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Torturing an uninformed witness cannot give information about the crime. Leonid Levin [Lev84]

Abstract. We introduce Computational Depth, a measure for the amount of “nonrandom” or “useful”
information in a string by considering the difference of various Kolmogorov complexity measures. We
investigate three instantiations of Computational Depth:
– Basic Computational Depth, a clean notion capturing the spirit of Bennett’s Logical Depth. We

show that a Turing machine M runs in time polynomial on average over the time-bounded universal
distribution if and only if for all inputs x, M uses time exponential in the basic computational depth
of x.

– Sublinear-time Computational Depth and the resulting concept of Shallow Sets, a generalization of
sparse and random sets based on low depth properties of their characteristic sequences. We show
that every computable set that is reducible to a shallow set has polynomial-size circuits.

– Distinguishing Computational Depth, measuring when strings are easier to recognize than to pro-
duce. We show that if a Boolean formula has a nonnegligible fraction of its satisfying assignments
with low depth, then we can find a satisfying assignment efficiently.

1 The Concept of Computational Depth

Karp and Lipton [KL80] show that if NP reduces to a sparse set then NP has polynomial-size circuits and
the polynomial-time hierarchy collapses. Bennett and Gill [BG81] show that if NP reduces to a random set
then NP has polynomial-size circuits and the polynomial-time hierarchy collapses. Are these two separate
results or just two specific examples of some more general principle? We show that the latter is true.

Both sparse and random sets do not contain much information about NP problems such as Satisfiability
or about any other fixed language for that matter. We can always simulate the effects of a random oracle by
flipping coins.

Kolmogorov complexity measures the amount of information in a string x as the length of a shortest
description of x. Random strings are incompressible. They are therefore deemed to contain a lot of informa-
tion. However, random information may not be very useful from a computational point of view. We need
some method to measure the amount of nonrandom information in a string.

We develop Computational Depth to accomplish exactly this. The concept is simple: We consider the
difference of two different Kolmogorov complexity measures. What remains is the “nonrandom” or “useful”
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information we desire. A computationally deep string x should take a lot of effort to construct from its short
description. Incompressible strings are trivially constructible from their shortest description, and therefore
computationally shallow.

We define several types of Computational Depth based on this idea. There is no single best type of
Computational Depth. Rather different notions have different properties and applications.

In this paper, we focus on three specific types of Computational Depth: Basic Computational Depth,
Sublinear-time Computational Depth, and Distinguishing Computational Depth.

Basic Computational Depth looks at the difference between time-bounded Kolmogorov complexity and
traditional unrestricted Kolmogorov complexity. Basic Computational Depth with its simple definition cap-
tures the intuition behind Bennett’s [Ben88] rather technical notion of Logical Depth. A string x has large
Logical Depth if it has short programs but these programs require considerable computation time. Compu-
tational Depth has a similar property. We show that a Turing machine M runs in average polynomial-time
if for all inputs x the Turing machine uses time exponential in the basic computational depth of x.

We develop Sublinear-time Computational Depth and Shallow Sets to answer the question posed at the
beginning of the introduction. Shallow sets are sets where the initial segments of their characteristic sequence
have similar polylogarithmic time-bounded Kolmogorov complexity and traditional Kolmogorov complexity.
Sparse sets and random sets are shallow.

Using Nisan-Wigderson generators [NW94], we show that if a computable set A is polynomial-time Turing
reducible to a shallow set then A has polynomial-size circuits generalizing this result for random sets due
to Bennett and Gill [BG81]. Karp and Lipton [KL80] show that if all NP sets have polynomial-size circuits
than the polynomial-time hierarchy collapses and thus we also get this collapse if all NP sets are shallow.

Distinguishing Computational Depth considers the difference between polynomial-time bounded distin-
guishing complexity as developed by Sipser [Sip83] and polynomial-time bounded Kolmogorov complexity.
It measures the difference between recognizing a string and producing it. Fortnow and Kummer [FK96] show
that under reasonable assumptions, there exist strings with high Distinguishing Computational Depth.

We show that if a nonnegligible fraction of the satisfying assignments of a formula φ have low Distinguish-
ing Computational Depth given φ then we can find a satisfying assignment in probabilistic quasipolynomial
time. We also show that injective polynomial-time computable functions cannot map strings of low depth to
high depth.

The rest of this paper is organized as follows. In the next section, we present notation and definitions
we use. We also state some related results from the literature. We consider Basic Computational Depth in
Section 3, Sublinear-time Computational Depth and Shallow sets in Section 4, and Distinguishing Compu-
tational Depth in Section 5. Section 6 presents some concluding remarks.

2 Preliminaries

Most of our complexity-theoretic notation and definitions are standard and can be found in textbooks like
[BDG95,Pap94]. We start with some background on Kolmogorov complexity and average case complexity
theory.

