This is page 1
Printer: Opaque this

1

Counting Complexity

Lance Fortnow!

ABSTRACT Traditionally, computational complexity theorists have looked
at NP problems like three-coloring to determine whether some solution ex-
ists. In counting complexity, we ask how many solutions exist. This paper
surveys the vast area of counting complexity, concentrating on a few of the
most important results in the area.

1 Introduction

In 1979, Valiant [Val79a] defined the complexity class #P as a function
class computing the number of accepting paths of a nondeterministic Turing
machine. Valiant used this class to capture the complexity of the permanent
function.

Counting complexity has since played an important role in computational
complexity theory and theoretical computer science. The techniques used
in counting complexity have significant applications in circuit complexity
and the series of recent results on interactive proof systems.

In the first Complezity Theory Retrospective, Schoning [Sch90] gave us
a taste of the “power of counting.” Schoning’s survey looked at counting
as a technique in complexity theory. We instead will look at counting as a
goal and study the techniques (mostly algebraic) that help us understand
the computational complexity of counting.

In this short survey, we cannot hope to cover adequately the wealth of
research in counting complexity. We focus on describing the basics: the two
important counting function classes #P and GapP, and several important
language classes defined in terms of these functions. We will describe the
basic relationships and closure properties among these classes.

We focus in detail on perhaps the two most important results in count-
ing complexity: Toda’s [Tod91] result showing that one can reduce any
language in the polynomial-time hierarchy to a #P function and Beigel,
Reingold, and Spielman’s [BRS95] theorem that PP is closed under union.

'"Department of Computer Science, University of Chicago, 1100 E. 58th St.,
Chicago, IL 60637. Email: fortnow@cs.uchicago.edu. Supported in part by NSF
grant CCR 92-53582.

2 Lance Fortnow

We prove Toda’s Theorem in three stages. First, we give a new alge-
braic proof of an important lemma by Valiant and Vazirani [VV86] that
“randomly” reduces a #P function to its sign. We apply this lemma dur-
ing the proof of a result of Toda and Ogihara [TO92] that shows that the
polynomial-time hierarchy is in some sense probabilistically low for GapP
functions. We then use this result with a variant of Toda’s original proof
to show how to reduce the polynomial-time hierarchy deterministically to
a single GapP question.

This survey should give the reader a taste of the power of counting func-
tions. We hope that the reader will take the concepts herein and learn more
about counting complexity and apply the techniques not only to counting
complexity but also to other areas in computational complexity theory and
theoretical computer science.

2 Preliminaries

We assume that the reader has familiarity with the basic notions of Turing
machines, nondeterminism, and basic complexity classes such as P and NP.
The reader can find these notions in a basic undergraduate textbook such
as that of Hopcroft and Ullman [HU79].

Fix ¥ = {0,1}. We consider strings over ¥ both as concatenations of
characters and as representations of integers. We define the one-to-one cor-
respondence as follows:

1. The string € represents zero.

2. The string Oz represents the positive integer whose binary description
is 1z.

3. The string 12 represents the negative integer whose absolute value
has binary description 1zx.

Note that for a number y the length of the representation of y, |y|, is roughly
the logarithm of the absolute value of y.

We order strings lexicographically, i.e., z < y if |z| < |y| or |z| = |y| and
x precedes y in dictionary order. Note that we may have x < y as strings
but z > y as integers.

Let (z1,...,2z1) for k& > 1 be a standard tuple function, i.e., one-to-
one, easily computable and invertible in all arguments. When we write a
function as f(x1,...,xy), this should be interpreted as f({z1,...,zx)).

Let M be a nondeterministic Turing machine that runs in time bounded
by some polynomial n’ for inputs of length n. Since most of the definitions
in this paper are based on this type of machine, we give such machines
the name NP machines. However, we will usually be interested more in the

1. Counting Complexity 3

number of accepting and possibly rejecting paths of M rather than whether
the machine “accepts.”

Let M represent the NP machine that simulates M but reverses M’s
decision to accept and reject. In other words, the accepting paths of M (x)
are the rejecting paths of M (x) and vice versa.

Let #M (z) be the number of accepting paths of M. We then have that
#M (x) is the number of rejecting paths. We also define the “Gap” of M
by AM (z) = #M(z) — #M(z). ‘

Note that #M (x), M(z), and AM (z) all are bounded by 2/*"".

Let FP represent the class of polynomial-time computable functions.

We will also consider oracle Turing machines. An oracle Turing machine
M using oracle A may write a string y on a special “oracle” tape and then
enter a special “query” state. M will then enter a “yes” state if y is in A
and a “no” state if y is not in A.

We define the relativized class NP4 as the set of languages that are
accepted by polynomial-time nondeterministic Turing machines with access
to oracle A. For a class C, we define NP€ as the union of all NP4 for A
in C. We use the notation NPA¥! to mean that the NP machine can make
only at most k queries to the oracle A on any computation path. We can
define relativized versions of other complexity classes in a similar manner.
When we relativize PSPACE computation, we only allow the PSPACE
machine to write questions on the oracle tape whose lengths are bounded
by a polynomial.

We can use oracle Turing machines to define other complexity classes
such as the polynomial-time hierarchy [MS72]. We define ¥, II¥| and A?
inductively as follows:

1. 5P =TIZ = AF = P.
2. P = NP>,

3. MY, =co-X¥ .

4. AP, =P¥.

The superscript “p” distinguishes the polynomial-time hierarchy used in
complexity theory from the arithmetic hierarchy from recursion theory
(see [Rog87)).

We define the polynomial-time hierarchy (PH) as the union of these
classes:

PH:UEf:UHg’:UAf C PSPACE.
K3 13 K3

We say that the polynomial-time hierarchy is infinite if X7 # ¥? | for
all i. Otherwise, we say that the hierarchy is finite or that it collapses.
Complexity theorists generally believe that the hierarchy is infinite.

4 Lance Fortnow

3 Counting Functions

In this section, we will discuss the power of counting functions. We will
examine two powerful function classes in particular, #P and GapP.

The classes #P (read “Sharp-P” or “Number-P”) and GapP are derived
directly from looking at the number of accepting paths or the gap between
accepting and rejecting paths, respectively:

Definition 3.1 1. The class #P consists of the functions f such that
there exists an NP machine M such that for all z € ¥*, f(z) =

2. The class GapP consists of the functions f such that there exists an
NP machine M such that for all x € ¥*, f(x) = AM(z).
First, note that #P and GapP functions cannot take on values too large.

Lemma 3.2 If f(z) is a #P or GapP function then there exists a poly-
nomial p(n) such that the absolute value of f(x) is bounded by 2PU*D for
every .

Proof: Either f(z) = #M (z) or AM (z) for some NP machine M. Let
p(n) bound the running time of M on strings of length n. Note that M (z)
can have at most 2P(12l) computation paths. The numbers of accepting and
rejecting paths of M (z) are bounded by the number of computation paths.
Lemma 3.2 follows. O

Note that #P functions cannot take on negative values, though GapP
functions can. In fact, GapP functions are closed under negation.

