
This is page 1Printer: Opaque this1Counting ComplexityLance Fortnow1ABSTRACT Traditionally, computational complexity theorists have lookedat NP problems like three-coloring to determine whether some solution ex-ists. In counting complexity, we ask how many solutions exist. This papersurveys the vast area of counting complexity, concentrating on a few of themost important results in the area.1 IntroductionIn 1979, Valiant [Val79a] de�ned the complexity class #P as a functionclass computing the number of accepting paths of a nondeterministic Turingmachine. Valiant used this class to capture the complexity of the permanentfunction.Counting complexity has since played an important role in computationalcomplexity theory and theoretical computer science. The techniques usedin counting complexity have signi�cant applications in circuit complexityand the series of recent results on interactive proof systems.In the �rst Complexity Theory Retrospective, Sch�oning [Sch90] gave usa taste of the \power of counting." Sch�oning's survey looked at countingas a technique in complexity theory. We instead will look at counting as agoal and study the techniques (mostly algebraic) that help us understandthe computational complexity of counting.In this short survey, we cannot hope to cover adequately the wealth ofresearch in counting complexity. We focus on describing the basics: the twoimportant counting function classes #P and GapP, and several importantlanguage classes de�ned in terms of these functions. We will describe thebasic relationships and closure properties among these classes.We focus in detail on perhaps the two most important results in count-ing complexity: Toda's [Tod91] result showing that one can reduce anylanguage in the polynomial-time hierarchy to a #P function and Beigel,Reingold, and Spielman's [BRS95] theorem that PP is closed under union.1Department of Computer Science, University of Chicago, 1100 E. 58th St.,Chicago, IL 60637. Email: fortnow@cs.uchicago.edu. Supported in part by NSFgrant CCR 92-53582.

2 Lance FortnowWe prove Toda's Theorem in three stages. First, we give a new alge-braic proof of an important lemma by Valiant and Vazirani [VV86] that\randomly" reduces a #P function to its sign. We apply this lemma dur-ing the proof of a result of Toda and Ogihara [TO92] that shows that thepolynomial-time hierarchy is in some sense probabilistically low for GapPfunctions. We then use this result with a variant of Toda's original proofto show how to reduce the polynomial-time hierarchy deterministically toa single GapP question.This survey should give the reader a taste of the power of counting func-tions. We hope that the reader will take the concepts herein and learn moreabout counting complexity and apply the techniques not only to countingcomplexity but also to other areas in computational complexity theory andtheoretical computer science.2 PreliminariesWe assume that the reader has familiarity with the basic notions of Turingmachines, nondeterminism, and basic complexity classes such as P and NP.The reader can �nd these notions in a basic undergraduate textbook suchas that of Hopcroft and Ullman [HU79].Fix � = f0; 1g. We consider strings over � both as concatenations ofcharacters and as representations of integers. We de�ne the one-to-one cor-respondence as follows:1. The string � represents zero.2. The string 0x represents the positive integer whose binary descriptionis 1x.3. The string 1x represents the negative integer whose absolute valuehas binary description 1x.Note that for a number y the length of the representation of y, jyj, is roughlythe logarithm of the absolute value of y.We order strings lexicographically, i.e., x < y if jxj < jyj or jxj = jyj andx precedes y in dictionary order. Note that we may have x < y as stringsbut x > y as integers.Let hx1; : : : ; xki for k > 1 be a standard tuple function, i.e., one-to-one, easily computable and invertible in all arguments. When we write afunction as f(x1; : : : ; xk), this should be interpreted as f(hx1; : : : ; xki).Let M be a nondeterministic Turing machine that runs in time boundedby some polynomial nj for inputs of length n. Since most of the de�nitionsin this paper are based on this type of machine, we give such machinesthe name NP machines. However, we will usually be interested more in the

1. Counting Complexity 3number of accepting and possibly rejecting paths ofM rather than whetherthe machine \accepts."Let M represent the NP machine that simulates M but reverses M 'sdecision to accept and reject. In other words, the accepting paths of M(x)are the rejecting paths of M(x) and vice versa.Let #M(x) be the number of accepting paths of M . We then have that#M(x) is the number of rejecting paths. We also de�ne the \Gap" of Mby �M(x) = #M(x)�#M(x).Note that #M(x), M(x), and �M(x) all are bounded by 2jxjj .Let FP represent the class of polynomial-time computable functions.We will also consider oracle Turing machines. An oracle Turing machineM using oracle A may write a string y on a special \oracle" tape and thenenter a special \query" state. M will then enter a \yes" state if y is in Aand a \no" state if y is not in A.We de�ne the relativized class NPA as the set of languages that areaccepted by polynomial-time nondeterministic Turing machines with accessto oracle A. For a class C, we de�ne NPC as the union of all NPA for Ain C. We use the notation NPA[k] to mean that the NP machine can makeonly at most k queries to the oracle A on any computation path. We cande�ne relativized versions of other complexity classes in a similar manner.When we relativize PSPACE computation, we only allow the PSPACEmachine to write questions on the oracle tape whose lengths are boundedby a polynomial.We can use oracle Turing machines to de�ne other complexity classessuch as the polynomial-time hierarchy [MS72]. We de�ne �pi , �pi , and �piinductively as follows:1. �p0 = �p0 = �p0 = P.2. �pi+1 = NP�pi .3. �pi+1 = co-�pi+1.4. �pi+1 = P�pi .The superscript \p" distinguishes the polynomial-time hierarchy used incomplexity theory from the arithmetic hierarchy from recursion theory(see [Rog87]).We de�ne the polynomial-time hierarchy (PH) as the union of theseclasses: PH =[i �pi =[i �pi =[i �pi � PSPACE:We say that the polynomial-time hierarchy is in�nite if �pi 6= �pi+1 forall i. Otherwise, we say that the hierarchy is �nite or that it collapses.Complexity theorists generally believe that the hierarchy is in�nite.

4 Lance Fortnow3 Counting FunctionsIn this section, we will discuss the power of counting functions. We willexamine two powerful function classes in particular, #P and GapP.The classes #P (read \Sharp-P" or \Number-P") and GapP are deriveddirectly from looking at the number of accepting paths or the gap betweenaccepting and rejecting paths, respectively:De�nition 3.1 1. The class #P consists of the functions f such thatthere exists an NP machine M such that for all x 2 ��, f(x) =#M(x).2. The class GapP consists of the functions f such that there exists anNP machine M such that for all x 2 ��, f(x) = �M(x).First, note that #P and GapP functions cannot take on values too large.Lemma 3.2 If f(x) is a #P or GapP function then there exists a poly-nomial p(n) such that the absolute value of f(x) is bounded by 2p(jxj) forevery x.Proof: Either f(x) = #M(x) or �M(x) for some NP machine M . Letp(n) bound the running time of M on strings of length n. Note that M(x)can have at most 2p(jxj) computation paths. The numbers of accepting andrejecting paths of M(x) are bounded by the number of computation paths.Lemma 3.2 follows. 2Note that #P functions cannot take on negative values, though GapPfunctions can. In fact, GapP functions are closed under negation.Lemma 3.3 If f is a GapP function then �f is also a GapP function.Proof: Let M be an NP machine such that f = �M . Then �f = �M .2.How about the relationship between #P and GapP and the polynomial-time computable functions FP? First, we show that every #P function isalso a GapP function:Lemma 3.4 For every NP machine M , there is an NP machine N suchthat �N = #M .Proof: Given an input x, the machine N guesses a path p of M(x). Ifp is accepting, N accepts. Otherwise, N branches once, accepting on onebranch and rejecting on the other. We have, for all x,�N(x) = #N(x) �#N(x)= #N(x) �#M(x)= #M(x) + #M(x) �#M(x)= #M(x);ful�lling the conclusion of Lemma 3.4. 2

