
Optimality and Domination in Repeated Gameswith Bounded PlayersLance Fortnow�Duke WhangyDepartment of Computer ScienceThe University of Chicago1100 East 58th StreetChicago, Illinois 60637AbstractWe examine questions of optimality and dominationin repeated stage games where one or both playersmay draw their strategies only from (perhaps dif-ferent) computationally bounded sets. We also con-sider optimality and domination when bounded con-vergence rates of the in�nite payo�. We develop anotion of a \grace period" to handle the problem ofvengeful strategies.1 IntroductionConsider the Prisoner's Dilemma game: Two pris-oners have to decide independently of each otherwhether to cooperate as friends and refuse to talkto police, or whether to defect from their friendship,admit guilt and rat on their fellow prisoner. If bothplayers cooperate then they can both walk free. Ifone defects while the other cooperates the �rst goesfree with a small reward while the other gets sent tojail. If both defect they both get sent to jail but withsmall rewards each. We describe a payo� matrix forthis game in Section 2.1.In this game, defection is a dominant strategy:Whatever the second prisoner decides to do, the beststrategy for the �rst player is to defect. Unfortunatelythis leads to two rational players both defecting in-stead of the clearly advantageous scenario where they�Email: fortnow@cs.uchicago.edu. Partially supported byNSF grant CCR 92-53582.yEmail: whang@cs.uchicago.edu. Partially supported byNSF grant CCR 92-53582 and a NDSEG graduate fellowship,grant DAAH04-93-G-0273.

both cooperate.Now look at the game where Prisoner's Dilemma isrepeated k times and the payo� is the average of thepayo�s of the individual game. Always defecting is nolonger a dominant strategy though one can show thatit is the only strategy that will be played by rationalplayers.In our paper we will be concerned with Prisoner'sDilemma played an in�nite number of times where,for example, the payo� is the limit (actually lim inf)of the average of the �rst k rounds. In this game,not only is always defecting not a dominant strategy,but it is possible for two rational players to alwayscooperate.We will be interested in issues of optimality anddomination. Roughly a strategy for Player I is opti-mal if it is the best possible strategy against a speci�cstrategy of Player II. A strategy is dominant if it isthe best strategy for Player I no matter what strategyPlayer II uses.In particular we will consider games where the setsof possible strategies for Players I and II are limitedin a computational sense. Previous work has lookedat limiting the players to strategies implemented by�nite automata of size less than a given bound. SeeKalai [Kal90] for a survey on \Bounded Rationality"for repeated games.However, �nite automata are a very weak form ofcomputation. In the real world human players areoften armed with powerful computers to help themoptimize their strategies in business and �nancialgames. We would like to look at computational mod-els that better capture what games computers canplay. Computer scientists generally use polynomial-time computation by a Turing machine as a goodrough model of tractable computation.Thus we will study four sets of strategies: the set ofall possible strategies, the set of all strategies realizedby arbitrary Turing machines, the set of all strategiesrealized by polynomial-time Turing machines and thePage 1



set of all strategies realized by �nite automata. Wewill also look at behavioral (probabilistic) versions ofthese strategies. These strategies are formally de�nedin Section 2.5.Gilboa and Samet [GS89] �rst looked at the ques-tion of domination in the bounded rationality model.They show that when Player II is limited to strate-gies realized by strongly connected �nite automata(there is a path from any state to any other state)there exists a recursive dominant strategy.Gilboa and Samet need the strong connected con-dition to protect against \vengeful" strategies, i.e.,strategies of Player II that may penalize Player I for-ever simply because Player I chose a certain actionearly in the game. We do not wish to limit ourselvesin this way. In particular there may