2.1 Kolmogorov Complexity

We briefly introduce Kolmogorov complexity and some of its variants. We present them at the level of
generality we will need. We refer to the textbook by Li and Vitányi [LV97] for more details.

We fix once and for all a universal (oracle) Turing machine U .

Definition 1. Let x and y be strings, t a time-bound and A an oracle. The t-time bounded Kolmogorov
complexity of x given y relative to A is

Ct,A(x|y) = min
p
{|p| : UA(p, y) halts in at most

t(|x|+ |y|) steps and outputs x}.

The Kolmogorov complexity of x given y relative to A is CA(x|y) = C∞,A(x|y).
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The default value for y is the empty string ε, and for A the empty oracle. We typically drop these arguments
in the notation if they have their default values.

A different universal machine U may affect the program size |p| by at most a constant additive factor, and
the running time t by at most a logarithmic multiplicative factor. The same will hold for all other measures
we will introduce.

Definition 2. A string x is incompressible if C(x) ≥ |x|. We also call such x algorithmically random.

Proposition 1. For all nonnegative integers n, at least half of the strings of length at most n are incom-
pressible.

The classical Kolmogorov complexity of a string x does not take into account the time necessary to
produce the string from a description of length C(x). Levin [Lev73] introduced a useful variant of Kolmogorov
complexity weighing program size and running time.

Definition 3 (Levin). For any strings x, y, the Levin complexity of x given y is

Ct(x|y) = min
p,t

{|p|+ log t : U(p, y) halts in at most t

steps and outputs x}.

Next we introduce Bennett’s [Ben88] definition of logical depth. A string x is called logically deep if it
takes a lot of time to generate it from any short description.

Definition 4 (Bennett). Let x be a string and s be a nonnegative integer. The logical depth of x at a
significance level s is

depths(x) = min
p
{t : U(p) halts in at most t steps,

outputs x, and |p| < C(x) + s}.

Note that algorithmically random strings are shallow at any significance level. In particular, Chaitin’s Ω is
shallow.

Bennett has proved that a fast deterministic processes is unable to transform a shallow object into a deep
one, and that fast probabilistic processes can do so only with small probability. This property is referred to
as the slow growth law.

Instead of considering a shortest program that outputs a string x, we could also consider a shortest
program that distinguishes x from all other strings, i.e., it accepts x and rejects every other input. In the
unbounded setting the two measures coincide up to a constant, as we can run through all possible strings
until we find the one accepted by the program, and print it out. In a resource-bounded setting, there seems
to be a substantial difference.

Distinguishing complexity was introduced by Sipser [Sip83], who used it to show that BPP is in the
polynomial-time hierarchy.

Definition 5 (Sipser). Let x and y be strings, t a time-bound and A an oracle. The t-time bounded
distinguishing complexity of x given y relative to A, CDt,A(x|y), is the length of the shortest program p such
that

1. UA(p, x, y) accepts in at most t(|x|+ |y|) steps, and
2. UA(p, z, y) rejects for all z 6= x.

Again, we may drop y and A from the notation in case they have their default values.
Sipser used distinguishing complexity to answer the question of how much information is needed to

distinguish a given string from all other strings in a given set.
Kolmogorov complexity gives the following answer to this question.

Lemma 1. Let A be an oracle. There exists a constant c such that for all strings x of length n in A

CA(x) ≤ log |A ∩ {0, 1}n|+ c log n.
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The running time of the programs underlying Lemma 1 can be exponential. Sipser [Sip83] proved the
following theorem with the aid of a polynomially-long random string.

Theorem 1 (Sipser). There is a polynomial p and a constant c such that for any oracle A, for every string
x of length n in A, and for 3

4 th fraction of strings r of length p(n)

CDp,A(x|r) ≤ log |A ∩ {0, 1}n|+ c log n.

Buhrman and Fortnow [BF97] showed how to eliminate r at the cost of doubling the complexity.

Theorem 2 (Buhrman-Fortnow). There is a polynomial p and a constant c such that for any oracle A,
and for all strings x of length n in A

CDp,A(x) ≤ 2 log |A ∩ {0, 1}n|+ c log n.

Fortnow and Laplante [FL98] showed that the factor of 2 can be removed for all but a small fraction of
the strings.

Theorem 3 (Fortnow-Laplante). For every positive ε there is a polynomial p and a constant c such that
for any oracle A, for any length n, and for all but an ε fraction of the strings x in A ∩ {0, 1}n

CDp,A(x) ≤ log |A ∩ {0, 1}n|+ (log
n

ε
)c.

The proof of Fortnow and Laplante uses explicit constructions of extractors due to Ta-Shma [Tas96]. An
optimal extractor construction would allow us to replace (log n

ε )c by c log n
ε in the statement of Theorem 3.

Buhrman, Laplante and Miltersen [BLM00] have proved that the constant factor 2 in Theorem 2 is optimal
in relativized worlds.