Lemma 3.3 If f is a GapP function then — f is also a GapP function.
Proof: Let M be an NP machine such that f = AM. Then —f = AM.
0O.
How about the relationship between #P and GapP and the polynomial-
time computable functions FP? First, we show that every #P function is
also a GapP function:

Lemma 3.4 For every NP machine M, there is an NP machine N such
that AN = #M.

Proof: Given an input z, the machine N guesses a path p of M (x). If
p is accepting, N accepts. Otherwise, N branches once, accepting on one
branch and rejecting on the other. We have, for all z,

7)

7)

AN (z)

B

#N(z) — #
#N (x) — #

=

(x

fulfilling the conclusion of Lemma 3.4. O

1. Counting Complexity 5

Note that a #P function can take on only nonnegative values, so this
class cannot capture all of the FP functions. However, it does capture
those FP functions that only take on nonnegative values. The class GapP
encompasses all the FP functions without restriction.

Theorem 3.5 If an FP function f always takes on nonnegative values
then f is in #P. FEvery FP function f is in GapP.

Proof: Let f be an FP function. Create an NP machine M that, on
input z, guesses | f(z)| computation paths and accepts on these paths if and
only if f(z) > 0. Note that AM(z) = f(z) for all z and #M (z) = f(z)
when f(z) > 0.0

It is possible that FP captures all the #P or GapP functions or that #P
captures all the GapP functions that take on only nonnegative values, but
these propositions seem unlikely. However, from the following lemma, we
will see that #P and GapP have essentially the same computational power.

Lemma 3.6 For all functions f, the following are equivalent:
1. f € GapP.
2. f is the difference of two #P functions.
3. f is the difference of a #P function and an FP function.
4. f is the difference of an FP function and a #P function.

Corollary 3.7 GapP C FP#PI,
Proof: Follows from the third characterization of GapP in Lemma 3.6. O
Proof of Lemma 3.6:

(1 = 2) For any M we have

AM = #M — $#M

by definition, so GapP is the difference of two #P functions.

(2 = 3) Let f and g be #P functions. We can assume that f = #M and
g =#N, where M and N are NP machines, and N has 27(") computation
paths for some polynomial ¢ (just pad N with extra rejecting paths so that
all paths have length g(n)). Let M’ be the machine that first branches once,
then simulates M on one branch and N on the other. We have, for any z,

f@) —g(x) = #M(x) - #N(z)
#M () + #N(z) —
— #M'() — 9a(lz[)

Therefore f — g is the difference of a #P and an FP function.

(3= 1) Let f be a #P function and let g € FP. Let M be the NP machine
such that f = AM. Let N be such that, for all z € ¥*, N(z) resembles
M (z) padded with g(z) rejecting paths. We then have AN = f — g.

6 Lance Fortnow

(3 & 4) This follows since we now have (1 < 3), and the GapP functions
are closed under negation. O

The composition of two FP functions remains an FP function. However,
it seems unlikely that the composition of two #P functions is a #P or even
a GapP function. We can, however, combine #P and GapP functions with
FP functions.

Lemma 3.8 Let f be an FP function and g a #P or GapP function. Then
g(f(x)) is a #P or GapP function, respectively.

Proof: Let M be an NP machine that defines a #P function g. Define
N to be an NP machine that on input z simulates M (f(z)). Then #N (z)
is exactly g(f(z)). The proof for GapP functions is identical. O

3.1 Algebraic Properties of Counting Functions
The vast power of #P and GapP functions arises from their closure under

algebraic operations like exponential summation and polynomial products.

Lemma 3.9 Let f be a #P function and q a polynomial. Then, the fol-
lowing are also #P functions:

1.3 <l f (2 y), and

2. HOSySq(‘z‘) f(z,y).
Proof: Fix an NP machine M such that f(z,y) = #M(z,y).

1. Define an NP machine N that on input z guesses a string y of length
bounded by ¢(|z|) and then simulates M (z,y).

2. Notice that if one simulates two nondeterministic machines and ac-
cepts if both accept, then the number of accepting paths of the new
machine will be exactly the product of the numbers of accepting paths
of the original two machines. To prove part 2, we generalize this idea.

Define an NP machine N that on input z simulates the following:

FOR y from 0 to ¢(|z|)

Simulate M (z,y)

If M(z,y) rejects then REJECT
ACCEPT

In each case, N(z) will have the appropriate number of accepting compu-
tations. O

Lemma 3.10 Let f be a GapP function and q a polynomial. Then, the
following are GapP functions:

1. Counting Complexity 7

L3y <q(a) f(@:y), and

2. Tlo<y<q(a) £ (2. 9)-

Proof: Fix an NP machine M such that f(z,y) = AM(z,y).
1. Same as in the proof of Lemma 3.9.

2. Let g(#) = [To<y<q(z|) f(#,). Define an NP machine N that on in-
put z guesses, in sequence, computation paths of M on the inputs
(x,0), (x,1), (x,2), and so on through (z,q(|z])). N accepts if an
even number of these paths are rejecting, and N rejects if an odd
number of these paths are rejecting. The machine N is an NP ma-
chine. The fact that g = AN can be shown by induction on the value
n = ¢(|z]) as follows: For n = 0, we have AN (z) = f(z,0) = g(x)
because N(z) behaves just as M (z,0) does. If n > 0, assume that
the inductive hypothesis is true for n — 1, and let N’ be a machine
that acts the same as N except that N' guesses paths of M only
on inputs (z,0),...,(z,n — 1). For convenience, let an. = #N'(z),
rye = #N'(x), apr = #M(x,n), and rpy = #M (z,n). By the induc-
tive hypothesis, we have

g(r) = AN'(z)f(x,n)
= AN'(z)AM(z,n)
= (an —7rn)(anv —Tm)

= (anapm +rnry) — (anry +rNian).

Now N(z) accepts whenever it guesses an even number of rejecting
paths. This happens either when there are an even number of re-
jections through (z,n — 1) and the last path is accepting, or when
there are an odd number of rejections through (z,n — 1) and the
last path is rejecting. Thus by the definition of N', the total number
of sequences accepted by N (z) is exactly anraps + rni7ar. Likewise,

the total number of sequences rejected by N(z) is an'ra + ryan.
Therefore, g(z) = AN(z). O

With the closure properties of Lemma 3.9 and 3.10, one would expect a
close connection between #P and GapP functions and low-degree polyno-
mials. Babai and Fortnow [BF91] show that in fact #P and GapP functions
can be expressed as polynomials built up in a simple way.

A retarded arithmetic program with binary substitutions (RAB) will be
a sequence {pi,pa,...} of instructions such that for every k, one of the
following holds:

(1) pg is one of the constant polynomials 0 or 1;

(2) pr = x; for some i < k;

8 Lance Fortnow

3) pr =1— x; for some i < k;

(3)
(4) pr = p; — p;j for some 4, j < k;

(5) pr = pip; for some i, j such that i + j < k (retarded multiplication);
(6) pr = pj(z; = 0) or pj(z; = 1) for some i,j < k (binary substitu-
tion). (Here, p;(z; = ¢) refers to the polynomial obtained from p; by
replacing the variable x; by the value €.)