not be such a sim-ple characterization of nonvengeful polynomial-timeTuring machines.In order to reproduce the Gilboa-Samet result forarbitrary �nite automata we need to weaken our no-tion of domination. We de�ne a notion of eventuallydominant strategy where a strategy of Player I is onlyrequired to be dominant among all other strategies ofPlayer I that agree with Player I's actions for someinitial �nite number of rounds. These initial roundsform a sort of grace period that allows Player I tolearn enough about Player II to start playing in adominant manner. Complete de�nitions of eventuallyoptimal and dominant can be found in Section 2.4.We then extend the result of Gilboa and Samet toshow that there exists an eventually dominant recur-sive strategy against strategies realized by any �niteautomaton (Theorem 3.2). Gilboa and Samet's resultfollows fromours since every eventually optimal strat-egy is optimal against strongly connected automata.A polynomial-time strategy could achieve domi-nance in this model by using a sneaky trick whereit saves up its time in previous rounds for use in fu-ture rounds. It achieves dominance but not for a verylarge number of rounds.Thus we would like to also look at bounding thenumber of rounds. While it may seem counterintu-itive to bound the number of rounds of an in�nitegame, we can achieve this e�ect by bounding the rateof convergence of the lim inf in the payo� function.We formally describe this approach in Section 2.6.Gilboa and Samet's result and our extension re-quire an exponential number of rounds. We showthat this bound is tight (Theorem 3.3).However, if we look at the Matching Pennies game(as described in Section 2.1), the situation di�ers.Since the best payo� for Player I is the same nomatter what Player II plays, Player II is unable topunish (or reward) Player I. This punishing factor

plays an important role in the proof of the exponentiallower bound. We show that there exists a dominantpolynomial-time strategy against any �nite automa-ton in the Matching Pennies game which uses only apolynomial number of rounds (Theorem 3.4). How-ever, there exists a strategy implemented by a proba-bilistic �nite automaton for Player II for which thereis no optimal strategy for Player I (Theorem 3.5).Finally we consider the case where Player II is nowlimited to strategies realized by polynomial-time ma-chines. For Prisoner's Dilemma, we show a verystrong negative result: There exists such a strat-egy for Player II for which for all �, 0 � � < 1,there is no eventually �-optimal recursive strategy forPlayer I (Theorem 3.7). This result extends work ofKnoblauch [Kno94].For Matching Pennies we show that there does ex-ist a dominant recursive strategy against polynomial-time strategies (Theorem 3.8).We also show similar results for discounted gameswhere the payo�s in future rounds are multiplied bysome discount factor over the current rounds. In par-ticular, we study optimal and dominant behavior asthe discount factor approaches one.In Section 5 we discuss some further directions thatwe would like to see explored.2 De�nitions and PreliminariesWe will use the standard de�nitions of �nite au-tomata and Turing machines. See Hopcroft and Ull-man [HU79] for formal de�nitions. Garey and John-son [GJ79] give a good introduction to the notion ofpolynomial-time algorithms and which problems mayor may not have such solutions.We use Z to represent the integers and Z+ to rep-resent the positive integers.2.1 Stage gamesLet us consider two person games with players de-noted by I and II. A stage game G consists of two�nite and nonempty action sets SI and SII and twopayo� functions uI; uII : S ! Z where S = SI � SII.We will consider two particular games in this paper.The �rst is known as Prisoner's Dilemma and has thefollowing payo� matrix:C Dc (3; 3) (0; 4)d (4; 0) (1; 1)Throughout this paper we will use the conventionof lower case letters for Player I's actions and upperPage 2