1. Counting Complexity 5Note that a #P function can take on only nonnegative values, so thisclass cannot capture all of the FP functions. However, it does capturethose FP functions that only take on nonnegative values. The class GapPencompasses all the FP functions without restriction.Theorem 3.5 If an FP function f always takes on nonnegative valuesthen f is in #P. Every FP function f is in GapP.Proof: Let f be an FP function. Create an NP machine M that, oninput x, guesses jf(x)j computation paths and accepts on these paths if andonly if f(x) > 0. Note that �M(x) = f(x) for all x and #M(x) = f(x)when f(x) � 0. 2It is possible that FP captures all the #P or GapP functions or that #Pcaptures all the GapP functions that take on only nonnegative values, butthese propositions seem unlikely. However, from the following lemma, wewill see that #P and GapP have essentially the same computational power.Lemma 3.6 For all functions f , the following are equivalent:1. f 2 GapP.2. f is the di�erence of two #P functions.3. f is the di�erence of a #P function and an FP function.4. f is the di�erence of an FP function and a #P function.Corollary 3.7 GapP � FP#P[1].Proof: Follows from the third characterization of GapP in Lemma 3.6. 2Proof of Lemma 3.6:(1) 2) For any M we have�M = #M �#Mby de�nition, so GapP is the di�erence of two #P functions.(2) 3) Let f and g be #P functions. We can assume that f = #M andg = #N , where M and N are NP machines, and N has 2q(n) computationpaths for some polynomial q (just pad N with extra rejecting paths so thatall paths have length q(n)). LetM 0 be the machine that �rst branches once,then simulates M on one branch and N on the other. We have, for any x,f(x)� g(x) = #M(x)�#N(x)= #M(x) + #N(x) � 2q(jxj)= #M 0(x) � 2q(jxj):Therefore f � g is the di�erence of a #P and an FP function.(3) 1) Let f be a #P function and let g 2 FP. Let M be the NP machinesuch that f = �M . Let N be such that, for all x 2 ��, N(x) resemblesM(x) padded with g(x) rejecting paths. We then have �N = f � g.

6 Lance Fortnow(3 , 4) This follows since we now have (1 , 3), and the GapP functionsare closed under negation. 2The composition of two FP functions remains an FP function. However,it seems unlikely that the composition of two #P functions is a #P or evena GapP function. We can, however, combine #P and GapP functions withFP functions.Lemma 3.8 Let f be an FP function and g a #P or GapP function. Theng(f(x)) is a #P or GapP function, respectively.Proof: Let M be an NP machine that de�nes a #P function g. De�neN to be an NP machine that on input x simulates M(f(x)). Then #N(x)is exactly g(f(x)). The proof for GapP functions is identical. 23.1 Algebraic Properties of Counting FunctionsThe vast power of #P and GapP functions arises from their closure underalgebraic operations like exponential summation and polynomial products.Lemma 3.9 Let f be a #P function and q a polynomial. Then, the fol-lowing are also #P functions:1. Pjyj�q(jxj) f(x; y), and2. Q0�y�q(jxj) f(x; y).Proof: Fix an NP machine M such that f(x; y) = #M(x; y).1. De�ne an NP machine N that on input x guesses a string y of lengthbounded by q(jxj) and then simulates M(x; y).2. Notice that if one simulates two nondeterministic machines and ac-cepts if both accept, then the number of accepting paths of the newmachine will be exactly the product of the numbers of accepting pathsof the original two machines. To prove part 2, we generalize this idea.De�ne an NP machine N that on input x simulates the following:FOR y from 0 to q(jxj)Simulate M(x; y)If M(x; y) rejects then REJECTACCEPTIn each case, N(x) will have the appropriate number of accepting compu-tations. 2Lemma 3.10 Let f be a GapP function and q a polynomial. Then, thefollowing are GapP functions:

1. Counting Complexity 71. Pjyj�q(jxj) f(x; y), and2. Q0�y�q(jxj) f(x; y).Proof: Fix an NP machine M such that f(x; y) = �M(x; y).1. Same as in the proof of Lemma 3.9.2. Let g(x) = Q0�y�q(jxj) f(x; y). De�ne an NP machine N that on in-put x guesses, in sequence, computation paths of M on the inputshx; 0i, hx; 1i, hx; 2i, and so on through hx; q(jxj)i. N accepts if aneven number of these paths are rejecting, and N rejects if an oddnumber of these paths are rejecting. The machine N is an NP ma-chine. The fact that g = �N can be shown by induction on the valuen = q(jxj) as follows: For n = 0, we have �N(x) = f(x; 0) = g(x)because N(x) behaves just as M(x; 0) does. If n > 0, assume thatthe inductive hypothesis is true for n � 1, and let N 0 be a machinethat acts the same as N except that N 0 guesses paths of M onlyon inputs hx; 0i; : : : ; hx; n� 1i. For convenience, let aN 0 = #N 0(x),rN 0 = #N 0(x), aM = #M(x; n), and rM = #M(x; n). By the induc-tive hypothesis, we haveg(x) = �N 0(x)f(x; n)= �N 0(x)�M(x; n)= (aN 0 � rN 0)(aM � rM)= (aN 0aM + rN 0rM)� (aN 0rM + rN 0aM):Now N(x) accepts whenever it guesses an even number of rejectingpaths. This happens either when there are an even number of re-jections through hx; n� 1i and the last path is accepting, or whenthere are an odd number of rejections through hx; n� 1i and thelast path is rejecting. Thus by the de�nition of N 0, the total numberof sequences accepted by N(x) is exactly aN 0aM + rN 0rM . Likewise,the total number of sequences rejected by N(x) is aN 0rM + rN 0aM .Therefore, g(x) = �N(x). 2With the closure properties of Lemma 3.9 and 3.10, one would expect aclose connection between #P and GapP functions and low-degree polyno-mials. Babai and Fortnow [BF91] show that in fact #P and GapP functionscan be expressed as polynomials built up in a simple way.A retarded arithmetic program with binary substitutions (RAB) will bea sequence fp1; p2; : : :g of instructions such that for every k, one of thefollowing holds:(1) pk is one of the constant polynomials 0 or 1;(2) pk = xi for some i � k;

