CND2logk(n);A(x) � n=4: (1)Let wi = jjf1m j 1m 2 T and 2i < m � 2i+1gjj. We will show the following lemma.Lemma 9.2 CND2logk(n);A(xjw1; : : : ; wlogk(n)) � log(n) +O(1)Assuming Lemma 9.2, Theorem 9.1 follows sine for eah i, jwij � i + 1. We thus have ourontradition with Equation (1).Proof of Lemma 9.2: We will onstrut a program pA to nondeterministially distinguish x.We use log(n) bits to enode n. First p will reonstrut T using the wi's.Suppose we have reonstruted T up to length 2i. By our onstrution of T , strings of T oflength at most 2i+1 an only depend on orale strings of length at most 2i+1=2 = 2i. We guess wistrings of the form 1m for 2i < m � 2i+1 and nondeterministially verify that these are the stringsin T . One we have T , we also have B = A� T so in time 2logk(n) we an �nd x. 2Impagliazzo and Tardos [IT89℄ prove Theorem 9.1 using an \X-searh" problem. We an alsorelate this problem to CND omplexity and Theorem 6.2.De�nition 9.3 The X-searh problem has a player who given N input variables not all zero, wantsto �nd a one. The player an ask r rounds of l parallel queries of a ertain type eah and wins ifthe player disovers a one.Impagliazzo and Tardos use the following result about the X-searh problem to prove Theo-rem 9.1.Theorem 9.4 ([IT89℄) If the queries are restrited to k-DNFs and N > 2(klr)2(l + 1)r then theplayer will lose on some non-zero setting of the variables.One an use a proof similar to that of Theorem 9.1 to prove a similar bound for Theorem 9.4.One needs just to apply Theorem 6.2 relative to the strategy of the player.One an also use Theorem 9.4 to prove a weaker version of Theorem 6.2. Pik a large n and atime bound t. Let N = 2n and suppose for all B � �n there is an x in B, CNDt;B(x) � w. LetN = 2n. 18



For a �xed B and x, let p be the CND program that distinguishes x. Nondeterministiallywe an �nd the ith bit of x using t queries to B by guessing x and the aepting omputation ofUn(p; x). We an express this omputation as the omplement of a t-DNF question.We now build a strategy for X-searh: Try all p and i, jpj � 2jpj and 1 � i � n in the �rst roundusing the t-DNF desribed above. This gives us a list of 2jpj possible x's. We just try them all.This solves the X-searh problem using k = t, l = n2jwj and r = 2. By Theorem 9.4 we haveN � 2(tn2w2)2(n2w)2. Taking logarithms we get n � 2(log t + log n + w + log 2) + 2(log n + w).Thus we have a ontradition whenever w = an and t = 2bn for 4a + 2b < 1. In partiular thisgives us an in�nite set A suh that CND2n1=6 ;A(x) � jxj=7 for all x in A.10 BPP in the seond level of the polynomial hierarhyOne of the appliations of Sipser's [Sip83℄ randomized version of Lemma 3.2 is the proof that BPPis in �p2. We will show that the approah taken in Lemma 3.2 yields a new proof of this result. Wewill �rst prove the following variation of Lemma 3.1.Lemma 10.1 Let S = fx1; : : : ; xdg � f0; : : : ; n� 1g. There exists a prime number p suh that forall xi; xj 2 S (i 6= j) : xi 6� xj mod p, suh that p � 2d2 log(n).Proof: We onsider only prime numbers between  and 2. For xi; xj 2 S it holds that for atmost log(n) = log(n)log() di�erent prime number p xi � xj mod p. Moreover there are at most d(d� 1)di�erent pairs of strings in S, so there exists a prime number p among the �rst d(d � 1) log(n)log() + 1prime numbers suh that for all xi; xj 2 S(i 6= j) it holds that xi 6� xj mod p. Applying again theprime number Theorem [HW79℄ it follows that if we take  > d(d � 1) log(n), p � 2d2 log(n). 2The idea is to use Lemma 10.1 as a way to approximate the number of aepting paths of aBPP mahine M . Note that the set of aepting paths ACCEPTM(x) of M on x is in P. Ifthis set is \small" then there exists a prime number satisfying Lemma 10.1. On the other hand ifthe set is \big" no suh prime number exists. This an be veri�ed in �p2: There exists a numberp suh that for all pairs of aepting paths xi; xj of M , xi 6� xj mod p. In order to apply thisidea we need the gap between the number of aepting paths when x is in the set and when itis not to be a square: if x is not in the set then jjACCEPTM(x)jj � k(jxj) and if x is in the setjjACCEPTM(x)jj > k2(jxj). We will apply Zukerman's [Zu96℄ oblivious sampler onstrution toobtain this gap.Theorem 10.2 Let M be a probabilisti mahine that witnesses that some set A is in BPP. As-sume that M(x) uses m random bits. There exists a mahine M 0 that uses 3m+9m1� 12 log�(m) ran-dom bits suh that if x 2 A then Pr[M 0(x) aepts℄ > 1� 122m and if x 62 A then Pr[M 0(x)aepts℄ <122m .Proof: Use the sampler in [Zu96℄ with � < 1=6,  = 122m , and � = 3m� 12 log�(m) .2Let A 2 BPP witnessed by probabilisti mahine M . Apply Theorem 10.2 to obtain M 0. The�p2 algorithm for A works as follows:input xGuess p � 22m+18m1� 12 log�(m) (3m+ 9m1� 12 log�(m) )If for all u; v 2 ACCEPTM 0(x) u 6� v mod p ACCEPT else REJECT19
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