We need prefix-free Kolmogorov complexity defined using prefix free Turing machines: Turing machines
with a one-way input tape (the input head can only read from left to right and crashes if it reads past the
end of the input), a one-way output tape and a two-way work tape.

Definition 6. Let U be a fixed prefix free universal Turing machine. Then for any string x ∈ {0, 1}∗, the
Kolmogorov complexity of x is,

K(x) = minp{|p| : U(p) = x}

For any time constructible t, the t-time-bounded Kolmogorov complexity of x is,

Kt(x) = min{|p| : U(p) = x in at most t(|x|) steps}

2.2 Average case complexity

In theoretical computer science we typically analyze the worst-case performance of algorithms. Many algo-
rithms with bad worse-case performance nevertheless perform well in practice. The instances that require a
large running-time rarely occur. Levin [Lev86] developed a theory of average-case complexity to capture this
issue.

We give definitions from average case complexity theory necessary for our purposes. For more details
readers can refer to the survey by Wang [Wan97]. In average case complexity theory, a computational
problem is a pair (L, µ) where L ⊆ Σ∗ and µ is a probability distribution. The probability distribution is
a function from Σ∗ to the real interval [0, 1] such that

∑
x∈Σ∗ µ(x) ≤ 1. For probability distribution µ, the

distribution function, denoted by µ∗ is given by µ∗(x) =
∑

y≤x µ(x). The notion of polynomial on average is
central to the theory of average case completeness.

Definition 7. Let µ be a probability distribution function on {0, 1}∗. A function f : Σ+ → N is polynomial
on µ-average if there exists an ε > 0 such that

∑
x

f(x)ε

|x| µ(x) < ∞.

From the definition it follows that any polynomial is polynomial on µ-average for any µ. It is easy to
show that if functions f and g are polynomial on µ-average, then the functions f.g, f + g, and fk for some
constant k are also polynomial on µ-average.
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Definition 8. Let µ be a probability distribution and L ⊆ Σ∗. Then the pair (L, µ) is in Average Polynomial
time (denoted as Avg-P) if there is a Turing machine accepting L whose running time is polynomial on µ-
average.

We need the notion of domination for comparing distributions. The next definition formalizes this notion.

Definition 9. Let µ and ν be two distributions on Σ∗. Then µ dominates ν if there is a constant c such
that for all x ∈ Σ∗, µ(x) ≥ 1

|x|c ν(x). We also say ν is dominated by µ.

Proposition 2. If a function f is polynomial on µ-average, then for all distributions ν dominated by µ, f
is also polynomial on ν-average.

Average case analysis is, in general, sensitive to the choice of distribution. If we allow arbitrary distribu-
tions then average case complexity classes take the form of traditional worst-case complexity classes [LV92].
So it is important to restrict attention to distributions which are in some sense simple. Usually simple dis-
tributions are identified with the polynomial-time computable or polynomial-time samplable distributions.

Definition 10. Let t be a time constructible function. A probability distribution function µ on {0, 1}∗ is
said to be t-time computable, if there is a deterministic Turing machine that on every input x and a positive
integer k, runs in time t(|x|+ k), and outputs a fraction y such that |µ∗(x)− y| ≤ 2−k.

The most controversial aspect in the average case complexity theory is the association of the class of
simple distributions with P-computable, which may seem too restrictive. Ben-David et al. in [BCGL92] use
a wider family of natural distributions, P-samplable, consisting of distributions that can be sampled by
randomized algorithms, working in time polynomial in the length of the sample generated.

Definition 11. A probability distribution µ on {0, 1}∗ is said to be P-samplable, if there is a probabilistic
Turing machine M which on input 0k produces a string x such that |Pr(M(0k) = x)− µ(x)| ≤ 2−k and M
runs in time poly(|x|+ k).

Every P-computable distribution is also P-samplable, however the converse is unlikely.

Theorem 4 ([BCGL92]). If one-way functions exists, then there is a P-samplable probability distribution
µ which is not dominated by any polynomial-time computable probability distribution ν.

The Kolmogorov complexity function K(.) naturally defines a probability distribution on Σ∗: for any
string x assign a probability of 2−K(x). Kraft’s inequality implies that this indeed is a probability distribution.
This distribution is called the universal distribution and is denoted by m. The universal distribution has
many equivalent formulations and has many nice properties. Refer to the textbook by Li and Vitanyi [LV97]
for an in-depth study on m. The main drawback of m is that it is not computable. In this paper we consider
a resource-bounded version of the universal distribution.

Definition 12. The t-time bounded universal distribution, mt is given by mt(x) = 2−Kt(x).

3 Basic Computational Depth

In this section we study Basic Computational Depth. As an application, we will show that a Turing machine
M runs in average polynomial-time if for all inputs x the Turing machine uses time exponential in the basic
computational depth of x. In order to obtain this characterization, we make use of the prefix-free Kolmogorov
measure.