8 Lance Fortnow(3) pk = 1� xi for some i � k;(4) pk = pi � pj for some i; j < k;(5) pk = pipj for some i; j such that i+ j � k (retarded multiplication);(6) pk = pj(xi = 0) or pj(xi = 1) for some i; j < k (binary substitu-tion). (Here, pj(xi = ") refers to the polynomial obtained from pj byreplacing the variable xi by the value ".)We call a RAB uniform if there exists a polynomial-time function that oninput 1n outputs the �rst n instructions.Theorem 3.11 ([BF91, FFK94]) For every function f the following areequivalent:1. f 2 GapP.2. There exists a uniform RAB and a polynomial q(n) such that pq(n) hasx1; : : : ; xn as free variables and such that for every string x 2 f0; 1g�,f(x) = pq(n)(x).3.2 A Randomized sign FunctionValiant and Vazirani [VV86] show how to randomly \isolate" one assign-ment from a satisfying assignment. In the context of counting functions,their construction in some sense allows us to apply a \randomized" signfunction to #P functions.Lemma 3.12 (Valiant-Vazirani) Let f be a #P function. There exist a#P function g and polynomials q and t such that1. If f(x) = 0 then g(x; r) = 0 for all r 2 �q(n).2. If f(x) > 0 then Prr2�q(n)(g(x; r) = 1) � 1t(n) :In order to prove Lemma 3.12, Valiant and Vazirani [VV86] and Mul-muley, Vazirani, and Vazirani [MVV87] use probabilistic techniques. Wegive a new proof based on the algebraic techniques of Buhrman and Fort-now [BF95]. These techniques are related to the \designs" of Nisan [Nis91]and Nisan and Wigderson [NW94].Proof: Let M be an NP machine such that f(x) = #M(x). Fix x andsuppose f(x) > 0. Let ` be the length of a binary encoding of a computationpath of M(x). Let S be the set of accepting computation paths of M(x)encoded as strings of length `, and let d = jSj = f(x) = #M(x).

1. Counting Complexity 9Pick m such that 2`d < 2m � 4`d. Let F = GF(2m), the �nite �eld of2m elements.We will encode the computation paths as polynomials over F . We thenconsider pairs (a; b) 2 F 2 and show that for a sizable fraction of them therewill be exactly one polynomial p representing an accepting path of M suchthat p(a) = b. Lemma 3.12 will follow by choosing m, a, and b at random.For a string y = y1 : : : y` in S, consider the following `-degree polynomialover F : py(X) = X̀i=1 yiX i:Fix a y in S. An element a of F will be called y-good if, for all z 6= y inS, py(a) 6= pz(a). Since py and pz can agree on at most ` elements of F ,there are at least jF j � `d y-good elements in F .Consider the set Ay de�ned as the set of pairs (a; py(a)) for all y-gooda. Note that for two di�erent y and z in S, Ay \Az = ;. Let A = [y2SAy.Note that jAj � d(jF j � `d).Now we can de�ne the #P function g by de�ning the corresponding NPmachine N . The machine N on input hx; ri does the following.� Use r as an encoding of an integer m� between 1 and 2` and elementsa and b in GF(2m�).� Guess a string y of length ` and accept if both: (a) py(a) = b in the�eld GF(2m�), and (b) y encodes an accepting computation of M(x).Shoup [Sho90] shows how to �nd an irreducible polynomial over GF(2)of degree m� in polynomial time. One can use this irreducible polynomialto do �eld operations in GF(2m�) in polynomial time.If f(x) = 0 then g(x; r) = 0 for all r, since N(x; r) will never accept.If f(x) > 0 note that d � 2` som � log 4d` < 2l. With probability 1=(2`)we have m = m�.Assume that m� was chosen to be m. Note that if (a; b) is in A thenN(x; r) has exactly one accepting computation, and thus g(x; r) = 1 asdesired.We have that the size of A is at least d(jF j � `d) � d(2`d� `d) = `d2.We also have that the size of F 2 is at most 16`2d2.Thus if we choose (a; b) at random in F 2 we have at least a 1=(16`)chance of being in A.Fix x. The probability of choosing r at random such that m = m� and(a; b) in A is at least 1=(32`2).Thus the probability that N(x; r) has exactly one accepting computation(and g(x; r) = 1) is at least 1=(32`2). Since ` is bounded by a polynomialin jxj, we have ful�lled condition 2 of Lemma 3.12. 2While the 1=t(n) term in Lemma 3.12 does not seem like a large probabil-ity, one can take many samples of g and have an extremely high likelihoodof having one of them take on a value of one.

10 Lance FortnowCorollary 3.13 Let f be a #P function and q a polynomial. There exista #P function g and polynomials p and t such that1. If f(x) = 0 then g(x; i; r) = 0 for all i such that 1 � i � t(n) andr 2 �p(n).2. If f(x) > 0 thenPrr2�p(n)(9i 1 � i � t(n) such that g(x; i; r) = 1) � 1� 2�q(n):It does not seem likely that a variant of Lemma 3.12 or Corollary 3.13holds for GapP functions.3.3 Counting Functions and the Polynomial-Time HierarchyToda and Ogihara [TO92] show that the polynomial-time hierarchy doesnot add any power to GapP functions in a probabilistic sense.Theorem 3.14 Let f be in GapPPH and let p be a polynomial. Then thereexist a two-argument function g in GapP and a polynomial q such that forall x Prr2�q(n)(g(x; r) = f(x)) � 1� 2�p(n):In order to prove this theorem we use the following lemma proven laterin this section.Lemma 3.15 Let f be in #PNP and p be a polynomial. There exist atwo-argument function g in GapP and a polynomial q such that for all xPrr2�q(n)(g(x; r) = f(x)) � 1� 2�p(n):Proof of Theorem 3.14: By induction, we will show that Theorem 3.14holds for all f in GapP�pk . The base case k = 0 is trivial since GapP�p0 =GapPP = GapP.Assume that the inductive hypothesis holds for k. Let f be in GapP�pk+1and �x a polynomial p. Let A be a �pk-complete set. We have f in GapPNPA .By the fact that Lemma 3.6 relativizes, there exist f+ and f� in #PNPAsuch that f = f+ � f�. Since the proof of Lemma 3.15 also relativizes, letg+1 (x; r1) and g�1 (x; r1) in GapPA be the functions ful�lling the conclusionof Lemma 3.15 with polynomial p+ 2 for f+(x) and f�(x), respectively.Apply the inductive hypothesis to the functions g+1 (x; r1) and g�1 (x; r1)to get g+2 (hx; r1i; r2) and g�2 (hx; r1i; r2) in GapP, ful�lling the conclusionof Theorem 3.14 for polynomial p+ 2.