case letters for Player II's actions. The �rst num-ber of a matrix entry is the utility of Player I wherethe second number is the utility of Player II. Forexample, if Player I plays c and Player II plays Dthen Player I receives zero utils (units of utility) andPlayer II receives four.Note that if Player II defects (D) then the maxi-mum score achievable by Player I is one but if PlayerII cooperates (C) then Player I could have achieved ascore of four. These payo�s allow Player II to reward(or punish) Player I based on earlier play. In fact allof our results about Prisoner's Dilemma will hold forgames where if S1 = fa1; a2g and S2 = fA1; A2g thenmax(uI(a1; A1); uI(a2; A1)) 6=max(uI(a1; A2); uI(a2; A2)):The other game we consider is Matching Pennieswhich has the following payo� matrix:H Th (1;�1) (�1; 1)t (�1; 1) (1;�1)In this game whether Player II plays heads (H)or tails (T ) Player I could achieve the score of one.If Player I is somehow able to predict Player II'smoves then Player II would have no way to rewardor punish earlier behavior of Player I. All of our re-sults about Matching Pennies will hold for nontrivialgames where if S1 = fa1; a2g and S2 = fA1; A2g thenmax(uI(a1; A1); uI(a2; A1)) =max(uI(a1; A2); uI(a2; A2)):In Matching Pennies, we say that Player I wins ina single round if Player I plays the same action asPlayer II and Player I loses if Player I and Player IIplay di�erent actions.2.2 Repeated stage gamesIn this paper we will be interested in games consistingof a stage game repeated in�nitely often.A history of player i 2 fI; IIg of the �rst k roundsis a k-tuple of actions from Si. We denote the emptyhistory by �. The play of the game depends on thestrategy �i : HI � HII ! Si of each player where Hiis the of all �nite histories of player i.Fixing �I and �II, we can inductively de�ne foreach player i the action aki (�I; �II) at round k and thehistory hki (�I; �II) after k rounds. We will drop thedependencies on �I and �II when they can be inferredfrom context.

For each i, let h0i = �.For each i and k � 0, let ak+1i = �i(hkI ; hkII).For each i and k � 0, let hk+1i be the k + 1 tuplewhose �rst k coordinates are hki and whose k + 1stcoordinate is ak+1i .A repeated stage game consists of a stage game G,and two sets of strategies, �GI and �GII which are setsof strategies from SI and SII respectively. Each playeri will choose one strategy �i from �Gi .We will consider two models for the payo� func-tions �I and �II for these games. In the limit of themeans games denoted G1 we de�ne �G1i (�I; �II) =lim infk!1 1k kXj=1 ui(ajI (�I; �II); ajII(�I; �II)): (1)In the discounted game with discount � (0 < � < 1)denoted G� we de�ne �G�i (�I; �II) =(1� �) 1Xk=1 �k�1ui(akI (�I; �II); akII(�I; �II)): (2)In general we will be interested in the discountedgames as � approaches one.2.3 Optimal and Dominant StrategiesFix a strategy �II in �GII.We will de�ne optimality separately for the limit ofthe means games G1 and the discounted games G�.For G1: A strategy �I is optimal if for every strat-egy �0I 2 �GI�G1I (�I; �II)� �G1I (�0I; �II) � 0: (3)For G� we are interested in optimal behavior as �approaches one: A strategy �I is optimal if for everystrategy �0I 2 �GIlim inf�!1� (�G�I (�I; �II)� �G�I (�0I; �II)) � 0: (4)We de�ne a strategy to be �-optimal by replacing0 by �� in Equations (3) and (4).A strategy �I is dominant if for every choice ofstrategy �II from�GII, the strategy �I is optimal. Like-wise we can de�ne �-dominant strategies.2.4 Handling Vengeful StrategiesFor a robust set of strategies �GII there may not existany dominant strategies �I because of the existence of\vengeful" strategies. Loosely, a vengeful strategy �IImay decide to punish Player I in�nitely often basedon some action Player I made early in the game.Page 3



Gilboa and Samet [GS89] handle vengeful strate-gies by removing these strategies from the setof strategies under consideration by studying onlystrongly connected �nite automata for �GII.We will use a di�erent approach. Instead of re-stricting the types of strategies, we will use a modi�edde�nition of domination called eventually dominant.This de�nition allows Player I a \grace period" wherehe can learn about �II. We then only require that �Ibe optimal among all the strategies in �I that performthe same during that grace period.Formally two strategies �I and �0I in �GI are consis-tent after k rounds if hkI (�I; �II) = hkI (�0I; �II). Notethat all pairs of strategies