Definition 13 (Basic Computational Depth). Let t be a constructible time bound. For any string x ∈
{0, 1}∗,

bcdt(x) = Kt(x)−K(x).

Logically deep strings are not easy to identify, but can be constructed by diagonalization in time larger
than 2t for depth t [Ben88]. We prove that there are an exponential number of strings with large basic
computational depth. The result holds for Bennett’s notion of logical depth as well.
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Theorem 5. There exists a constant c such that for any 0 < ε < 1 there are at least 2εn strings x of length
n satisfying

bcd2n

(x) ≥ (1− ε)n− c log n.

Proof. Consider the set A consisting of all strings x of length n for which there exists a program p of length
≤ n− 2 such that U(p) outputs x in at most 2n steps. Since the number of programs of length at most n− 2
is less than 2n−1, we have |A| < 2n−1. Let B denote {0, 1}n \ A. Hence |B| > 2n−1 and for any 0 < ε < 1,
there are > 2εn strings in B. Let D be the lexicographically first 2εn strings in B. Since D is computable
and any x ∈ D can be specified by εn bits to describe its position in the lexicographic order in D, we have
that for every x ∈ D, K(x) ≤ εn + O(log n). We also have that for every x ∈ D, K2n

(x) ≥ n− 1 since every
program p of size ≤ n − 2 such that U(p) outputs x must run for at least 2n steps. It follows that for any
x ∈ D, bcd2n

(x) ≥ (1− ε)n− c log n for some constant c. �
We now develop the application of basic computational depth to capture average-case complexity.
Levin gives a clean definition of Average Polynomial Time for a given language L and a distribution µ.

Some languages may remain hard in the worst case but can be solved in Average Polynomial Time for all
reasonable distributions. We give a crisp formulation of such languages using basic computational depth.

We have two results that hold for every language L.

1. If (L, µ) is in Average Polynomial Time for all P-samplable distributions µ then there exists a Turing
machine M computing L and a polynomial p such that for all x, the running time of M(x) is bounded
by 2O(bcdp(x)+log |x|).

2. If there exists a Turing machine M and a polynomial p such that M computes L and for all inputs x,
the running time of M(x) is bounded by 2O(bcdp(x)+log |x|), then (L, µ) is in Average Polynomial Time
for all P-computable distributions.

We do not get an exact characterization from these results. The first result requires P-samplable dis-
tributions and the second holds only for the smaller class of P-computable distributions. However, we can
get an exact characterization by considering the time-bounded universal distribution mt. We show that the
following are equivalent for every language L and every polynomial p:

– (L,mp) is in Average Polynomial Time.
– There is some Turing machine M computing L such that for all inputs x the running time of M is

bounded by 2O(bcdp(x)+log |x|).

This exact characterization can be used to prove both (1) and (2).

Theorem 6. Let T be a constructible time bound. Then for any time constructible t, the following statements
are equivalent.

1. T (x) ∈ 2O(bcdt(x)+log |x|).
2. T is polynomial on mt-average.

Proof. (1 ⇒ 2). We will show that the statement 1 implies that T (x) is polynomial on mt-average. Let
T (x) ∈ 2O(bcdt(x)+log |x|). Because of the closure properties of functions which are polynomial on average, it
is enough to show that the function T ′(x) = 2bcdt(x) is polynomial on mt-average. This essentially follows
from the definitions and Kraft’s inequality. The details are as follows. Consider the sum

∑
x∈Σ∗

T ′(x)
|x|

mt(x) =
∑

x∈Σ∗

2bcdt(x)

|x|
2−Kt(x)

=
∑

x∈Σ∗

2Kt(x)−K(x)

|x|
2−Kt(x)

=
∑

x∈Σ∗

2−K(x)

|x|
<

∑
x∈Σ∗

2−K(x) < 1
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The last inequality is the Kraft’s inequality.
(2 ⇒ 1) Let T (x) be a time constructible function which is polynomial on mt-average. Then for some

ε > 0 we have ∑
x∈Σ∗

T (x)ε

|x|
mt(x) < 1

Define Si,j,n = {x ∈ Σn|2i ≤ T (x) < 2i+1 and Kt(x) = j}. Let 2r be the approximate size of Si,j,n.
Then the Kolmogorov complexity of elements in Si,j,n is r up to an additive log n factor. The following claim
states this fact more formally.

Claim. For i, j ≤ n2, let 2r ≤ |Si,j,n| < 2r+1. Then for any x ∈ Si,j,n, K(x) ≤ r + O(log n).