We call a RAB uniform if there exists a polynomial-time function that on
input 1™ outputs the first n instructions.

Theorem 3.11 ([BF91, FFK94]) For every function f the following are
equivalent:

1. f € GapP.

2. There exists a uniform RAB and a polynomial q(n) such that p,(,) has
T1,...,T, as free variables and such that for every string x € {0,1}*,

3.2 A Randomized sign Function

Valiant and Vazirani [VV86] show how to randomly “isolate” one assign-
ment from a satisfying assignment. In the context of counting functions,
their construction in some sense allows us to apply a “randomized” sign
function to #P functions.

Lemma 3.12 (Valiant-Vazirani) Let f be a #P function. There exist a
#P function g and polynomials q and t such that

1. If f(x) =0 then g(x,r) = 0 for all r € £
2. If f(x) > 0 then

1
P r,r)=1)> —.
Tezqr(ﬂ)(g(?“lr))2 t(n)

In order to prove Lemma 3.12, Valiant and Vazirani [VV86] and Mul-
muley, Vazirani, and Vazirani [MVV87] use probabilistic techniques. We
give a new proof based on the algebraic techniques of Buhrman and Fort-
now [BF95]. These techniques are related to the “designs” of Nisan [Nis91]
and Nisan and Wigderson [NW94].

Proof: Let M be an NP machine such that f(z) = #M (z). Fix x and
suppose f(z) > 0. Let £ be the length of a binary encoding of a computation
path of M(z). Let S be the set of accepting computation paths of M (x)
encoded as strings of length ¢, and let d = |S| = f(z) = #M (x).

1. Counting Complexity 9

Pick m such that 24d < 2™ < 44d. Let F = GF(2™), the finite field of
2™ elements.

We will encode the computation paths as polynomials over F. We then
consider pairs (a,b) € F2 and show that for a sizable fraction of them there
will be exactly one polynomial p representing an accepting path of M such
that p(a) = b. Lemma 3.12 will follow by choosing m, a, and b at random.

For a string y = y1 ...y, in S, consider the following /-degree polynomial
over F"

L
py(X) = Zsz1
i=1

Fix a y in S. An element a of F' will be called y-good if, for all z # y in
S, py(a) # p.(a). Since p, and p, can agree on at most ¢ elements of F,
there are at least |F| — ¢d y-good elements in F.

Consider the set A, defined as the set of pairs (a, py(a)) for all y-good
a. Note that for two different y and z in S, Ay, N A, = 0. Let A = UyesA4,.
Note that |A| > d(|F| — ¢d).

Now we can define the #P function g by defining the corresponding NP
machine N. The machine N on input (z,r) does the following.

e Use r as an encoding of an integer m* between 1 and 2/ and elements
a and b in GF(2™").

e Guess a string y of length ¢ and accept if both: (a) p,(a) = b in the
field GF(2"), and (b) y encodes an accepting computation of M (z).

Shoup [Sho90] shows how to find an irreducible polynomial over GF(2)
of degree m* in polynomial time. One can use this irreducible polynomial
to do field operations in GF(2™") in polynomial time.

If f(x) =0 then g(x,r) = 0 for all r, since N(z,r) will never accept.

If f(z) > O note that d < 2¢ so m < log4dl < 21. With probability 1/(2¢)
we have m = m*.

Assume that m* was chosen to be m. Note that if (a,b) is in A then
N (z,r) has exactly one accepting computation, and thus g(z,r) = 1 as
desired.

We have that the size of A is at least d(|F| — ¢d) > d(2¢d — ¢d) = ¢d>.

We also have that the size of F? is at most 16¢2d?.

Thus if we choose (a,b) at random in F? we have at least a 1/(16¢)
chance of being in A.

Fix z. The probability of choosing r at random such that m = m™ and
(a,b) in A is at least 1/(32¢2).

Thus the probability that N (z, r) has exactly one accepting computation
(and g(z,r) = 1) is at least 1/(32¢?). Since ¢ is bounded by a polynomial
in |z|, we have fulfilled condition 2 of Lemma 3.12. O

While the 1/t(n) term in Lemma 3.12 does not seem like a large probabil-
ity, one can take many samples of g and have an extremely high likelihood
of having one of them take on a value of one.

10 Lance Fortnow

Corollary 3.13 Let f be a #P function and q a polynomial. There exist
a #P function g and polynomials p and t such that

1. If f(z) = 0 then g(z,i,r) = 0 for all i such that 1 < i < t(n) and
re o),

2. If f(x) > 0 then

Pr (3i 1<i<t(n)such that g(z,i,r) =1) > 1~ 979
rexr(n

It does not seem likely that a variant of Lemma 3.12 or Corollary 3.13
holds for GapP functions.

3.8 Counting Functions and the Polynomial-Time Hierarchy

Toda and Ogihara [T092] show that the polynomial-time hierarchy does
not add any power to GapP functions in a probabilistic sense.

Theorem 3.14 Let f be in GapPP" and let p be a polynomial. Then there
ezist a two-argument function g in GapP and a polynomial q such that for
all =

Pr (g(z,r) = f(z)) >1- 9—p(n)
reya(n)

In order to prove this theorem we use the following lemma proven later
in this section.

Lemma 3.15 Let f be in #PNY and p be a polynomial. There exist a
two-argument function g in GapP and a polynomial q such that for all x

Pr (g(z,r) = f(z)) >1- 9—n(n)
rexa(n)

Proof of Theorem 3.14: By induction, we will show that Theorem 3.14
holds for all f in GapP>%. The base case k = 0 is trivial since GapP>¢ =
GapP? = GapP.

Assume that the inductive hypothesis holds for k. Let f be in GapPZL1
and fix a polynomial p. Let A be a ¥%-complete set. We have f in GapPNPA.
By the fact that Lemma 3.6 relativizes, there exist f* and f~ in #PNPA
such that f = fT — f~. Since the proof of Lemma 3.15 also relativizes, let
gi (z,m1) and gy (z,71) in GapP# be the functions fulfilling the conclusion
of Lemma, 3.15 with polynomial p + 2 for f¥(z) and f~(x), respectively.

Apply the inductive hypothesis to the functions g; (x,r) and g; (z,71)
to get g ({(z,r1),m2) and g, ((x,r1),r2) in GapP, fulfilling the conclusion
of Theorem 3.14 for polynomial p + 2.

1. Counting Complexity 11

We now combine gi and g, to get the final g that fulfills Theorem 3.14
for f. Define g by

g(z,r1me) = g3 ((x,71),72) — g5 ((x,71),72).

Fix an input z. The following events occur each with probability at least
1 — 2= ®(")+2) when r; and ry are chosen at random:

L g (z,m1) = fH(2)
2. gy (x,m) = f~(2).
3. g3 (@, m1),m2) = g (2,11).