in �GI are consistent afterzero rounds.A strategy �I is optimal after k rounds if �I is opti-mal where we restrict the choices of �0I to those strate-gies in �GI that are consistent with �I after k rounds.A strategy �I is eventually optimal if there existssome k such that �I is optimal after k rounds.We can similarly de�ne �-optimal after k roundsand eventually �-optimal.A strategy �I is eventually dominant if for everychoice of strategy �II from �GII, the strategy �I iseventually optimal. Likewise we can de�ne eventu-ally �-dominant strategies.2.5 Bounded StrategiesUsually game theorists allow �GI and �GII to be anystrategy available to a rational player. Thus we willlet the rational strategies be the set of all possiblestrategies �i mapping HI �HII to Si.In this paper we would like to look at smaller setsof strategies induced by computation devices of pos-sibly limited resources. First we look at the regularstrategies, the set of strategies realizable by �nite au-tomata. See Gilboa and Samet [GS89] for a formalde�nition. However we will not require the automatato be (strongly) connected. For an example of a �-nite automaton that implements a regular strategyfor Prisoner's Dilemma see Figure 1.In this paper we would also like to look at strategiesimplemented by Turing machines. We call the recur-sive strategies those strategy functions computed bysome Turing machine that halts on all inputs.Finally, we de�ne the class of polynomial-timestrategies as the set of all strategy functions com-puted by a polynomial-time Turing machine. Sincethe length of a history is the number of the currentround, the set of polynomial-time strategies is the setof strategies realized by some Turing machine thatuses p(r) time between rounds r and r + 1 for somepolynomial p.

Note that the set of rational strategies strictly con-tains the set of recursive strategies which strictlycontains the set of polynomial-time strategies whichstrictly contains the set of regular strategies. There isan uncountable number of rational strategies but onlya countable number of recursive, polynomial-time andregular strategies.In some cases, we would like to allow behavioral(probabilistic) strategies. Behavioral versions of themachines above allow the machines to move accordingto a distribution over states instead of to a singlestate during each step of computation. In keepingwith the spirit of computation, we require rationalprobabilities for these distributions. For an exampleof a probabilistic �nite automaton that implements abehavioral regular strategy see Figure 3.2.6 Bounding the number of roundsOne interpretation of the limit of the means payo�says that the average value of each �nite initial seg-ment of the game should approach the �nal payo� ofthe game. Since the computation time of the gamewill concern us in this paper, we would like to requirea reasonable rate of convergence.Fix a gameG1. We de�ne the average payo� func-tion�ki (�I; �II) = 1k kXj=1ui(ajI (�I; �II); ajII(�I; �II)):By Equation (1) we have�Gi (�I; �II) = lim infk!1 �ki (�I; �II):From the de�nition of lim inf we have that for all� > 0 there exists some round t such that for allrounds k � t,�ki (�I; �II) � �Gi (�I; �II)� �:To bound the number of rounds, we will requirethat t be a function of � and on the \size" of thestrategy for �II.Assign a size function s : �GII ! Z+. For examplefor a regular strategy �II, let s(�II) be the numberof states of the smallest �nite automaton that real-izes �II. For behavioral strategies, the size shouldbound the description of the probabilities as well asthe number of states.Fix a strategy �II from�GII. A strategy �I convergesin t(m) rounds if for � > 0 and k � t(s(�II)=�),�ki (�I; �II)� �Gi (�I; �II) � ��: (5)Page 4