Consider the above sum restricted to elements in Si,j,n. Then we have∑
x∈Si,j,n

T (x)ε

|x|
mt(x) < 1

T (x) ≥ 2i, mt(x) = 2−j and there are at least 2r elements in the above sum. Hence the above sum is
lower-bounded by the expression 2r·2iε·2−j

|x|c for some constant c. This gives us

1 >
∑

x∈Si,j,n

T (x)ε

|x|
mt(x)

≥ 2r · 2iε · 2−j

|x|c
= 2iε+r−j−c log n

That is iε + r − j − c log n < 1. From the Claim, it follows that there is a constant d, such that for all
x ∈ Si,j,n, iε ≤ bcdt(x) + d log |x|. Hence T (x) ≤ 2i+1 ≤ 2

d
ε (bcdt(x)+log |x|). �

The above theorem has an interesting connection to a result due to Li and Vitányi [LV92] connecting
the average-case complexity and the worst-case complexity. Li and Vitányi [LV92] showed that when the
inputs to any algorithm are distributed according to the universal distribution, the algorithm’s average case
complexity is of the same order of magnitude as its worst case complexity. Rephrasing this result in the
setting of average polynomial time we can make the following statement.

Theorem 7 (Li-Vitányi). Let T be a constructible time bound. The following statements are equivalent

1. T (x) is bounded by a polynomial in |x|.
2. T is polynomial on m-average.

Theorem 6 could be viewed as a time-bounded version of Li and Vitányi’s result. In Theorem 6, as t →∞,
Kt approaches K. So bcdt approaches 0 and mt approaches m. Hence Theorem 6 is a generalization of Li and
Vitányi’s theorem. This directly addresses the issue raised by Miltersen [Mil93] of relating a time-bounded
version of the above theorem with Levin’s average-case complexity.

We will use Theorem 6 to prove our results on average polynomial time. We need the following domination
property of time bounded universal distributions.

Theorem 8 ([LV97]). mt dominates any t/n-time computable distribution.

Proof. Let µ be a t/n-time computable distribution and let µ∗ denote the distribution of µ. We will show
that for any x ∈ Σn, Kt(x) ≤ − log(µ(x)) + Cµ for a constant Cµ which depends on µ. Let Bi = {x ∈
Σn|2−(i+1) ≤ µ(x) < 2−i}. Since for any x in Bi, µ(x) ≥ 2−(i+1), we have that |Bi| ≤ 2i. Consider the
real interval [0, 1]. Divide it into intervals of size 2−i. Since µ(x) ≥ 2−i, we have for any j, 0 ≤ j ≤ 2i,
the jth interval [j2−i, (j + 1)2−i] will have at most one x ∈ Bi such that µ(x) ∈ [j2−i, (j + 1)2−i]. Since
µ is t/n-computable, for any x ∈ Bi, given j, we can do a binary search to output the unique x satisfying
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µ(x) ∈ [j2−i, (j + 1)2−i]. This involves computing µ∗ correct up to 2−(i+1). So the total running time of the
process will be bounded by O((t/n)n). Hence we have the theorem. �

In the proof of Theorem 8, mt very strongly dominates t/n-time computable distributions, in the sense
that mt(x) ≥ 1

2Cµ
µ(x). The definition of domination that we follow only needs mt to dominate µ within a

polynomial.

Corollary 1. Let M be a deterministic Turing machine whose running time is bounded by 2O(bcdt(x)+log |x|),
for some polynomial t. Then for any t/n-computable distribution µ, the pair (L(M), µ) is in Avg-P.

Proof. Let M be a Turing machine and let L(M) denote the language accepted by M . Let TM denote its
running time. If TM (x) ∈ 2O(bcdt(x)+log |x|) then from the implication (1 ⇒ 2) of Theorem 6 and Theorem 8
we have that (L(M), µ) is in Avg-P for any µ which is computable in time t/n. �

Hence a sufficient condition for a language L (accepted by M) to be in Avg-P with respect to all
polynomial-time computable distributions is that the running time of M is bounded by an exponential in
bcdt, for all polynomials t. An obvious question that arises is whether this condition is necessary. We partially
answer this question.

We show that if (L, µ) is in Average Polynomial Time for all P-samplable distributions µ then there
exists a Turing machine M computing L and a polynomial p such that for all x, the running time of M(x)
is bounded by an exponential in the depth. We need the following polynomial time samplable distribution
that dominates mt.

Theorem 9. For any polynomial t, there is a P-samplable distribution µ which dominates mt.

Proof. We will define a samplable distribution µt by prescribing a sampling algorithm for µt as follows. Let
U be the universal machine.

Sample n ∈ N with probability 1
n2

Sample 1 ≤ j ≤ n with probability 1/n
Sample uniformally y ∈ Σj

Run U(y) for t steps. If U stops and outputs a string x ∈ Σn, output x.

For any string x of length n, Kt(x) ≤ n. Hence it is clear that the probability that x is at least 1
n3 2−Kt(x).

�

Corollary 2. Let M be a machine which runs in time TM . Suppose for all distributions µ that are P-
samplable, TM is polynomial on µ-average, then TM (x) ∈ 2O(bcdt(x)+log |x|), for some polynomial t.