1. Counting Complexity 11We now combine g+2 and g�2 to get the �nal g that ful�lls Theorem 3.14for f . De�ne g byg(x; r1r2) = g+2 (hx; r1i; r2)� g�2 (hx; r1i; r2):Fix an input x. The following events occur each with probability at least1� 2�(p(n)+2) when r1 and r2 are chosen at random:1. g+1 (x; r1) = f+(x).2. g�1 (x; r1) = f�(x).3. g+2 (hx; r1i; r2) = g+1 (x; r1).4. g�2 (hx; r1i; r2) = g�1 (x; r1).Thus with probability at least 1� 2p(n) we havef(x) = f+(x)� f�(x) = g+2 (hx; r1i; r2)� g�2 (hx; r1i; r2) = g(x; r1r2);ful�lling the inductive hypothesis for k + 1. 2We will need the following lemma for the proof of Lemma 3.15.Lemma 3.16 For every f in #PNP there is a language A in coNP and apolynomial r such thatf(x) = jjy 2 �r(n) : hx; yi 2 Ajj:Proof: Let M be the NP machine such that f = #MSAT. Fix an inputx. Let y represent the following tuple:hp; s1; : : : ; sqi;where p represents a computation path of MSAT(x), q is the number oforacle queries made on computation path p, and si is either � or a booleanassignment.De�ne A as the set of tuples hx; yi such that p is an accepting path ofM(x) and if � is the ith query made byM(x) on computation path p either1. � is not in SAT and si = �, or2. � is in SAT and si is the lexicographically least satisfying assignmentto �.For each input x there is exactly one y with hx; yi in A for each acceptingcomputation of MSAT(x). The set A is in coNP since in (2.) we need onlycheck that si is an assignment to � and that no s < si are assignments to�. 2

12 Lance FortnowProof of Lemma 3.15: Let f be a function in #PNP and let A andr(n) be as derived from Lemma 3.16.Fix a polynomial p. By Corollary 3.13, there is a #P function f1(i; w; x; y)and a polynomial q1, where i ranges from 1 to q1(n) and w ranges overstrings of length q1(n), such that1. If hx; yi is not in A then f1(i; w; x; y) = 0, and2. if hx; yi is in A thenPrw (9i f1(i; w; x; y) = 1) � 1� 2�r(n)p(n):De�ne the GapP function f2 byf2(w; x; y) = 1� q(n)Yi=1(1� f1(i; w; x; y)):Note that if (x; y) is not in A then for all w, f2(w; x; y) = 0. If on theother hand (x; y) is in A then with probability at least 1 � 2�r(n)p(n),f2(w; x; y) = 1.Finally, we de�ne the GapP function g(x;w) =Py f2(w; x; y). The prob-ability that g(x;w) 6= f(x) is at most 2�r(n)p(n) times the number of y's(2r(n)), for a total probability bounded by 2�p(n). 24 Counting ClassesWe can use counting functions to de�ne language classes in a natural way.We can then use the closure properties of #P and GapP functions describedin Section 3 to help us understand the complexity of these language classes.4.1 Classifying Counting ClassesLet L be a language in NP accepted by an NP machine M . If we look atthe #P function f(x) = #M(x), note that f(x) > 0 exactly when x is inL.This works both ways: Suppose that we have a #P function f de�nedby an NP machine M . If we look at the set of strings x such that f(x) > 0,this is exactly the NP set accepted by M .Thus we have the following characterization of the class NP using #Pfunctions:Classi�cation 4.1 The class NP consists of those languages L such thatfor some #P function f and all x in ��� If x is in L then f(x) > 0.

1. Counting Complexity 13� If x is not in L then f(x) = 0.In fact, many classes have natural and simple characterizations using#P and GapP functions. Often these new characterizations allow us to usethe closure properties discussed in Section 3 to prove results about theseclasses. We use the term \counting classes" to refer to complexity classeswith \simple" characterizations using #P or GapP functions.The class UP (\Unique P") consists of those NP languages accepted byNP machines that never have more than one accepting path. In terms of#P functions:Classi�cation 4.2 The class UP consists of those languages L such thatfor some #P function f and all x in ��� If x is in L then f(x) = 1.� If x is not in L then f(x) = 0.Gill [Gil77] de�ned the class PP (\Probabilistic Polynomial Time") asthe set of languages L with probabilistic polynomial-time Turing machinesM where x is in L if the probability of M(x) accepting is greater thanone-half. If one considers M as a nondeterministic machine, this meansthat the accepting paths outnumber the rejecting paths. In terms of GapPfunctions:Classi�cation 4.3 The class PP consists of those languages L such thatfor some GapP function f and all x in ��� If x is in L then f(x) > 0.� If x is not in L then f(x) � 0.As complexity theorists discovered these simple characterizations, severalother classes were de�ned using #P and GapP functions:Classi�cation 4.4 The class SPP consists of those languages L such thatfor some GapP function f and all x in ��� If x is in L then f(x) = 1.� If x is not in L then f(x) = 0.Classi�cation 4.5 The class C=P consists of those languages L such thatfor some GapP function f and all x in ��� If x is in L then f(x) = 0.� If x is not in L then f(x) 6= 0.Classi�cation 4.6 The class �P consists of those languages L such thatfor some #P function f and all x in ��

14 Lance Fortnow� If x is in L then f(x) is odd.� If x is not in L then f(x) is even.Classi�cation 4.7 The class ModkP consists of those languages L suchthat for some #P function f and all x in ��� If x is in L then f(x) mod k 6= 0.� If x is not in L then f(x) mod k = 0.Note that �P is just Mod2P. Fenner, Fortnow, and Kurtz [FFK94] showthat we can replace #P with GapP in Classi�cations 4.6 (�P) and 4.7(ModkP).We can sometimes simplify some of these characterizations using someof the closure properties discussed in Section 3. For example, if f is a GapPfunction then the GapP function f2(x) > 0 exactly when f(x) 6= 0. Thisallows us to have a new characterization of C=P:Classi�cation 4.8 The class C=P consists of those languages L such thatfor some GapP function f and all x in ��� If x is in L then f(x) = 0.� If x is not in L then f(x) > 0.If a class C has a characterization using counting functions then co-C alsohas a characterization using counting functions where we reverse the im-plicants. For example:Classi�cation 4.9 The class co-C=P consists of those languages L suchthat for some GapP function f and all x in ��� If x is in L then f(x) > 0.� If x is not in L then f(x) = 0.From Classi�cations 4.3 and 4.9, we getCorollary 4.10 co-C=P � PP.Also, since every #P function is a GapP function, we haveCorollary 4.11� NP � co-C=P.� UP � SPP.For a GapP function f , the GapP function 2f(x)�1 has the same sign asf(x) for positive and negative f(x) and takes on the value �1 for f(x) = 0.Thus we have a subtle but important variation of Classi�cation 4.3:

1. Counting Complexity 15Classi�cation 4.12 The class PP consists of those languages L such thatfor some GapP function f and all x in ��� If x is in L then f(x) > 0.� If x is not in L then f(x) < 0.From Classi�cation 4.12 and the fact that GapP functions are closed undernegation, we have the following.Corollary 4.13� PP is closed under complement.� C=P � PP.We can also use these classi�cations to show a relationship between PP,#P, and GapP.Theorem 4.14 PPP = PGapP.Proof: We only need to show that every GapP function g is computablein FPPP. Consider the languageL = fhx; ki j g(x) > kg:If we consider the GapP function f(x; k) = g(x)� k, we have that L 2 PPby Classi�cation 4.3. One can then use binary search using L as an oracleto �nd the value of g(x). 2In one sense, PP languages consider the high-order bit of a GapP func-tion, and �P languages consider the low-order bit. Green, K�obler, Regan,Schwentick, and Tor�an [GKR+95] looked at the class of languages thatconsider the middle bit.Consider the function Middle that on input x returns the d jxj2 eth bit ofthe string x. Remember that we also consider integers as strings as de�nedin Section 2. We can then de�ne the class MP using our usual classi�cation.Classi�cation 4.15 The class MP consists of those languages L such thatfor some GapP function f and all x in ��� If x is in L then Middle(x) = 1.� If x is not in L then Middle(x) = 0.Note: Green et al. de�ne the class MP using an equivalent de�nitionthat employs #P functions and a polynomial-time computable pointer tothe particular bit in question. By appropriately padding the #P function,one can use the middle bit to determine any other single bit. Also, one caneasily convert a GapP function to a #P function without modifying themiddle bit.We have that MP contains �P and PP. We also have MP � P#P[1]. Aswe will see in Corollary 4.22, MP actually contains the entire polynomial-time hierarchy.