A behavioral strategy �I converges in t(m) roundsif the expected value of the left hand side of Equa-tion (5) is at least ��.For discounted games, we will use a di�erent ap-proach: We can use the value of � to bound the num-ber of rounds. As � approaches 1, Player I can usemore rounds for exploration without a�ecting the to-tal payo� by too much. We can formalize this notionby bounding the growth of the lim inf in Equation (4).For a game G� and a strategy �II 2 �GII, we saythat a strategy �I converges after t(m) rounds if forall � > 0 and for all � � 2�1=t(s(�II)=�),�G�I (�I; �II) � �G�I (�I; �II) � ��: (6)Once again, a behavioral strategy �I converges int(m) rounds if the expected value of the left handside of Equation (5) is at least ��.3 Main ResultsIn this section we describe the main results of ourpaper. All of these results hold for both the limit ofthe means and discounted payo�s. Proof sketches forthese results can be found in Section 4.The �rst theorem is a reformulation of a theorem byGilboa-Samet [GS89]. They proved the existence of asingle algorithm which will become dominant againstthe set of strategies realized by strongly connected�nite automata. (A �nite automaton is strongly con-nected if there is a directed path from any state toany other state.)Theorem 3.1 (Gilboa-Samet) For any game G,there is a dominant recursive strategy �I for the classof rational strategies against strategies realized bystrongly connected �nite automata.The next theorem extends this result and statesthat there is an eventually dominant recursive strat-egy against all strategies realized by �nite automatawhether strongly connected or not. Note that we needto use \eventually dominant" because of vengeful au-tomata, but for strongly connected �nite automatathe notions of optimality and of eventual optimalitycoincide.Theorem 3.2 For any game G, there is a recursivestrategy �I which is eventually dominant for the classof rational strategies against the class of strategies re-alized by �nite automata.In the proofs of Theorems 3.1 and 3.2 the Tur-ing machine computing the strategy uses exponential

time per round and converges in an exponential num-ber of rounds. One can use a delaying tactic to createa machine that runs in polynomial time by spendingan exponential number of rounds just playing simplyand then using the fact that polynomial time in anexponential history yields exponential time computa-tion.However, what if we require the strategy in The-orem 3.2 to converge in a polynomial number ofrounds? The answer depends on the type of game.For Prisoner's Dilemma, we prove a lower boundfor the number of rounds needed for any strategyto become eventually dominant over regular strate-gies. This lower bound is exponential in the numberof states of the minimal automaton that implementsthe regular strategy.Theorem 3.3 Consider Prisoner's Dilemma and �xany �, 0 � � < 1 and any n. If �I is any strategyfor Player I there exists some rational strategy �IIof Player II implemented by a �nite automaton ofn states such that any strategy �I �-optimal against�II will require an exponential number of rounds toconverge.However, for the Matching Pennies game, the situ-ation changes dramatically:Theorem 3.4 For the Matching Pennies game,there exists a polynomial-time strategy that dominatesall �nite automata and converges in a polynomialnumber of rounds.However, against probabilistic �nite automata,domination and even optimality cannot be achieved:Theorem 3.5 There exists a behavioral regularstrategy for which there is no optimal rational strategyeven for Matching Pennies.For Prisoner's Dilemma, Vicki Knoblauch [Kno94]creates two recursive strategies �(1)II and �(2)II wherethere is no optimal rational strategy for �(1)II and thereis an optimal rational strategy but no optimal recur-sive strategy for �(2)II .Now we consider the situation if �II can be imple-mented by a polynomial time algorithm. For Pris-oner's Dilemma, we get very strong negative resultsthat extend the techniques and results of Knoblauch.Theorem 3.6 For Prisoner's Dilemma, there is apolynomial-time strategy �II for which there is noeventually optimal rational strategy �I.For any � > 0 and any strategy �II, there is clearlysome rational �-optimal strategy �I. However, weshow that in general �I will not be recursive. Page 5