Proof. ¿From Theorem 9 if a machine M runs in time polynomial on average for all P-samplable distributions,
it also runs in time polynomial on average with respect to mt. From Theorem 6 it follows that M runs in
time 2O(bcdt(x)+log |x|). �

It is natural to ask whether there are polynomial-time computable distributions dominating mt. This
will improve the above corollary from samplable distributions to computable distributions. Schuler [Sch99]
showed that if such a distribution exists then no polynomially secure pseudo-random generators exists. Hence
it is unlikely that there are polynomial-time computable distributions dominating universal distributions.

Theorem 10 (Schuler). If there exists a polynomial time computable distribution that dominates mt then
pseudo-random generators do not exist.

4 Sublinear-time Depth and Shallow Sets

In this section we discuss shallow sets, sets containing little nonrandom information. We will show that
computable sets reducible to shallow sets must have small circuits. In particular if NP -complete sets reduce
to shallow sets then the polynomial-time hierarchy collapses.

First we give a simple notion of depth based on a time complexity function t.
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Definition 14. Let t be a time-bound. The time-t depth of a string x is

Dt(x) = Ct(x)− C(x).

To define shallow sets A we will look at a depth measure on the initial segments of the characteristic
sequence of a set A, i.e.,

A(ε)A(0)A(1)A(00) . . .

To properly define shallow sets we need to use Definition 14 for sublinear time bounds. We give a definition
for Ct for sublinear time functions t by allowing the universal machine U random access to the description
r of the string x (denoted as oracle access Ur) and requiring only that each bit of x be generated in the
allotted time.

Definition 15. Let t be a time-bound and x a string.

Ct(x) = min
p,r

{|p|+ |r| : Ur(p, i) outputs xi

in t(|x|) steps for all 1 ≤ i ≤ |x|}.

This definition is essentially equivalent to Definition 1 for superlinear t.
We can now define shallow sets. We first define shallow strings.

Definition 16. Fix a constant k. The string x is k-shallow if

Dlogk

(x) ≤ logk |x|.

In the proof of our main result we will be interested in the characteristic sequences available to some
Turing machine running in time nj on some input of length n. The initial segment of the characteristic
sequence up to length nj has length N = 2nj+1 − 1. In that case, logk N is approximately njk.

We now define shallow sets.

Definition 17. A set A is shallow if there exists a k such that almost every initial characteristic sequence
of A is k-shallow.

Every sparse set is shallow. In fact, every set that is polynomial-time reducible to a sparse set is shallow.
Random sets are also shallow: A randomly chosen set is shallow with probability one.

Despite the fact that most sets are shallow, we now show that these sets have very limited computational
power.

Theorem 11. If we have sets A and B, A shallow, B computable and B ∈ PA then B is in P/poly.

To prove Theorem 11 we need the following result of Nisan and Wigderson [NW94]:

Lemma 2 (Nisan-Wigderson). For any fixed nonnegative integer d, there exists a family of generators
{G0, G1, . . .} with the following properties:

– Gv maps strings of length u polynomial in log v to strings of length v.
– For any circuit D of depth d and size v, we have

| Pr
ρ∈{0,1}v

[D(ρ)]− Pr
σ∈{0,1}u

[D(Gv(σ))]| < 1/v.

– Each output bit of Gv is computable in time polynomial in log v.

Proof of Theorem 11. By assumption there is some Turing machine M running in time nj for some j, such
that B = L(MA), and all sufficiently long initial segments of the characteristic sequence of A are k-shallow
for some nonnegative integer k.

Let ai be the ith bit of the characteristic sequence of A. Fix some input length n. Let z = a1 . . . a2nj+1−1

be the characteristic sequence of A up to strings of length nj . Let N = |z| = 2nj+1 − 1. We have that
Cnjk

(z)− C(z) ≤ njk. Let `
.= Cnjk

(z), which gives us C(z) ≥ `− njk. Note that ` ≤ |z| < 2nj+1.
By Definition 15 there must be a p and r such that |p|+ |r| = ` and Ur(p, i) outputs ai in time njk for

each i, 1 ≤ i ≤ N . Note that C(z) ≤ C(〈p, r〉) + O(log n).
Now consider the set T consisting of all pairs (q, s) such that
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– |q|+ |s| = `,
– For 1 ≤ i ≤ N , Us(q, i) halts in time njk and outputs some value fi.
– For each string y of length n, y is in B iff MF (y) accepts where F is the oracle whose characteristic

sequence is f1f2 . . . fN000 . . ..