16 Lance Fortnow4.2 Counting OperatorsGiven a set A and a polynomial p, we can de�ne the function #pA as follows:#pA(x) = jfy 2 �p(jxj) j hx; yi 2 Agj:Varying the complexity of A allows us to de�ne other complexity classes.We use this idea to de�ne counting operators.An operator maps one complexity class to another. For example, wede�ne the class # � C as follows:De�nition 4.16 # �C consists of the set of functions f such that for someA 2 C and some polynomial p we have for all x, f(x) = #pA(x).We can de�ne the operator Gap � C as the di�erence between two # � Cfunctions. Note that # � P = #P and Gap � P = GapP.We can also use counting operators to generate language classes as wellas function classes by generalizing the classi�cations in Section 4.1.Classi�cation 4.17 The class P�C consists of those languages L such thatfor some Gap � C function f and all x in ��� If x is in L then f(x) > 0.� If x is not in L then f(x) � 0.In fact, one can generalize all of the classi�cations in Section 4.1 in asimilar way. For further details and a history of counting operators, see thesurvey by Hemaspaandra and Vollmer [HV95].4.3 The Polynomial-Time HierarchyWe can combine the results in Sections 3.3 and 4.2 to help us understand therelationship between counting classes and the polynomial-time hierarchy.We will now complete the proof of the following beautiful result ofSeinosuke Toda [Tod91].Theorem 4.18 PH � PGapP[1]:By Corollary 3.7 and Theorem 4.14, we immediately get the followingcorollaries.Corollary 4.191. PH � P#P[1].2. PH � PPP.

1. Counting Complexity 17First, we prove some lemmas relating the polynomial-time hierarchy tocounting operators on counting classes.Lemma 4.201. PH � P � PP.2. PH � P � �P.3. PH � P � C=P.Proof: We will prove only the second item of Lemma 4.20. The othertwo have similar proofs.Fix a language L in PH. Consider the characteristic function �L thattakes on the value one for x 2 L and zero otherwise.Since �L 2 GapPPH, we can apply Theorem 3.14 to get a GapP functiong such that Prr2�q(n)(g(x; r) = �L(x)) � 34 ;and thus for every x 2 ��,1. If x 2 L thenjfr 2 �q(n) j g(x; r) = 1gj > jfr 2 �q(n) j g(x; r) 6= 1gj:2. If x 62 L thenjfr 2 �q(n) j g(x; r) = 0gj > jfr 2 �q(n) j g(x; r) 6= 0gj:Consider the set A consisting of hx; ri such that g(x; r) is odd. Sinceg(x; r) is in GapP, we have A in �P. Let f be the GapP function de�nedby #pA(x)�#pA(x). We have that L is in P � �P by Classi�cation 4.17. 2A couple of notes about Lemma 4.20:1. One can replace P� with BP� in each item of Lemma 4.20, whereBP� represents a bounded error version of P�. We refer the interestedreader to the paper of Toda and Ogihara [TO92] for more details.2. The statement \PH � P � SPP" does not follow directly using thetechniques of the proof of Lemma 4.20. Though for most r, g(x; r) 2f0; 1g, there may be some r where g(x; r) takes on other values.Proof of Theorem 4.18: Fix L in PH. By Lemma 4.20, we have Lin P � �P. In other words, there exist a GapP function g and a polynomialq such that x is in L if and only ifjfr 2 �q(n) j g(x; r) mod 2 = 1gj > jfr 2 �q(n) j g(x; r) mod 2 = 0gj:Let R1 and R0 represent these two sets, respectively.While this function g does not directly lead to a proof of Theorem 4.18,we can use g to create a new GapP function ĝ with more useful properties.

18 Lance FortnowLemma 4.21 For every polynomial p, there exists a GapP function ĝ suchthat for all x and r,1. If g(x; r) mod 2 = 1 then ĝ(x; r) mod 2p(n) = 1, and2. if g(x; r) mod 2 = 0 then ĝ(x; r) mod 2p(n) = 0.First, we show how to use Lemma 4.21 to �nish the proof of Theorem 4.18.Let p(n) = q(n) + 1, and let ĝ be the result of applying Lemma 4.21 to g.Consider the GapP function h de�ned byh(x) = Xr2�q(n) ĝ(x; r):Note thath(x) mod 2p(n) = (Xr2�q(n) ĝ(x; r)) mod 2p(n)= (Xr2R1 ĝ(x; r)) mod 2p(n) + (Xr2R0 ĝ(x; r)) mod 2p(n)= Xr2R1(ĝ(x; r) mod 2p(n)) + Xr2R0(ĝ(x; r) mod 2p(n))= jR1j mod 2p(n)= jR1j;since jR1j � 2q(n) < 2p(n).We have that x is in L if and only if h(x) mod 2p(n) > 2q(n)=2. We canthus determine whether x is in L by a single query to the GapP functionh. 2We do not need the entire value of h(x). We have that x is in L if andonly if the q(n)th bit from the right of h(x) is one. Thus we get the followingcorollary about the surprising power of MP.Corollary 4.22 PH � P � �P � MP.Proof of Lemma 4.21: Consider the innocuous looking polynomialf(m) = 3m2 � 2m3. This polynomial has the following easily veri�ableproperties for every positive integer m and i.1. If m mod 2i = 1 then f(m) mod 22i = 1.2. If m mod 2i = 0 then f(m) mod 22i = 0.Consider f (k), the function f iterated k times. We have1. If m mod 2 = 1 then f (k)(m) mod 22k = 1.2. If m mod 2 = 0 then f (k)(m) mod 22k = 0.