4. g;((:l?,r]>,7“2) = gf(az,m).
Thus with probability at least 1 — 27(") we have

f@) = fH(@) = f~ (@) = g5 ((z,11),m2) = g5 ({w,m1),72) = g(,7172),

fulfilling the inductive hypothesis for £+ 1. O
We will need the following lemma for the proof of Lemma 3.15.

Lemma 3.16 For every f in #PNV there is a language A in coNP and a
polynomial r such that

fla)=ly € " : (z,y) € Al.

Proof: Let M be the NP machine such that f = #MSAT. Fix an input
z. Let y represent the following tuple:

<p7317' "7"50)7

where p represents a computation path of MS5AT(z), ¢ is the number of
oracle queries made on computation path p, and s; is either € or a boolean
assignment.

Define A as the set of tuples (x,y) such that p is an accepting path of
M (x) and if ¢ is the ith query made by M (z) on computation path p either

1. ¢ is not in SAT and s; =€, or

2. ¢ isin SAT and s; is the lexicographically least satisfying assignment

to .

For each input z there is exactly one y with (z,y) in A for each accepting
computation of MSAT(z). The set A is in coNP since in (2.) we need only
check that s; is an assignment to ¢ and that no s < s; are assignments to

¢. O

12 Lance Fortnow

Proof of Lemma 3.15: Let f be a function in #P™ and let A and
r(n) be as derived from Lemma 3.16.

Fix a polynomial p. By Corollary 3.13, there is a #P function f; (i, w, z,y)
and a polynomial ¢;, where i ranges from 1 to ¢1(n) and w ranges over
strings of length ¢;(n), such that

1. If {(x,y) is not in A then fi(i,w,z,y) =0, and
2. if (x,y) is in A then

Pr(3i fi(i,w,x,y) =1) >1—277p),

Define the GapP function fs by

a(n)

fQ(“),.T,y) =1- H(]‘ - .fl(i7“)7m7y))'

i=1

Note that if (z,y) is not in A then for all w, fo(w,z,y) = 0. If on the
other hand (z,y) is in A then with probability at least 1 — 2" (")p(n),
folw,z,y) = 1.

Finally, we define the GapP function g(z,w) = }_, fo(w,z,y). The prob-
ability that g(z,w) # f(x) is at most 2-"(P(") times the number of y’s
(27(™), for a total probability bounded by 277", O

4 Counting Classes

We can use counting functions to define language classes in a natural way.
We can then use the closure properties of #P and GapP functions described
in Section 3 to help us understand the complexity of these language classes.

4.1 Classifying Counting Classes

Let L be a language in NP accepted by an NP machine M. If we look at
the #P function f(x) = #M (), note that f(z) > 0 exactly when z is in
L.

This works both ways: Suppose that we have a #P function f defined
by an NP machine M. If we look at the set of strings = such that f(z) > 0,
this is exactly the NP set accepted by M.

Thus we have the following characterization of the class NP using #P
functions:

Classification 4.1 The class NP consists of those languages L such that
for some #P function f and all x in X*

e Ifx is in L then f(z) > 0.

1. Counting Complexity 13

e Ifx is not in L then f(z) = 0.

In fact, many classes have natural and simple characterizations using
#P and GapP functions. Often these new characterizations allow us to use
the closure properties discussed in Section 3 to prove results about these
classes. We use the term “counting classes” to refer to complexity classes
with “simple” characterizations using #P or GapP functions.

The class UP (“Unique P”) consists of those NP languages accepted by
NP machines that never have more than one accepting path. In terms of
#P functions:

Classification 4.2 The class UP consists of those languages L such that
for some #P function f and all x in X*

e Ifx isin L then f(z) = 1.
e Ifx is not in L then f(z) = 0.

Gill [Gil77] defined the class PP (“Probabilistic Polynomial Time”) as
the set of languages L with probabilistic polynomial-time Turing machines
M where z is in L if the probability of M (z) accepting is greater than
one-half. If one considers M as a nondeterministic machine, this means
that the accepting paths outnumber the rejecting paths. In terms of GapP
functions:

Classification 4.3 The class PP consists of those languages L such that
for some GapP function f and all z in X*

e Ifx is in L then f(z) > 0.
o If x is not in L then f(x) <O0.

As complexity theorists discovered these simple characterizations, several
other classes were defined using #P and GapP functions:

Classification 4.4 The class SPP consists of those languages L such that
for some GapP function f and all x in X*

o Ifx isin L then f(z)=1.
e If x is not in L then f(x) = 0.

Classification 4.5 The class C_P consists of those languages L such that
for some GapP function f and all © in X*

e Ifx isin L then f(z)=0.
e Ifx is not in L then f(z) # 0.

Classification 4.6 The class ®P consists of those languages L such that
for some #P function f and all x in X*

14 Lance Fortnow

e Ifx isin L then f(z) is odd.
e Ifx is not in L then f(x) is even.

Classification 4.7 The class ModP consists of those languages L such
that for some #P function f and all z in X*

e Ifx is in L then f(x) mod k # 0.
e Ifx is not in L then f(x) mod k = 0.

Note that @P is just Mod»P. Fenner, Fortnow, and Kurtz [FFK94] show
that we can replace #P with GapP in Classifications 4.6 (®P) and 4.7
(MOdkP).

We can sometimes simplify some of these characterizations using some
of the closure properties discussed in Section 3. For example, if f is a GapP
function then the GapP function f2(x) > 0 exactly when f(z) # 0. This
allows us to have a new characterization of C_P:

Classification 4.8 The class C_P consists of those languages L such that
for some GapP function f and all © in X*

o Ifx isin L then f(z)=0.
e Ifx is not in L then f(z) > 0.

If a class C has a characterization using counting functions then co-C also
has a characterization using counting functions where we reverse the im-
plicants. For example:

Classification 4.9 The class co-C_P consists of those languages L such
that for some GapP function f and all x in X*

e Ifx is in L then f(z) > 0.
e Ifx is not in L then f(z) = 0.

From Classifications 4.3 and 4.9, we get

Corollary 4.10 co-C_P C PP.
Also, since every #P function is a GapP function, we have

Corollary 4.11
e NP C co-C_P.
e UP C SPP.

For a GapP function f, the GapP function 2f(x)—1 has the same sign as
f(z) for positive and negative f(z) and takes on the value —1 for f(z) = 0.
Thus we have a subtle but important variation of Classification 4.3:

1. Counting Complexity 15

Classification 4.12 The class PP consists of those languages L such that
for some GapP function f and all © in X*

e Ifx isin L then f(z) > 0.
e Ifx is not in L then f(z) < 0.

From Classification 4.12 and the fact that GapP functions are closed under
negation, we have the following.

Corollary 4.13
e PP is closed under complement.
e C_P C PP.

We can also use these classifications to show a relationship between PP,
#P, and GapP.

Theorem 4.14 PPP = pGarP,
Proof: We only need to show that every GapP function g is computable
in FPPP. Consider the language

L={(z,k) | g(z) > k}.

If we consider the GapP function f(z, k) = g(z) — k, we have that L € PP
by Classification 4.3. One can then use binary search using L as an oracle
to find the value of g(z). O

In one sense, PP languages consider the high-order bit of a GapP func-
tion, and ¢P languages consider the low-order bit. Green, K&bler, Regan,
Schwentick, and Toran [GKRT95] looked at the class of languages that
consider the middle bit.

