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Abstract

We examine questions of optimality and domination
in repeated stage games where one or both players
may draw their strategies only from (perhaps dif-
ferent) computationally bounded sets. We also con-
sider optimality and domination when bounded con-
vergence rates of the infinite payoff. We develop a
notion of a “grace period” to handle the problem of
vengeful strategies.

1 Introduction

Consider the Prisoner’s Dilemma game: Two pris-
oners have to decide independently of each other
whether to cooperate as friends and refuse to talk
to police, or whether to defect from their friendship,
admit guilt and rat on their fellow prisoner. If both
players cooperate then they can both walk free. If
one defects while the other cooperates the first goes
free with a small reward while the other gets sent to
jail. If both defect they both get sent to jail but with
small rewards each. We describe a payoff matrix for
this game in Section 2.1.

In this game, defection is a dominant strategy:
Whatever the second prisoner decides to do, the best
strategy for the first player is to defect. Unfortunately
this leads to two rational players both defecting in-
stead of the clearly advantageous scenario where they
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both cooperate.

Now look at the game where Prisoner’s Dilemma is
repeated k times and the payoff is the average of the
payoffs of the individual game. Always defecting is no
longer a dominant strategy though one can show that
it 1s the only strategy that will be played by rational
players.

In our paper we will be concerned with Prisoner’s
Dilemma played an infinite number of times where,
for example, the payoff is the limit (actually lim inf)
of the average of the first & rounds. In this game,
not only is always defecting not a dominant strategy,
but it is possible for two rational players to always
cooperate.

We will be interested in issues of optimality and
domination. Roughly a strategy for Player I is opti-
mal if it is the best possible strategy against a specific
strategy of Player II. A strategy is dominant if it is
the best strategy for Player I no matter what strategy
Player IT uses.

In particular we will consider games where the sets
of possible strategies for Players I and II are limited
in a computational sense. Previous work has looked
at limiting the players to strategies implemented by
finite automata of size less than a given bound. See
Kalai [Kal90] for a survey on “Bounded Rationality”
for repeated games.

However, finite automata are a very weak form of
computation. In the real world human players are
often armed with powerful computers to help them
optimize their strategies in business and financial
games. We would like to look at computational mod-
els that better capture what games computers can
play. Computer scientists generally use polynomial-
time computation by a Turing machine as a good
rough model of tractable computation.

Thus we will study four sets of strategies: the set of
all possible strategies, the set of all strategies realized
by arbitrary Turing machines, the set of all strategies
realized by polynomial-time Turing machines and the
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set of all strategies realized by finite automata. We
will also look at behavioral (probabilistic) versions of
these strategies. These strategies are formally defined
in Section 2.5.

Gilboa and Samet [GS89] first looked at the ques-
tion of domination in the bounded rationality model.
They show that when Player II is limited to strate-
gies realized by strongly connected finite automata
(there is a path from any state to any other state)
there exists a recursive dominant strategy.

Gilboa and Samet need the strong connected con-
dition to protect against “vengeful” strategies, i.e.,
strategies of Player II that may penalize Player I for-
ever simply because Player I chose a certain action
early in the game. We do not wish to limit ourselves
in this way. In particular there may not be such a sim-
ple characterization of nonvengeful polynomial-time
Turing machines.

In order to reproduce the Gilboa-Samet result for
arbitrary finite automata we need to weaken our no-
tion of domination. We define a notion of eventually
dominant strategy where a strategy of Player I is only
required to be dominant among all other strategies of
Player I that agree with Player I’s actions for some
initial finite number of rounds. These initial rounds
form a sort of grace period that allows Player 1 to
learn enough about Player II to start playing in a
dominant manner. Complete definitions of eventually
optimal and dominant can be found in Section 2.4.

We then extend the result of Gilboa and Samet to
show that there exists an eventually dominant recur-
sive strategy against strategies realized by any finite
automaton (Theorem 3.2). Gilboa and Samet’s result
follows from ours since every eventually optimal strat-
egy 1s optimal against strongly connected automata.

A polynomial-time strategy could achieve domi-
nance in this model by using a sneaky trick where
1t saves up its time in previous rounds for use in fu-
ture rounds. It achieves dominance but not for a very
large number of rounds.