Theorem 3.7 For Prisoner's Dilemma, there issome polynomial-time strategy �II such that there isan optimal rational strategy but for all �, 0 � � < 1,there is no eventually �-optimal recursive strategy forthe class of rational strategies.However, for Matching Pennies, the situationchanges dramatically.Theorem 3.8 For Matching Pennies games, there isa recursive strategy �I which is dominant for the classof rational strategies against the class of polynomialtime strategies.In general for Matching Pennies, if C is any classof uniformly recursive strategies then C can be dom-inated by a recursive strategy.4 Proofs of Main TheoremsSketch of Proof of Theorem 3.2: We mod-ify the proof of Gilboa and Samet of Theorem 3.1[GS89] by �rst attempting to move the automatoninto a strongly connected component that has nopaths leading out of that component. The rest ofthe Gilboa-Samet proof will carry through. 2Sketch of Proof of Theorem 3.3: We create aregular strategy that only cooperates once Player Iplays a speci�c sequence. Any strategy will requirean exponential number of rounds to discover this se-quence.For every string w 2 fc; dg� we create a strategy�wII that works as follows: Player II will play \D" untilPlayer I plays the sequence w. Player II will then play\C" while Player I plays \D". When Player I plays\C", Player II will start all over again.We can implement strategy �wII with an automa-ton with jwj + 1 states. We give an example of anautomaton that implements �cdccdII in Figure 1.Clearly the optimal strategy for Player I against�wII is to play w and then always play \d" achievinga limit of the means payo� of four. It is not hard toshow that for any strategy for Player I and for everyn, there is some w, jwj = n�1 such that Player I willnot play the sequence w in the �rst 2n�1 moves. Thusthere exists an automaton with jwj + 1 = n stateswhere Player I's strategy can achieve a payo� of atmost one in each of the �rst 2n�1 rounds. ThereforePlayer I will require an exponential number of roundsto converge if Player I �-dominates �nite automata for� < 3. 2.Proof of Theorem 3.4: Rivest and Schapire[RS93] extending techniques of Angluin [Ang87]present probabilistic polynomial-time algorithms for
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Figure 1: An automaton that implements �cdccdII .inferring �nite automata in the setting with no resetbut with a teacher that provides counterexamples. Inour setting, we will not have access to such a teacherbut the techniques will still be applicable because anyloss will produce a counterexample.We do not need to infer the entire automaton, butonly enough to �nd a winning cycle. We use thisadvantage to build a nonbehavioral (deterministic)polynomial-round polynomial-time strategy to domi-nate regular strategies playing Matching Pennies, ex-tending further the techniques of Rivest and Schapireand Angluin.We use a � b to denote the concatenation of a andb and � to denote the empty string. For now, let usassume that Player I knows n, an upper bound onthe number of states of the minimal automaton thatimplements �II. We will show later how to get rid ofthis assumption.We describe the strategy �I by the algorithm inFigure 2. The strategy creates a \homing sequence"w based loosely on the homing sequences of Rivestand Schapire. Player I will play w and use PlayerII's response r to help guess what state i Player II iscurrently in. If Player I guesses incorrectly then thishelps re�ne the homing sequence. Otherwise Player Iis able to add one new move to the winning sequenceci starting at state i. Once the winning sequenceis long enough than Player I can discover a winningcycle in the automaton.We need to show that given that Player II uses aPage 6



START: w h ; k  0NEW w: r1; : : : ; rn; c1; : : : ; cn  �PLAY: Play the whole sequence w. Let r be the responsestring of Player II to w.If r = ri for some i � k then Goto EXTENDIf k � n then ERRORrk+1  r; k; i k + 1EXTEND: Play ci (If ci = � do nothing.)If a loss occurs during play of ci then w w �ci; GotoNEW wIf jcij � n2 + 3n then Goto ANALYZEPlay \h"If win results then ci  ci � hIf loss results then ci  ci � tGOTO PLAYANALYZE: Analyze ci to �nd a minimal length cycle xthat has been repeated for the last n2 of the movesin ci. Repeat x inde�nitely. If a loss ever resultsthen ERROR.Figure 2: Polynomial-time strategy to dominate reg-ular strategies playing Matching Pennies. The stringci is the \winning continuation" after ri is receivedas a response to w, the homing sequence which thealgorithm generates.