Consider the function Middle that on input z returns the f@]th bit of
the string z. Remember that we also consider integers as strings as defined
in Section 2. We can then define the class MP using our usual classification.

Classification 4.15 The class MP consists of those languages L such that
for some GapP function f and all © in X*

o Ifx is in L then Middle(z) = 1.
e If x is not in L then Middle(x) = 0.

Note: Green et al. define the class MP using an equivalent definition
that employs #P functions and a polynomial-time computable pointer to
the particular bit in question. By appropriately padding the #P function,
one can use the middle bit to determine any other single bit. Also, one can
easily convert a GapP function to a #P function without modifying the
middle bit.

We have that MP contains &P and PP. We also have MP C P#Pl1] Ag
we will see in Corollary 4.22, MP actually contains the entire polynomial-
time hierarchy.

16 Lance Fortnow

4.2 Counting Operators

Given a set A and a polynomial p, we can define the function #%, as follows:

#4(2) = {y € PV | (2,y) € A}.

Varying the complexity of A allows us to define other complexity classes.
We use this idea to define counting operators.

An operator maps one complexity class to another. For example, we
define the class # - C as follows:

Definition 4.16 #-C consists of the set of functions f such that for some
A € C and some polynomial p we have for all z, f(z) = #% ().

We can define the operator Gap - C as the difference between two # - C
functions. Note that # - P = #P and Gap - P = GapP.

We can also use counting operators to generate language classes as well
as function classes by generalizing the classifications in Section 4.1.

Classification 4.17 The class P-C consists of those languages L such that
for some Gap - C function f and all x in ¥*

e Ifx isin L then f(z) > 0.
e Ifx is not in L then f(z) <0.

In fact, one can generalize all of the classifications in Section 4.1 in a
similar way. For further details and a history of counting operators, see the
survey by Hemaspaandra and Vollmer [HV95].

4.8 The Polynomial-Time Hierarchy

We can combine the results in Sections 3.3 and 4.2 to help us understand the
relationship between counting classes and the polynomial-time hierarchy.

We will now complete the proof of the following beautiful result of
Seinosuke Toda [Tod91].

Theorem 4.18

PH C p&arPll],

By Corollary 3.7 and Theorem 4.14, we immediately get the following
corollaries.

Corollary 4.19
1. PH C p#PDI,

2. PH C PP,

1. Counting Complexity 17

First, we prove some lemmas relating the polynomial-time hierarchy to
counting operators on counting classes.

Lemma 4.20
1. PHC P PP.
2. PHCP- - @P.
3. PHCP-C_P.

Proof: We will prove only the second item of Lemma 4.20. The other
two have similar proofs.

Fix a language L in PH. Consider the characteristic function y that
takes on the value one for € L and zero otherwise.

Since Yz, € GapPPH, we can apply Theorem 3.14 to get a GapP function
g such that

rklc,o

Pr(glar) = xulo)) >

and thus for every = € ¥*,
1. If z € L then

{r € =10 | g(a,r) =1} > [{r € U | g(z,r) # 1}].
2. If x € L then
{r € =10 | g(z,r) = 0}| > [{r € 24 | g(,r) # 0}].

Consider the set A consisting of (z,7) such that g(z,r) is odd. Since
g(z,r) is in GapP, we have A in ¢P. Let f be the GapP function defined
by #% (x) — #p (z). We have that L is in P - ®P by Classification 4.17. O

A couple of no‘req about Lemma 4.20:

1. One can replace P- with BP- in each item of Lemma 4.20, where
BP- represents a bounded error version of P-. We refer the interested
reader to the paper of Toda and Ogihara [T092] for more details.

2. The statement “PH C P - SPP” does not follow directly using the
techniques of the proof of Lemma 4.20. Though for most r, g(x,r) €
{0, 1}, there may be some r where g(z,r) takes on other values.

Proof of Theorem 4.18: Fix L in PH. By Lemma 4.20, we have L
in P - ®P. In other words, there exist a GapP function g and a polynomial
q such that z is in L if and only if

{r e 24 | g(z,r) mod 2 =1} > [{r € 21 | g(z,r) mod 2 = 0}/,

Let R1 and Rq represent these two sets, respectively.
While this function g does not directly lead to a proof of Theorem 4.18,
we can use g to create a new GapP function g with more useful properties.

18 Lance Fortnow

Lemma 4.21 For every polynomial p, there exists a GapP function § such
that for all x and r,

1. If g(z,7) mod 2 = 1 then §(z,r) mod 2°("") =1, and
2. if g(x,r) mod 2 = 0 then §(z,r) mod 2°(") = (.

First, we show how to use Lemma 4.21 to finish the proof of Theorem 4.18.
Let p(n) = g(n) + 1, and let § be the result of applying Lemma 4.21 to g.
Consider the GapP function h defined by

hiz)= > gla,r).

rexa(n)
Note that
h(z) mod 2°™ = ()" §(x,r)) mod 2"

rexa(n)

= () g(,r) mod 27 + (Y §(x,r)) mod 27"
rER1 r€ERo

= Z (9(z,7) mod 2°(")) 4+ Z (§(z,r) mod 2P(™)
reR1 rERo

= |Ri| mod 2¢(")

= |R1‘7

since [Ry| < 24" < 2¢(n),

We have that z is in L if and only if h(z) mod 2P(") > 2¢(") /2. We can
thus determine whether z is in L by a single query to the GapP function
h. O

We do not need the entire value of h(z). We have that x is in L if and
only if the ¢(n)th bit from the right of hA(x) is one. Thus we get the following
corollary about the surprising power of MP.

Corollary 4.22 PHC P - @P C MP.

Proof of Lemma 4.21: Consider the innocuous looking polynomial
f(m) = 3m? — 2m3. This polynomial has the following easily verifiable
properties for every positive integer m and .

1. If m mod 2! = 1 then f(m) mod 2% = 1.

2. If m mod 2 = 0 then f(m) mod 22* = 0.

Consider f(*) the function f iterated k times. We have
1. If m mod 2 = 1 then f®*)(m) mod 22" = 1.

2. If m mod 2 = 0 then £ (m) mod 22" = 0.

1. Counting Complexity 19

Define §(x,r) = f(Mo822(")1)(g(z, r)). By the property of f, ¢ fulfills the
conditions required by Lemma 4.21.

We need to argue that § is a GapP function. Note that f*)(m) is a
polynomial in m of degree 3F. The degree of f(['°822(")1) is bounded by
3'tlogzp(n) — 3. 3logap(n) — 3. (2log23)loga p(n) — 3p(p)lo823 < 3p(n)?—still
a polynomial in n. Thus by appropriately applying Lemma 3.10 we have
that ¢ is a GapP function. O

Note: Toda [Tod91] proved a version of Lemma 4.21 using a different
f. We find it simpler to use the function f given by Yao [Ya090]. See
Beigel and Tarui [BT94] for an in-depth look at these modulus-amplifying
polynomials.