The set T has some nice properties:

– (p, r) is in T .
– T can be computed by a constant depth circuit of size 2nO(1)

, namely as follows. For each string y of
length n, we have to verify that the oracle machine M accepts y when its oracle queries, say about the
value of fi, are answered by running Us(q, i) for njk steps. Since M runs in time nj , for any fixed y,
this process can be viewed as a computation running in time nj · njk with random access to (q, s). Such
a computation can be expressed as an OR of 2nj(k+1)

AND’s of size nj(k+1) each over the input (q, s).
AND’ing all these circuits together for all y’s of length n yields a depth 3 circuit of size 2n ·2nj(k+1) ·nj(k+1)

deciding T . Call this circuit D.
– For each pair (q, s) in T , C(〈q, s〉) ≤ log |T |+ O(log n) since B is computable.

By the third item we have

log |T | ≥ C(〈p, r〉)−O(log n)
≥ C(z)−O(log n)
≥ `− njk −O(log n).

This gives us |T | ≥ 2`/2nc

for some constant c.
Let v be the max of 2nc

and the size of the circuit D describing T . Let Gv be the Nisan-Wigderson
generator from Lemma 2. We have

| Pr
ρ∈{0,1}v

[D(ρ)]− Pr
σ∈{0,1}u

[D(Gv(σ))]| < 1/v.

Since D picks (q, s) uniformly from the initial bits of {0, 1}v we have

Pr
ρ∈{0,1}v

[D(ρ)] = Pr
|q|+|s|=`

[(q, s) ∈ T ] ≥ |T |/2` ≥ 1/v.

So we have
Pr

σ∈{0,1}u
[D(Gv(σ))] > 0.

In particular, there is some σ such that D(Gv(σ)) is true. This σ has length polynomial in log v which is
polynomial in n. We let this σ, v, |q| and |s| be our advice. From the advice we can efficiently compute every
bit of a pair (q, s) in T which we can use to determine membership in B on strings of length n. �

Karp and Lipton [KL80] show that if NP -complete languages have polynomial-size circuits then the
polynomial-time hierarchy collapses to the second level. This gives us the following corollary.

Corollary 3. If any NP -complete language is Turing-reducible to a shallow set then the polynomial-time
hierarchy collapses to Σp

2 .

Balcázar, Dı́az and Gabarró [BDG86] showed the following characterization of PSPACE/poly.

Theorem 12. A ∈ PSPACE/poly if and only if for every n the characteristic sequence of A of strings up
to length n has logarithmic Kolmogorov complexity by machines using polynomial space.

We can use shallow sets to prove a similar result to characterize the computable sets in P/poly. Hartmanis
argued that his approach could not be used to characterize P/poly because of the time needed for writing
the output. We feel Definition 15 handles these issues well.

Corollary 4. Let C be computable. C is in P/poly iff C is shallow.
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5 Distinguishing Computational Depth

In this section we introduce another variant of computational depth based on the difference between time
bounded Kolmogorov complexity and time bounded distinguishing complexity. We prove a close analog of
Bennett’s slow growth law and also show how to find in quasipolynomial probabilistic time a satisfying
assignment to any satisfiable Boolean formula for which a significant fraction of the satisfying assignments
has logarithmic depth.

Definition 18. Let x, y be strings, and t1, t2 be time-bounds. The (t1, t2)-distinguishing computational depth
of x given y is

Dt1,t2(x|y) = Ct1(x|y)− CDt2(x|y).

It is clear that the distinguishing computational depth is always nonnegative. The exact difference between
Ct(x|y) and CDt(x|y) is not known. It is conceivable that both measures are always very close, in which
case the notion of distinguishing depth would become trivial. However, this is unlikely because Fortnow and
Kummer [FK96] showed that in that case the promise problem (1SAT, SAT ) can be solved in polynomial
time.

Recall that (1SAT, SAT ) ∈ P if there is a deterministic polynomial-time algorithm which accepts all
Boolean formulas with a unique satisfying assignment, and rejects all Boolean formulas which are not satis-
fiable. (1SAT, SAT ) ∈ P implies NP = RP and UP = P , so in particular factoring is in P .

Theorem 13 (Fortnow-Kummer). (1SAT, SAT ) ∈ P iff for every polynomial p1 there is a polynomial
p2 and a constant c such that for any string x of length n, and any string y

Cp2(x|y) ≤ CDp1(x|y) + c log n.

We now start working towards the analog of Bennett’s slow growth law for honest efficiently computable
functions with few inverses. A function f is honest if for some polynomial p, p(|f(x)|) ≥ |x| for all x.

We will need the following lemma.

Lemma 3. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function that is at most m to 1. For
every polynomial p1 there exists a polynomial p2 such that for any string x of length n and any string y

CDp2(x|y) ≤ CDp1(f(x)|y) + 2 log m + O(log n).

If f is a one-to-one function we have

CDp2(x|y) ≤ CDp1(f(x)|y) + O(1).

Proof. Let p′ be the program that distinguishes f(x) given y. We create a program that on input 〈z, y〉
accepts only if z = x as follows:

1. Simulate p′ on 〈f(z), y〉 and reject if p′ rejects. Otherwise we have f(z) = f(x). If f is one-to-one we
have x = z and p′ just accepts.