strategy implemented by a �nite automaton using atmost n states:1. The algorithm will reach the ANALYZE phasewithin only a polynomial in n number of compu-tation steps and rounds.2. The algorithm will never output \ERROR".The �rst requirement follows from Lemma 4.1.Lemma 4.1 The algorithm extends w at most �n2� =O(n2) times. Also, each time w is extended, it isextended by a string of length at most n2 + 3n.Proof: w is extended when the �nite automatonstarts on two di�erent states qa and qb and producesthe same response r but di�erent responses on theextended word w � ci. The new w = w � ci now dis-tinguishes qa from qb. The number of pairs of states(qa, qb) for which qa 6= qb is at most �n2�. Each timew is extended, it is extended by ci whose length is atmost n2 + 3n. 2 (Lemma 4.1)If the �rst ERROR occurs that means that thereexists more than n responses to a �xed w. This can-not occur if �II is implemented by a �nite automatonof at most n states.Now suppose that algorithm has reached the ANA-LYZE phase. Observe that for every state of the �niteautomaton M implementing �II, there is a uniquewinning action for Player I. If the algorithm winsfor more than 3n rounds consecutively, it must haverepeated a \cycle" of states: At most n rounds toenter a cycle, and then at most 2n rounds to play asequence twice.Suppose we have a �nite automaton M 0 that hasthe same response to ci as M but on ci is in a cycle zwhere z is not multiple iterations of x. Since x and zdo not have any factor words in common, the stringxjzj 6= zjxj. However since jxjzjj = jzjxjj � n2 thisis a contradiction, because Player I would have loston one of the two strings, producing a loss within n2rounds.Therefore Player II must be using an automatonthat is in a cycle consisting of repetitions of x. ThusPlayer I repeatedly playing x will always win.Now suppose Player I does not know the value ofn. Player I initially assumes n = 2 and uses the algo-rithm in Figure 2. If an ERROR occurs then PlayerI starts all over again doubling his assumption aboutthe value of n. Eventually, either no more errors occurin which case Player I always wins or Player I's as-sumption about n will dominate the number of statesof the automaton used by Player II. 2 (Theorem 3.4)Proof of Theorem 3.5: Page 7
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TFigure 3: A probabilistic automaton for which no op-timal strategy exists.Look at the behavioral regular strategy �II imple-mented by the probabilistic �nite automaton in Fig-ure 3. When the automaton enters a coin state, itchooses a dotted path independently with probabil-ity one-half.For any k, there exists a (regular) strategy �I forPlayer I that achieves an expected payo� of 1�2�k byplaying \t" for the �rst k moves and then always play-ing \h". However, an expected payo� of one is im-possible: a strategy of always playing tails will yielda payo� of �1 and if Player I ever plays heads thereis always a small probability that �II will be in thebottom part of the automaton giving Player I a payo�of zero. 2Sketch of Proof of Theorem 3.6: Considerthe much simpler game:0 1a (0; 0) (1; 0)b (0; 0) (1; 0)We design a \reward" function with two properties:�rst, that the longer �I \waits," the larger the reward;and second, that the reward is not paid while �I waits.Note as a consequence, if �I waits forever, he is paidnothing. �II will play as to allow �I to achieve (�nitestage) means that converge to this reward.Suppose the history of Player I at round n, hnI , hasthe form an0bm0an1bm1an2bm2 : : :ankbmkfor some k � 0, and some sequence n0;m0; : : :nk;mkwhere all ni > 0 and all mi > 0 except for possiblyn0 and mk.De�ne V (hnI ) as follows:V (hnI ) = kXi=0 nini + 12�(i+1)