4.4 Closure Properties of PP

In his original paper on probabilistic complexity classes, Gill [Gil77] showed
that PP is closed under complement (Corollary 4.13). Gill left open the
question as to whether PP is closed under union. Note that by DeMorgan’s
Law, since PP is closed under complement, closure under union and closure
under intersection are equivalent questions.

This question remained open for many years until Beigel, Reingold, and
Spielman [BRS95] showed that in fact the class PP is closed under union
and thus intersection. In this section, we will present the basic idea of that
proof.

Beigel, Reingold, and Spielman, extending work of Newman [New64],
developed some rational functions that closely approximated the sign func-
tion. (A rational function is a quotient of two polynomials.)

Let m be an even positive integer. Based on similar polynomials due to
Beigel, Reingold, and Spielman, we define

P,(z) = (2-1) H(z — 292,

=1

A = (Pu(=2))F"" = (Pu(2)) ¥
Bu = (Pu(=2))"" 4+ (Pu(2)) ¥
Am

Lemma 4.23 ([BRS95])
1 If1<2<27 then 1< 8, <1427,
2. If =2m < z< —1then —1-2"" < S5, < -1.

Note that if f is a GapP function and m is a polynomial in |z| with even
coefficients, we have that A,, o f and By, o f are also GapP computable
functions. This follows from the closure properties in Section 3.

20 Lance Fortnow

We now use Lemma 4.23 to show the following main result from the
paper of Beigel, Reingold, and Spielman [BRS95]:

Theorem 4.24 The class PP is closed under union.

Proof: Fix two languages D and E in PP. We will show that D U E is
also in PP.

Let fp and fg be the functions given by Classification 4.12 for D and
E, respectively. By Lemma 3.2, let m = m(|z|) be a polynomial with even
coefficients such that 2™ bounds the maximum absolute value of fp(z) and
fr(z). Define Ap(z) = A, (fp(z)). Similarly, define Bp, Sp, Ag, Bg, and
SEg. Note that Ap, Bp, Ag, and Bg are GapP functions.

Let H = Sp + Sg + 1. By Lemma 4.23, we have

Lemma 4.25
1. Ifx € D and x € E then H(z) > 3.
2. Ifr €D andx & E then H(z) >1—27™,
3. Ifv ¢ D and x € E then H(z) >1—2"™.
4. Ifc ¢ D and x ¢ E then H(xz) < —1

Thus we have that 2 € DU E if and only if H(z) > 0.
We would be finished if H were a GapP function, but unfortunately it
may even take on nonintegral values. We do have
A A ApB AgB BpB
- Ap Ae :DE+E‘D+DE-

=24 2F
BD BE+ BDBE

Note that for nonzero integers p and g we have p/q > 0 if and only if pg > 0.
Thus we define

H' = (ApBg + ApBp + BpBg)(BpBg).
We have that
1. H' is a GapP function.
2. For all z € ¥*, H(z) > 0 if and only if H'(z) > 0.
3. x € DUFE if and only if H'(z) > 0.

Finally, applying Classification 4.12 to H', we have D U E € PP. O

Beigel, Reingold, and Spielman [BRS95] also showed several stronger clo-
sure properties. Fortnow and Reingold [FR96] extend the work of Beigel,
Reingold, and Spielman to show that PP is closed under truth-table reduc-
tion and in fact constant-round truth-table reductions. However, showing
that PP is closed under Turing reductions would require some nonrelativiz-
ing proof techniques (see Section 5).

1. Counting Complexity 21
5 Relativization

The results in this paper show that one complexity class contains another
or that some complexity classes have certain closure properties. One would
also hope to see separation results like a proof showing, for example, that
PP # @P.

The current tools in computational complexity theory do not allow us to
achieve this goal. In fact, it could be that P = PSPACE. Such a circum-
stance would make most of the results in this paper quite trivial and would
collapse all the counting classes in Section 4.1. While we do not believe that
P = PSPACE, we cannot rule out this possibility with known techniques.

Recall the definitions of oracle Turing machines and relativized complex-
ity classes defined in Section 2. Besides using oracles to define complexity
classes, we can also use oracles to help us understand what complexity
problems may require new techniques.

Consider a relativized version of Theorem 4.24.

Theorem 5.1 For all oracles A, the class PP is closed under union.

Proof: Fix an oracle A. If we analyze the proof of Theorem 4.24 allowing
all Turing machines to have access to A as an oracle, the proof goes through
without additional change. O

In fact, all of the proofs in this survey have this relativization property.
Suppose that we had a hypothesis like P = NP. If we can create a relativized
world (an oracle A) where P4 # NP4, then to prove P = NP would
require techniques that do not relativize, of which we know few. If we also
could create an oracle B such that PP = NPP, then in fact we could
not even settle the P = NP question in either direction using relativizable
techniques. In fact, Baker, Gill, and Solovay [BGS75] have created such
oracles to draw these conclusions.

Most, proofs in complexity theory relativize. For more details on the role
of relativization, see [For94].

Consider the PSPACE-complete language TQBF. Note that

PSPACETQPF — PSPACE.

By setting A = TQBF, we have

Theorem 5.2 There exists an oracle A such that P* = PSPACEA.

Thus no relativizable proof exists that separates P from PSPACE.

If P = PSPACE then all of the counting classes are equal to P and all
are closed under full Turing reductions. Thus any proof that two count-
ing classes differ or some counting class is not closed under some simple
reduction would require nonrelativizing techniques.

Thus the only theorems that we can prove with current techniques will
collapse classes and show closure properties. However, we can also use rel-
ativization to show the limits of this process.

22 Lance Fortnow

Beigel [Bei94] has developed one of the more useful oracles pertaining to
counting complexity.

Theorem 5.3 There exists an oracle A such that PNY" is not contained
in PPA.

This oracle implies some important corollaries about the limits of rela-
tivizable techniques in counting complexity, some of which are listed below.
These corollaries were known prior to Beigel’s construction, but Beigel’s
work unified these results.

Corollary 5.4 There exists a relativized world where
1. PP is not closed under Turing reductions.
2. PP does not contain the polynomial-time hierarchy.
3. PP does not contain MP.
Proof:

1. If PP is closed under Turing reductions for all relativized worlds, then
PNP C PPP C PP, contradicting Theorem 5.3.

2. Immediate since PNP C PH.
3. Immediate since PH C MP. O

Yao’s [Yao85, Has89] original oracle Y giving a relativized world where
PHY # PSPACEY

actually shows that
¢PY ¢ PHY.

Oracles also help us examine the relationships between NP, &P, C_P,
and PP.

Theorem 5.5 ([Tor88, Bei91l]) There exists an oracle A such that
1. ®PA ¢ PPA.
9. NPA ¢ &PA (thus PPA € GPA).
3. NPA ¢ C_PA (thus PPA ¢ C_P4).