2. If m > 1, run a program that recognizes x among the at most m other strings that map to f(x).

The first step takes polynomial time. If f is one-to-one we immediately get Lemma 3.
For the second step we can apply Theorem 2 to the set A

.= {u : f(u) = f(x)} given both y and f(x).
Note that |A| ≤ m. Since f is polynomial-time computable, and we are given f(x), we can simulate the
queries to A in time polynomial in n. Therefore, we have that

CDp(x|y, f(x)) ≤ 2 log m + c log n

for any sufficiently large polynomial p and constant c.
All together we get that for any large enough polynomial p2

CDp2(x|y) ≤ CDp1(f(x)|y)
+ CDp(x|y, f(x)) + O(log n)

≤ CDp1(f(x)|y)
+ 2 log m + O(log n).
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�
The analog to Bennett’s slow growth law for logical depth reads as follows for distinguishing computational

depth.

Theorem 14. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable honest function that is at most m
to 1. For all polynomials p1, p2 there exist a polynomials q1, q2 such that for any string x of length n and any
string y

Dq1,p2(f(x)|y) ≤ Dp1,q2(x|y) + 2 log m + O(log n).

If f is one-to-one we have
Dq1,p2(f(x)|y) ≤ Dp1,q2(x|y) + O(1).

Proof. In order to produce f(x), we can first produce x and then run a program for f on x. Since f is
polynomial-time computable and honest, we have that for any polynomial p1 there exists a polynomial q1

such that
Cq1(f(x)|y) ≤ Cp1(x|y) + O(1). (1)

Lemma 3 tells us that for any polynomial p2 there exists a polynomial q2 such that

CDp2(f(x)|y) ≥ CDq2(x|y)− 2 log m−O(log n) (2)

for m > 2 and
CDp2(f(x)|y) ≥ CDq2(x|y)−O(1) (3)

if f is one-to-one.
Subtracting (2) or (3) from (1) as appropriate finishes the proof of the theorem. �

We next prove that if the depth of a nonnegligible fraction of the satisfying assignments of a Boolean
formula is small then we can find a satisfying assignment in quasipolynomial probabilistic time.

Theorem 15. For all functions q(n) = 2logd n, there exist a polynomial p and a probabilistic quasipolynomial-
time algorithm that given any satisfiable Boolean formula φ of size n such that at least a 1/q(n) fraction of
the satisfying assignments x to φ have

Dq,p(x|φ) ≤ logd n,

the algorithm outputs an assignment of φ with high probability.

Proof. Fix a satisfiable Boolean formula φ of length n and let A denote the set of satisfying assignments of
φ.

From Theorem 3 we know that there exists a polynomial p and constant c such that all but a 1
2q(n)

fraction of the satisfying assignments x to φ have

CDp(x|φ) ≤ log |A|+ logc n.

By hypothesis, at least a fraction 1
2q(n) of the x in A must also satisfy

Cq(x|φ) ≤ CDp(x|φ) + logd n,

so we have
Cq(x|φ) ≤ log |A|+ logb n

for some constant b.
Now we randomly chose a program of length at most k + logb(n), for every 1 ≤ k ≤ n. Giving these

programs as input to the universal Turing machine U we can produce in quasipolynomial time a satisfying
assignment of φ with probability at least

|A|
2q(n)

2log |A|+logb(n)+1
≥ 2− loga n

for some positive constant a. Repeating this procedure a quasipolynomial number of times will produce a
satisfying assignment of φ with high probability. �
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6 Concluding Remarks

We introduced three variants of computational depth and proved some interesting results about them. We
mention some open problems suggested by our results. The obvious one is to improve some of our results,
such as

Conjecture 1. For all polynomials q there exist a polynomial p and a probabilistic polynomial-time algorithm
that given any satisfiable Boolean formula φ of size n such that at least a fraction 1/q(n) of the satisfying
assignments x to φ have

Dq,p(x|φ) ≤ log q(n),

the algorithm outputs a satisfying assignment of φ with high probability.

One obvious way to prove this conjecture is trying to improve Theorem 3 that we use in the proof of Theorem
15. We stress that explicit constructions of optimal extractors would prove the conjecture.

Let α(n) be a function such that 0 ≤ α(n) ≤ 1/2 for all n. Consider an oracle A chosen at random by
putting x in A independently with probability α(n). Is A shallow with high probability? If α(n) = 1/2 we
can simply use the characteristic sequence for the encoding. For α(n) < 1/2 the question remains open. We
basically need an efficiently decodable encoding of any set S ⊆ {0, 1}n of size α(n)2n using log

(
2n

α(n)2n

)
+nO(1)

bits. This is related to the static dictionary problem (see [Pag99]).
Of course, other variants of computational depth and their applications would also be interesting.
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