The polynomial time strategy �II will play 0 on the�rst round. On round n + 1, the algorithm looks atthe previous action of �I, anI .If anI = b and �nI (�I; �II) < V (hnI ), then �II plays1, otherwise �II plays 0. Player I waits and increasesits future payo�s during the rounds in which he playsa, and he is paid his reward when he plays b.Lemma 4.2 For any history hnI and for any �I whichis consistent with hnI , there is a �0I also consistent withhnI such that�G1(�0I; �II) > �G1(�I; �II)Proof omitted.The lemma shows us that no �I can be eventuallyoptimal. The reasoning will also apply to the Pris-oner's Dilemma game. 2 (Theorem 3.6)Sketch of Proof of Theorem 3.7: The roughidea is to have Player II in phase m = hi; j; ki \pun-ish" Player I if the ith partial recursive function onthe history up to round 2hi;ji computes in exactly ksteps the action taken by Player I in round 2hi;ji+ 1.Thus any recursive strategy will be \punished" in-�nitely often.Formally, the strategy �II plays in phases, wherethe mth phase consists of 2m rounds. Let m =hi; j; ki. The strategy plays \D" for the whole phaseif, given the move history up to round 2hi;ji, the ithpartial recursive function would have played the ac-tion made by Player I in round 2hi;ji + 1 in exactly ksteps. Otherwise, the strategy will play \C" for thewhole phase. Observe the following two lemmas:Lemma 4.3 Every recursive strategy �I will achievea payo� of at most 2:5.Proof: Suppose strategy �I is implemented by theith recursive function. Let t(i; j) be the number ofsteps used by this function to compute the action inround 2hi;ji + 1. By the construction of �II, PlayerII will play \D" during phase hi; j; t(i; j)i. Player Icould only achieve a payo� of one during this phase.At the end of this phase, Player I could have at bestan average payo� of 2:5. Since this will happen forevery j, the lim inf of the average payo�s will be atmost 2:5. 2.Lemma 4.4 There is a rational strategy for PlayerI that achieves a payo� of four against �II.Proof: The strategy �I will play \c" in the mthround if m is of the form 2hi;ji + 1 and the ith par-tial recursive function given the current history wouldhave halted with output \d". Otherwise, �I will playPage 8



\d". Note that against �I, Player II will always play\C". Thus Player I will achieve a utility of four inevery round that is not one greater than a power oftwo and thus in the limit Player I will have a payo�of four.Hence, by the two lemmas, if � < 1:5, then no recur-sive strategy can become �-optimal. 2 (Theorem 3.7)Sketch of Proof of Theorem 3.8: Let �1; �2; : : :be an enumeration of the polynomial-time strategiesfor Player II. Player I will assume that Player II isusing strategy �1 until Player I loses. Player I willthen assume that Player II is using strategy �2, etc.Eventually, Player I's assumptions will be correct andPlayer I will win from that point on. 25 Open QuestionsTheorem 3.5 only scratches the surface on our knowl-edge of optimality and domination when Player IIuses a behavioral regular strategy. All of the follow-ing questions remain open:� Does there exist a behavioral regular strategyfor which there is no eventually optimal ratio-nal strategy?� For some � > 0 does there exist a behavioralregular strategy for which there is no eventually�-optimal recursive or polynomial-time strategy?� In the other extreme, does there exist apolynomial-time or recursive strategy that even-tually dominates all behavioral regular strate-gies.We are also interested in questions about optimal-ity and domination in other types of games such asin�nite games that are not repeated stage games per-haps with imperfect information. Also, is there a wayto formalize computational issues for �nite games?Finally, we would like to see how other game the-oretic issues are a�ected by polynomial-time strate-gies. For example, what kinds of equilibria might beachieved by players using polynomial-time strategiesin various di�erent games?AcknowledgmentsWe would like to thank Itzhak Gilboa, Ehud Kalaiand In-Koo Cho for a game theory perspective andsome very helpful discussions particularly on the def-initions.Robert Schapire has been incredibly helpful inpointing us to very useful literature in computationallearning.
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