1. Counting Complexity 19De�ne ĝ(x; r) = f (dlog2 p(n)e)(g(x; r)). By the property of f , ĝ ful�lls theconditions required by Lemma 4.21.We need to argue that ĝ is a GapP function. Note that f (k)(m) is apolynomial in m of degree 3k. The degree of f (dlog2 p(n)e) is bounded by31+log2 p(n) = 3 � 3log2 p(n) = 3 � (2log2 3)log2 p(n) = 3p(n)log2 3 < 3p(n)2|stilla polynomial in n. Thus by appropriately applying Lemma 3.10 we havethat ĝ is a GapP function. 2Note: Toda [Tod91] proved a version of Lemma 4.21 using a di�erentf . We �nd it simpler to use the function f given by Yao [Yao90]. SeeBeigel and Tarui [BT94] for an in-depth look at these modulus-amplifyingpolynomials.4.4 Closure Properties of PPIn his original paper on probabilistic complexity classes, Gill [Gil77] showedthat PP is closed under complement (Corollary 4.13). Gill left open thequestion as to whether PP is closed under union. Note that by DeMorgan'sLaw, since PP is closed under complement, closure under union and closureunder intersection are equivalent questions.This question remained open for many years until Beigel, Reingold, andSpielman [BRS95] showed that in fact the class PP is closed under unionand thus intersection. In this section, we will present the basic idea of thatproof.Beigel, Reingold, and Spielman, extending work of Newman [New64],developed some rational functions that closely approximated the sign func-tion. (A rational function is a quotient of two polynomials.)Let m be an even positive integer. Based on similar polynomials due toBeigel, Reingold, and Spielman, we de�nePm(z) = (z � 1) mYi=1(z � 2i)2:Am = (Pm(�z))m2 +1 � (Pm(z))m2 +1 :Bm = (Pm(�z))m2 +1 + (Pm(z))m2 +1 :Sm = AmBm :Lemma 4.23 ([BRS95])1. If 1 � z � 2m then 1 � Sm < 1 + 2�m.2. If �2m � z � �1 then �1� 2�m < Sm � �1.Note that if f is a GapP function and m is a polynomial in jxj with evencoe�cients, we have that Am � f and Bm � f are also GapP computablefunctions. This follows from the closure properties in Section 3.

20 Lance FortnowWe now use Lemma 4.23 to show the following main result from thepaper of Beigel, Reingold, and Spielman [BRS95]:Theorem 4.24 The class PP is closed under union.Proof: Fix two languages D and E in PP. We will show that D[E isalso in PP.Let fD and fE be the functions given by Classi�cation 4.12 for D andE, respectively. By Lemma 3.2, let m = m(jxj) be a polynomial with evencoe�cients such that 2m bounds the maximum absolute value of fD(x) andfE(x). De�ne AD(x) = Am(fD(x)). Similarly, de�ne BD, SD, AE , BE , andSE . Note that AD , BD, AE , and BE are GapP functions.Let H = SD + SE + 1. By Lemma 4.23, we haveLemma 4.251. If x 2 D and x 2 E then H(x) � 3.2. If x 2 D and x 62 E then H(x) � 1� 2�m.3. If x 62 D and x 2 E then H(x) � 1� 2�m.4. If x 62 D and x 62 E then H(x) � �1.Thus we have that x 2 D [E if and only if H(x) > 0.We would be �nished if H were a GapP function, but unfortunately itmay even take on nonintegral values. We do haveH = ADBD + AEBE + 1 = ADBE +AEBD +BDBEBDBE :Note that for nonzero integers p and q we have p=q > 0 if and only if pq > 0.Thus we de�ne H 0 = (ADBE +AEBD +BDBE)(BDBE):We have that1. H 0 is a GapP function.2. For all x 2 ��, H(x) > 0 if and only if H 0(x) > 0.3. x 2 D [E if and only if H 0(x) > 0.Finally, applying Classi�cation 4.12 to H 0, we have D [E 2 PP. 2Beigel, Reingold, and Spielman [BRS95] also showed several stronger clo-sure properties. Fortnow and Reingold [FR96] extend the work of Beigel,Reingold, and Spielman to show that PP is closed under truth-table reduc-tion and in fact constant-round truth-table reductions. However, showingthat PP is closed under Turing reductions would require some nonrelativiz-ing proof techniques (see Section 5).

1. Counting Complexity 215 RelativizationThe results in this paper show that one complexity class contains anotheror that some complexity classes have certain closure properties. One wouldalso hope to see separation results like a proof showing, for example, thatPP 6= �P.The current tools in computational complexity theory do not allow us toachieve this goal. In fact, it could be that P = PSPACE. Such a circum-stance would make most of the results in this paper quite trivial and wouldcollapse all the counting classes in Section 4.1. While we do not believe thatP = PSPACE, we cannot rule out this possibility with known techniques.Recall the de�nitions of oracle Turing machines and relativized complex-ity classes de�ned in Section 2. Besides using oracles to de�ne complexityclasses, we can also use oracles to help us understand what complexityproblems may require new techniques.Consider a relativized version of Theorem 4.24.Theorem 5.1 For all oracles A, the class PPA is closed under union.Proof: Fix an oracle A. If we analyze the proof of Theorem 4.24 allowingall Turing machines to have access to A as an oracle, the proof goes throughwithout additional change. 2In fact, all of the proofs in this survey have this relativization property.Suppose that we had a hypothesis like P = NP. If we can create a relativizedworld (an oracle A) where PA 6= NPA, then to prove P = NP wouldrequire techniques that do not relativize, of which we know few. If we alsocould create an oracle B such that PB = NPB , then in fact we couldnot even settle the P = NP question in either direction using relativizabletechniques. In fact, Baker, Gill, and Solovay [BGS75] have created suchoracles to draw these conclusions.Most proofs in complexity theory relativize. For more details on the roleof relativization, see [For94].Consider the PSPACE-complete language TQBF. Note thatPSPACETQBF = PSPACE:By setting A = TQBF, we haveTheorem 5.2 There exists an oracle A such that PA = PSPACEA.Thus no relativizable proof exists that separates P from PSPACE.If P = PSPACE then all of the counting classes are equal to P and allare closed under full Turing reductions. Thus any proof that two count-ing classes di�er or some counting class is not closed under some simplereduction would require nonrelativizing techniques.Thus the only theorems that we can prove with current techniques willcollapse classes and show closure properties. However, we can also use rel-ativization to show the limits of this process.

22 Lance FortnowBeigel [Bei94] has developed one of the more useful oracles pertaining tocounting complexity.Theorem 5.3 There exists an oracle A such that PNPA is not containedin PPA.This oracle implies some important corollaries about the limits of rela-tivizable techniques in counting complexity, some of which are listed below.These corollaries were known prior to Beigel's construction, but Beigel'swork uni�ed these results.Corollary 5.4 There exists a relativized world where1. PP is not closed under Turing reductions.2. PP does not contain the polynomial-time hierarchy.3. PP does not contain MP.Proof:1. If PP is closed under Turing reductions for all relativized worlds, thenPNP � PPP � PP, contradicting Theorem 5.3.2. Immediate since PNP � PH.3. Immediate since PH �MP. 2Yao's [Yao85, H�as89] original oracle Y giving a relativized world wherePHY 6= PSPACEYactually shows that �PY 6� PHY :Oracles also help us examine the relationships between NP, �P, C=P,and PP.Theorem 5.5 ([Tor88, Bei91]) There exists an oracle A such that1. �PA 6� PPA.2. NPA 6� �PA (thus PPA 6� �PA).3. NPA 6� C=PA (thus PPA 6� C=PA).It appears hard to guess at the power of SPP. In one sense, because ofits restrictive de�nition it seems as though it should not have much power.However, the proof of Lemma 4.20 seems to indicate that SPP-like behaviormay have tremendous power. Di�erent oracles bring out this division:Theorem 5.6 There exist oracles A and B such that