It appears hard to guess at the power of SPP. In one sense, because of
its restrictive definition it seems as though it should not have much power.
However, the proof of Lemma 4.20 seems to indicate that SPP-like behavior
may have tremendous power. Different oracles bring out this division:

Theorem 5.6 There exist oracles A and B such that

1. Counting Complexity 23

1. The polynomial-time hierarchy is infinite relative to A, and PA =

SPPA.

2. The polynomial-time hierarchy is infinite relative to B, and SPPB
strictly contains PH?.

One nagging relativization question remains open.

Open Question 5.7 Does there exist an oracle A such that

P#P" - PSPACE"?

In fact, even the following weaker question remains open.

Open Question 5.8 Does there exist an oracle A such that

PP®P" £ PSPACEA?

6 Other Work

Such a short survey cannot possibly do justice to the large and vibrant
area of counting complexity. Instead of taking on the near-impossible task
of surveying the entire area, this paper has concentrated on looking at a
few results in depth to give the reader some flavor of the importance of
counting complexity. In this section, we would like to describe briefly some
other work in the area and some of the applications to other areas.

6.1 Clircuits

The techniques from counting complexity have played an important role
in helping us understand the power of bounded-depth circuits. For a back-
ground in circuit complexity, we recommend the survey of Boppana and
Sipser [BS90].

A PP question measures whether a certain number of computation paths
accept. One can draw an analogy to threshold gates in a circuit that de-
termine whether some number of inputs are true. Many of the techniques
described in this survey have direct applications to circuit complexity, par-
ticularly in showing how to use threshold gates to simulate certain AND-OR
circuits and also to use some number of threshold gates to simulate many
of them.

For example, Allender [AlI89], Beigel, Reingold, and Spielman [BRS91]
and Tarui [Tar93] show how to use Theorem 3.14 to simulate bounded-
depth AND-OR circuits by small depth-2 circuits with a single threshold
gate on top.

24 Lance Fortnow

One can similarly draw an analogy between Mod;P computations and
the class ACC of bounded depth circuits with Mod; gates for some fixed
k. Results of Yao [Ya090], Beigel and Tarui [BT94] and Green, Kobler,
Regan, Schwentick, and Tordn [GKR195] show how to simulate any ACC
circuit by a depth-2 circuit with a symmetric gate on top. Allender and
Gore [AG94] use these characterizations to separate uniform ACC from
the counting class PP. Barrington [Bar92] gives a nice survey of these

techniques and results.

6.2 Louness

Complexity theorists often ask about the lowness of a class, i.e., the amount
of information absorbed by a complexity class. Formally, for a class C we
define Low(C) by

Low(C) = {L | Cc" =¢}.
Note that lowness depends not only on the membership of a class C but may

also depend on the definition of C, as well as the oracle access mechanism.
Some results on lowness:

Theorem 6.1
1. Low(NP) = NP N co-NP.
2. Low(GapP) = Low(SPP) = SPP [FFK94].
3. Low(ModP) = ModyP for prime k [PZ83, BG92, Her90].
4. Low
5. Low(PSPACE) = PSPACE.

A nice characterization of Low(PP) remains an interesting open question.

6.3 Characterizing Specific Problems

As mentioned in the introduction, Valiant [Val79a] defined the class #P
specifically to capture the complexity of the permanent function. A perma-
nent of a matrix is similar to the determinant except that all of the terms
are added instead of subtracting alternating terms. While the determinant
is easy to compute using Gaussian elimination, computing the permanent
is #P-complete, i.e., #P C FpPermanent

In a later paper, Valiant [Val79b] showed the #P-completeness of sev-
eral other combinatorial problems. Most counting versions of NP-complete
problems are #P-complete, as are also some counting versions of polynomial-
time computable problems like counting the number of simple paths or
perfect matchings in a graph.

1. Counting Complexity 25

Kébler, Schéning, and J. Tordn [KST92] used counting complexity to
classify the graph isomorphism and automorphism problem. They show
that SPP contains graph automorphism and Low(PP) contains graph iso-
morphism.

6.4 Interactive Proof Systems

Interactive proof systems developed by Babai [Bab85, BM88] and Gold-
wasser, Micali, and Rackoff [GMR&9] give a probabilistic generalization of
nondeterminism. In order to show a protocol for the coNP languages, Lund,
Fortnow, Karloff, and Nisan [LFKN92] created an interactive proof system
for the #P-complete permanent function. To this day, the only known pro-
tocols for coNP require counting complexity.

The Lund, Fortnow, Karloff, and Nisan protocol forms the core of much
of the subsequent work in interactive proof systems that led to exciting
applications in program checking and hardness results for approximation
algorithms.

6.5 Counting in Space Classes

Instead of using nondeterministic polynomial-time Turing machines, one
can also consider counting the accepting computations of nondeterministic
logarithmic-space bounded machines. One can then define various classes
at this level such as #L, GapL, PL, and ¢&L. One can show that the de-
terminant function is complete for #L much the way that the permanent
function is complete for #P [AOQ94].

Many of the results mentioned in this survey, such as Theorem 4.24,
carry over to the log-space world.

6.6 Other Research

We still have not mentioned many other active areas of research in counting
complexity. A small sampling includes the following.

e A counting hierarchy exists that is analogous to the polynomial-time
hierarchy [Wag86].

A general definition of “counting classes” [FFK94].

The complexity of approximating counting functions [JVV86].

Showing that closure properties of counting classes and functions im-
ply various unknown collapses of other classes [OH91].

Generalizations of counting to other functions on the accept and re-
ject paths of nondeterministic machines [HLS93].

26 Lance Fortnow

e Recent work in quantum complexity seems to deal with counting
complexity except that counting is done in quite a different way. (See
the survey by Berthiaume [Ber97] in this volume.)

Counting complexity has played an important role in theoretical com-
puter science in the past two decades. We expect that the results and
techniques we learned from this study will play a significant role in future
research.

Acknowledgments: Thanks to Steve Homer for his careful reading of this
paper. Thanks also to Fred Green for his help on the relationship between
counting complexity and circuit complexity.

REFERENCES

[AGY4] E. Allender and V. Gore. A uniform circuit lower bound for the per-
manent. SIAM Journal on Computing, 23:1026 1049, 1994.

[A1I89] E. Allender. A note on the power of threshold circuits. In Proceedings
of the 30th IEEE Symposium on Foundations of Computer Science,
pages 580 584. IEEE, New York, 1989.

[AO94] E. Allender and M. Ogihara. Relationships among PL, #L, and the
determinant. In Proceedings of the 9th IEEE Structure in Complezity
Theory Conference, pages 267 278. IEEE, New York, 1994.

[Bab85] L. Babai. Trading group theory for randomness. In Proceedings of the
17th ACM Symposium on the Theory of Computing, pages 421 429.
ACM, New York, 1985.

[Bar92] D. Barrington. Quasipolynomial size circuit classes. In Proceedings
of the 7th IEEE Structure in Complezity Theory Conference, pages
86—93. IEEE, New York, 1992.

[Bei91] R. Beigel. Relativized counting classes: relations among thresh-

42(1):76-96, 1991.

[Bei94] R. Beigel. Perceptrons, PP and the polynomial hierarchy. Computa-
tional Complezity, 4:314 324, 1994.