1. Counting Complexity 231. The polynomial-time hierarchy is in�nite relative to A, and PA =SPPA.2. The polynomial-time hierarchy is in�nite relative to B, and SPPBstrictly contains PHB.One nagging relativization question remains open.Open Question 5.7 Does there exist an oracle A such thatP#PA 6= PSPACEA?In fact, even the following weaker question remains open.Open Question 5.8 Does there exist an oracle A such thatPP�PA 6= PSPACEA?6 Other WorkSuch a short survey cannot possibly do justice to the large and vibrantarea of counting complexity. Instead of taking on the near-impossible taskof surveying the entire area, this paper has concentrated on looking at afew results in depth to give the reader some avor of the importance ofcounting complexity. In this section, we would like to describe briey someother work in the area and some of the applications to other areas.6.1 CircuitsThe techniques from counting complexity have played an important rolein helping us understand the power of bounded-depth circuits. For a back-ground in circuit complexity, we recommend the survey of Boppana andSipser [BS90].A PP question measures whether a certain number of computation pathsaccept. One can draw an analogy to threshold gates in a circuit that de-termine whether some number of inputs are true. Many of the techniquesdescribed in this survey have direct applications to circuit complexity, par-ticularly in showing how to use threshold gates to simulate certain AND-ORcircuits and also to use some number of threshold gates to simulate manyof them.For example, Allender [All89], Beigel, Reingold, and Spielman [BRS91]and Tarui [Tar93] show how to use Theorem 3.14 to simulate bounded-depth AND-OR circuits by small depth-2 circuits with a single thresholdgate on top.

24 Lance FortnowOne can similarly draw an analogy between ModkP computations andthe class ACC of bounded depth circuits with Modk gates for some �xedk. Results of Yao [Yao90], Beigel and Tarui [BT94] and Green, K�obler,Regan, Schwentick, and Tor�an [GKR+95] show how to simulate any ACCcircuit by a depth-2 circuit with a symmetric gate on top. Allender andGore [AG94] use these characterizations to separate uniform ACC fromthe counting class PP. Barrington [Bar92] gives a nice survey of thesetechniques and results.6.2 LownessComplexity theorists often ask about the lowness of a class, i.e., the amountof information absorbed by a complexity class. Formally, for a class C wede�ne Low(C) by Low(C) = fL j CL = Cg:Note that lowness depends not only on the membership of a class C but mayalso depend on the de�nition of C, as well as the oracle access mechanism.Some results on lowness:Theorem 6.11. Low(NP) = NP \ co-NP.2. Low(GapP) = Low(SPP) = SPP [FFK94].3. Low(ModkP) = ModkP for prime k [PZ83, BG92, Her90].4. Low(MP) contains PH and ModkP for all k [GKR+95].5. Low(PSPACE) = PSPACE.A nice characterization of Low(PP) remains an interesting open question.6.3 Characterizing Speci�c ProblemsAs mentioned in the introduction, Valiant [Val79a] de�ned the class #Pspeci�cally to capture the complexity of the permanent function. A perma-nent of a matrix is similar to the determinant except that all of the termsare added instead of subtracting alternating terms. While the determinantis easy to compute using Gaussian elimination, computing the permanentis #P-complete, i.e., #P � FPPermanent.In a later paper, Valiant [Val79b] showed the #P-completeness of sev-eral other combinatorial problems. Most counting versions of NP-completeproblems are #P-complete, as are also some counting versions of polynomial-time computable problems like counting the number of simple paths orperfect matchings in a graph.

1. Counting Complexity 25K�obler, Sch�oning, and J. Tor�an [KST92] used counting complexity toclassify the graph isomorphism and automorphism problem. They showthat SPP contains graph automorphism and Low(PP) contains graph iso-morphism.6.4 Interactive Proof SystemsInteractive proof systems developed by Babai [Bab85, BM88] and Gold-wasser, Micali, and Racko� [GMR89] give a probabilistic generalization ofnondeterminism. In order to show a protocol for the coNP languages, Lund,Fortnow, Karlo�, and Nisan [LFKN92] created an interactive proof systemfor the #P-complete permanent function. To this day, the only known pro-tocols for coNP require counting complexity.The Lund, Fortnow, Karlo�, and Nisan protocol forms the core of muchof the subsequent work in interactive proof systems that led to excitingapplications in program checking and hardness results for approximationalgorithms.6.5 Counting in Space ClassesInstead of using nondeterministic polynomial-time Turing machines, onecan also consider counting the accepting computations of nondeterministiclogarithmic-space bounded machines. One can then de�ne various classesat this level such as #L, GapL, PL, and �L. One can show that the de-terminant function is complete for #L much the way that the permanentfunction is complete for #P [AO94].Many of the results mentioned in this survey, such as Theorem 4.24,carry over to the log-space world.6.6 Other ResearchWe still have not mentioned many other active areas of research in countingcomplexity. A small sampling includes the following.� A counting hierarchy exists that is analogous to the polynomial-timehierarchy [Wag86].� A general de�nition of \counting classes" [FFK94].� The complexity of approximating counting functions [JVV86].� Showing that closure properties of counting classes and functions im-ply various unknown collapses of other classes [OH91].� Generalizations of counting to other functions on the accept and re-ject paths of nondeterministic machines [HLS+93].

26 Lance Fortnow� Recent work in quantum complexity seems to deal with countingcomplexity except that counting is done in quite a di�erent way. (Seethe survey by Berthiaume [Ber97] in this volume.)Counting complexity has played an important role in theoretical com-puter science in the past two decades. We expect that the results andtechniques we learned from this study will play a signi�cant role in futureresearch.Acknowledgments: Thanks to Steve Homer for his careful reading of thispaper. Thanks also to Fred Green for his help on the relationship betweencounting complexity and circuit complexity.References[AG94] E. Allender and V. Gore. A uniform circuit lower bound for the per-manent. SIAM Journal on Computing, 23:1026{1049, 1994.[All89] E. Allender. A note on the power of threshold circuits. In Proceedingsof the 30th IEEE Symposium on Foundations of Computer Science,pages 580{584. IEEE, New York, 1989.[AO94] E. Allender and M. Ogihara. Relationships among PL, #L, and thedeterminant. In Proceedings of the 9th IEEE Structure in ComplexityTheory Conference, pages 267{278. IEEE, New York, 1994.[Bab85] L. Babai. Trading group theory for randomness. In Proceedings of the17th ACM Symposium on the Theory of Computing, pages 421{429.ACM, New York, 1985.[Bar92] D. Barrington. Quasipolynomial size circuit classes. In Proceedingsof the 7th IEEE Structure in Complexity Theory Conference, pages86{93. IEEE, New York, 1992.[Bei91] R. Beigel. Relativized counting classes: relations among thresh-olds, parity and mods. Journal of Computer and System Sciences,42(1):76{96, 1991.[Bei94] R. Beigel. Perceptrons, PP and the polynomial hierarchy. Computa-tional Complexity, 4:314{324, 1994.[Ber97] A. Berthiaume. Quantum computation. In Complexity Theory Retro-spective II (L. Hemaspaandra and A. Selman, eds.), chapter 2, thisvolume.[BF91] L. Babai and L. Fortnow. Arithmetization: A new method in struc-tural complexity theory. Computational Complexity, 1(1):41{66, 1991.[BF95] H. Buhrman and L. Fortnow. Distinguishing complexity and symme-try of information. Technical Report TR 95-11, University of ChicagoDepartment of Computer Science, 1995.[BG92] R. Beigel and J. Gill. Counting classes: Thresholds, parity, mods, andfewness. Theoretical Computer Science, 103:3{23, 1992.[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P = NPquestion. SIAM Journal on Computing, 4(4):431{442, 1975.