[Ber97] A. Berthiaume. Quantum computation. In Complezity Theory Retro-
spective IT (L. Hemaspaandra and A. Selman, eds.), chapter 2, this

volume.
[BF91] L. Babai and L. Fortnow. Arithmetization: A new method in struc-
tural complexity theory. Computational Complezity, 1(1):41-66, 1991.
[BF95] H. Buhrman and L. Fortnow. Distinguishing complexity and symme-

try of information. Technical Report TR 95-11, University of Chicago
Department of Computer Science, 1995.

[BG92] R. Beigel and J. Gill. Counting classes: Thresholds, parity, mods, and
fewness. Theoretical Computer Science, 103:3—23, 1992.

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P = NP
question. SIAM Journal on Computing, 4(4):431 442, 1975.

[BMSS]

[BRS91]

[BRS95]

[BS90]

[BT94]
[FFK94]

[For94]

[FR6]
[Gil77]

[GKR 195

[GMRS9]

[Has89)

[Her90]

[HLS*93]

[HUTY]

[HV95]

[TVV86]

[KST92]

1. Counting Complexity 27

L. Babai and S. Moran. Arthur-Merlin games: a randomized proof
system, and a hierarchy of complexity classes. Journal of Computer
and System Sciences, 36(2):254-276, 1988.

R. Beigel, N. Reingold, and D. Spielman. The perceptron strikes back.
In Proceedings of the 6th IEEE Structure in Complezity Theory Con-
ference, pages 286-291. IEEE, New York, 1991.

R. Beigel, N. Reingold, and D. Spielman. PP is closed under inter-
section. Journal of Computer and System Sciences, 50(2):191 202,
1995.

R. Boppana and M. Sipser. The complexity of finite functions. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science,
chapter 14, pages 757-804. North-Holland, Amsterdam, 1990.

R. Beigel and J. Tarui. On ACC. Computational Complezity, 4:350
366, 1994.

S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes.
Journal of Computer and System Sciences, 48(1):116 148, 1994.

L. Fortnow. The role of relativization in complexity theory. Bulletin of
the European Association for Theoretical Computer Science, 52:229—
244, February 1994.

L. Fortnow and N. Reingold. PP is closed under truth-table reduc-
tions. Information and Computation, 124(1):1-6, 1996.

J. Gill. Computational complexity of probabilistic complexity classes.
SIAM Journal on Computing, 6:675 695, 1977.

F. Green, J. Kobler, K. Regan, T. Schwentick, and J. Toran. The
power of the middle bit of a #P function. Journal of Computer and
Systern Sciences, 50(3):456 467, 1995.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity
of interactive proof-systems. SIAM Journal on Computing, 18(1):186
208, 1989.

J. Hastad. Almost optimal lower bounds for small depth circuits.
In S. Micali, editor, Randomness and Computation, volume 5 of Ad-
vances in Computing Research, pages 143-170. JAI Press, Greenwich,
1989.

U. Hertrampf. Relations among MOD classes. Theoretical Computer
Science, 74:325-328, 1990.

U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and
K. Wagner. On the power of polynomial time bit-reductions. In Pro-
ceedings of the 8th IEEE Structure in Complexity Theory Conference,
pages 200-207. IEEE, New York, 1993.

J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, Reading, Mass., 1979.
L. Hemaspaandra and H. Vollmer. The satanic notations: Counting
classes beyond #P and other definitional adventures. SIGACT News,
26(1):2-13, 1995.

M. Jerrum, L. Valiant, and V. Vazirani. Random generation of combi-
natorial structures from a uniform distribution. Theoretical Computer
Science, 43:169-188, 1986.

J. Kébler, U. Schoning, and J. Toran. Graph isomorphism is low for
PP. Computational Complezity, 2(4):301 330, 1992.

28 Lance Fortnow

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for

[MS72]

[MVV87]
[New64]
[Nis91]
[NW94]

[OH91]

[PZ83]

[Rog87]
[Sch90]
[Sho90]

[Tar93]

[TO92]

[Tod91]
[Tors8]
[Val79a)]
[Val79b)]
[VV86]
[Wag86]

[Yao85]

interactive proof systems. Journal of the ACM, 39(4):859 868, 1992.
A. Meyer and L. Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential space. In Proceedings
of the 13th IEEE Symposium on Switching and Automata Theory,
pages 125-129. IEEE, New York, 1972.

K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as
matrix inversion. Combinatorica, 7(1):105 113, 1987.

D. Newman. Rational approximations to |z|. Michigan Mathematics
Journal, 11:11 14, 1964.

N. Nisan. Pseudorandom bits for constant-depth circuits. Combina-
torica, 11(1):63-70, 1991.

N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of
Computer and System Sciences, 49:149 167, 1994.

M. Ogiwara and L. Hemachandra. A complexity theory of feasible
closure properties. In Proceedings of the 6th IEEE Structure in Com-
plexity Theory Conference, pages 16 29. IEEE, New York, 1991.

C. Papadimitriou and S. Zachos. Two remarks on the power of count-
ing. In Proceedings of the 6th GI Conference on Theoretical Computer
Science, pages 269 276. Volume 145, Lecture Notes in Computer Sci-
ence, Springer, Berlin, 1983.

H. Rogers. Theory of Recursive Functions and Effective Computabil-
ity. MIT Press, Cambridge, 1987.

U. Schéning. The power of counting. In A. Selman, editor, Complezity
Theory Retrospective, pages 204 223. Springer, New York, 1990.

V. Shoup. New algorithms for finding irreducible polynomials over
finite fields. Mathematics of Computation, 54:435—-447, 1990.

J. Tarui. Probabilistic polynomials, AC® functions and the poly-
nomial-time hierarchy. Theoretical Computer Science, 113:167 183,
1993.

S. Toda and M. Ogiwara. Counting classes are at least as hard as the
polynomial-time hierarchy. STAM Journal on Computing, 21(2):316—
328, 1992.

S. Toda. PP is as hard as the polynomial-time hierarchy. STAM Jour-
nal on Computing, 20(5):865-877, 1991.

J. Toran. Structural properties of the counting hierarchies. Ph.D. the-
sis, Facultat d’Informatica, UPC Barcelona, January 1988.

L. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8:189-201, 1979.

L. Valiant. The complexity of reliability and enumeration problems.
SIAM Journal on Computing, 8:410-421, 1979.

L. Valiant and V. Vazirani. NP is as easy as detecting unique solu-
tions. Theoretical Computer Science, 47:85 93, 1986.

K. Wagner. The complexity of combinatorial problems with succinct
input representation. Acta Informatica, 23:325-356, 1986.

A. Yao. Separating the polynomial-time hierarchy by oracles. In Pro-
ceedings of the 26th IEEE Symposium on Foundations of Computer
Science, pages 1-10. IEEE, New York, 1985.

1. Counting Complexity 29

[Yao90] A. Yao. On ACC and threshold circuits. In Proceedings of the 31st
IEEE Symposium on Foundations of Computer Science, pages 619
631. IEEE, New York, 1990.