1. Counting Complexity 27[BM88] L. Babai and S. Moran. Arthur-Merlin games: a randomized proofsystem, and a hierarchy of complexity classes. Journal of Computerand System Sciences, 36(2):254{276, 1988.[BRS91] R. Beigel, N. Reingold, and D. Spielman. The perceptron strikes back.In Proceedings of the 6th IEEE Structure in Complexity Theory Con-ference, pages 286{291. IEEE, New York, 1991.[BRS95] R. Beigel, N. Reingold, and D. Spielman. PP is closed under inter-section. Journal of Computer and System Sciences, 50(2):191{202,1995.[BS90] R. Boppana and M. Sipser. The complexity of �nite functions. InJ. van Leeuwen, editor, Handbook of Theoretical Computer Science,chapter 14, pages 757{804. North-Holland, Amsterdam, 1990.[BT94] R. Beigel and J. Tarui. On ACC. Computational Complexity, 4:350{366, 1994.[FFK94] S. Fenner, L. Fortnow, and S. Kurtz. Gap-de�nable counting classes.Journal of Computer and System Sciences, 48(1):116{148, 1994.[For94] L. Fortnow. The role of relativization in complexity theory. Bulletin ofthe European Association for Theoretical Computer Science, 52:229{244, February 1994.[FR96] L. Fortnow and N. Reingold. PP is closed under truth-table reduc-tions. Information and Computation, 124(1):1{6, 1996.[Gil77] J. Gill. Computational complexity of probabilistic complexity classes.SIAM Journal on Computing, 6:675{695, 1977.[GKR+95] F. Green, J. K�obler, K. Regan, T. Schwentick, and J. Tor�an. Thepower of the middle bit of a #P function. Journal of Computer andSystem Sciences, 50(3):456{467, 1995.[GMR89] S. Goldwasser, S. Micali, and C. Racko�. The knowledge complexityof interactive proof-systems. SIAM Journal on Computing, 18(1):186{208, 1989.[H�as89] J. H�astad. Almost optimal lower bounds for small depth circuits.In S. Micali, editor, Randomness and Computation, volume 5 of Ad-vances in Computing Research, pages 143{170. JAI Press, Greenwich,1989.[Her90] U. Hertrampf. Relations among MOD classes. Theoretical ComputerScience, 74:325{328, 1990.[HLS+93] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, andK. Wagner. On the power of polynomial time bit-reductions. In Pro-ceedings of the 8th IEEE Structure in Complexity Theory Conference,pages 200{207. IEEE, New York, 1993.[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory,Languages and Computation. Addison-Wesley, Reading, Mass., 1979.[HV95] L. Hemaspaandra and H. Vollmer. The satanic notations: Countingclasses beyond #P and other de�nitional adventures. SIGACT News,26(1):2{13, 1995.[JVV86] M. Jerrum, L. Valiant, and V. Vazirani. Random generation of combi-natorial structures from a uniform distribution. Theoretical ComputerScience, 43:169{188, 1986.[KST92] J. K�obler, U. Sch�oning, and J. Tor�an. Graph isomorphism is low forPP. Computational Complexity, 2(4):301{330, 1992.

28 Lance Fortnow[LFKN92] C. Lund, L. Fortnow, H. Karlo�, and N. Nisan. Algebraic methods forinteractive proof systems. Journal of the ACM, 39(4):859{868, 1992.[MS72] A. Meyer and L. Stockmeyer. The equivalence problem for regularexpressions with squaring requires exponential space. In Proceedingsof the 13th IEEE Symposium on Switching and Automata Theory,pages 125{129. IEEE, New York, 1972.[MVV87] K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy asmatrix inversion. Combinatorica, 7(1):105{113, 1987.[New64] D. Newman. Rational approximations to jxj. Michigan MathematicsJournal, 11:11{14, 1964.[Nis91] N. Nisan. Pseudorandom bits for constant-depth circuits. Combina-torica, 11(1):63{70, 1991.[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. Journal ofComputer and System Sciences, 49:149{167, 1994.[OH91] M. Ogiwara and L. Hemachandra. A complexity theory of feasibleclosure properties. In Proceedings of the 6th IEEE Structure in Com-plexity Theory Conference, pages 16{29. IEEE, New York, 1991.[PZ83] C. Papadimitriou and S. Zachos. Two remarks on the power of count-ing. In Proceedings of the 6th GI Conference on Theoretical ComputerScience, pages 269{276. Volume 145, Lecture Notes in Computer Sci-ence, Springer, Berlin, 1983.[Rog87] H. Rogers. Theory of Recursive Functions and E�ective Computabil-ity. MIT Press, Cambridge, 1987.[Sch90] U. Sch�oning. The power of counting. In A. Selman, editor, ComplexityTheory Retrospective, pages 204{223. Springer, New York, 1990.[Sho90] V. Shoup. New algorithms for �nding irreducible polynomials over�nite �elds. Mathematics of Computation, 54:435{447, 1990.[Tar93] J. Tarui. Probabilistic polynomials, AC0 functions and the poly-nomial-time hierarchy. Theoretical Computer Science, 113:167{183,1993.[TO92] S. Toda and M. Ogiwara. Counting classes are at least as hard as thepolynomial-time hierarchy. SIAM Journal on Computing, 21(2):316{328, 1992.[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Jour-nal on Computing, 20(5):865{877, 1991.[Tor88] J. Tor�an. Structural properties of the counting hierarchies. Ph.D. the-sis, Facultat d'Inform�atica, UPC Barcelona, January 1988.[Val79a] L. Valiant. The complexity of computing the permanent. TheoreticalComputer Science, 8:189{201, 1979.[Val79b] L. Valiant. The complexity of reliability and enumeration problems.SIAM Journal on Computing, 8:410{421, 1979.[VV86] L. Valiant and V. Vazirani. NP is as easy as detecting unique solu-tions. Theoretical Computer Science, 47:85{93, 1986.[Wag86] K. Wagner. The complexity of combinatorial problems with succinctinput representation. Acta Informatica, 23:325{356, 1986.[Yao85] A. Yao. Separating the polynomial-time hierarchy by oracles. In Pro-ceedings of the 26th IEEE Symposium on Foundations of ComputerScience, pages 1{10. IEEE, New York, 1985.

1. Counting Complexity 29[Yao90] A. Yao. On ACC and threshold circuits. In Proceedings of the 31stIEEE Symposium on Foundations of Computer Science, pages 619{631. IEEE, New York, 1990.