Thus we would like to also look at bounding the
number of rounds. While it may seem counterintu-
itive to bound the number of rounds of an infinite
game, we can achieve this effect by bounding the rate
of convergence of the liminf in the payoff function.
We formally describe this approach in Section 2.6.

Gilboa and Samet’s result and our extension re-
quire an exponential number of rounds. We show
that this bound is tight (Theorem 3.3).

However, if we look at the Matching Pennies game
(as described in Section 2.1), the situation differs.
Since the best payoff for Player I is the same no
matter what Player II plays, Player II is unable to
punish (or reward) Player I. This punishing factor

plays an important role in the proof of the exponential
lower bound. We show that there exists a dominant
polynomial-time strategy against any finite automa-
ton in the Matching Pennies game which uses only a
polynomial number of rounds (Theorem 3.4). How-
ever, there exists a strategy implemented by a proba-
bilistic finite automaton for Player II for which there
is no optimal strategy for Player I (Theorem 3.5).

Finally we consider the case where Player II 1s now
limited to strategies realized by polynomial-time ma-
chines. For Prisoner’s Dilemma, we show a very
strong negative result: There exists such a strat-
egy for Player II for which for all ¢, 0 < e < 1,
there is no eventually e-optimal recursive strategy for
Player T (Theorem 3.7). This result extends work of
Knoblauch [Kno94].

For Matching Pennies we show that there does ex-
ist a dominant recursive strategy against polynomial-
time strategies (Theorem 3.8).

We also show similar results for discounted games
where the payoffs in future rounds are multiplied by
some discount factor over the current rounds. In par-
ticular, we study optimal and dominant behavior as
the discount factor approaches one.

In Section 5 we discuss some further directions that
we would like to see explored.

2 Definitions and Preliminaries

We will use the standard definitions of finite au-
tomata and Turing machines. See Hopcroft and Ull-
man [HU79] for formal definitions. Garey and John-
son [GJ79] give a good introduction to the notion of
polynomial-time algorithms and which problems may
or may not have such solutions.

We use Z to represent the integers and ZT to rep-
resent the positive integers.

2.1 Stage games

Let us consider two person games with players de-
noted by I and II. A stage game G consists of two
finite and nonempty action sets St and S and two
payoff functions ur,ury : S — Z where S = St x Sq1.

We will consider two particular games in this paper.
The first 1s known as Prisoner’s Dilemma and has the
following payoff matrix:

C D
e | (3,3)](0,4)
d| (4,0) | (1,1)

Throughout this paper we will use the convention
of lower case letters for Player I’s actions and upper

)
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case letters for Player II's actions. The first num-
ber of a matrix entry is the utility of Player I where
the second number is the utility of Player II. For
example, if Player I plays ¢ and Player II plays D
then Player I receives zero utils (units of utility) and
Player II receives four.

Note that if Player IT defects (D) then the maxi-
mum score achievable by Player I is one but if Player
IT cooperates (C') then Player I could have achieved a
score of four. These payoffs allow Player II to reward
(or punish) Player I based on earlier play. In fact all
of our results about Prisoner’s Dilemma will hold for

games where if 51 = {ay, a2} and Sy = {A;, A5} then
max(ur(ar, A1), ur(as, A1) #

max(ur(a, Az), ur(as, Az)).

The other game we consider 18 Matching Pennies
which has the following payoff matrix:

In this game whether Player IT plays heads (H)
or tails (T') Player I could achieve the score of one.
If Player I is somehow able to predict Player II's
moves then Player II would have no way to reward
or punish earlier behavior of Player I. All of our re-
sults about Matching Pennies will hold for nontrivial

games where if 51 = {ay, a2} and Sy = {A;, A5} then
max(ur(ar, A1), ur(as, A1)) =

max(ur(a, Az), ur(as, Az)).

In Matching Pennies; we say that Player I wins in
a single round if Player I plays the same action as
Player II and Player I loses if Player I and Player 11
play different actions.

2.2 Repeated stage games

In this paper we will be interested in games consisting
of a stage game repeated infinitely often.

A history of player i € {I,II} of the first k rounds
is a k-tuple of actions from 5;. We denote the empty
history by A. The play of the game depends on the
strateqy o; : Hy x Hyp — S; of each player where H;
is the of all finite histories of player i.

Fixing o1 and oy, we can inductively define for
each player i the action af (o1, o11) at round k and the
history h¥(oy, o11) after k rounds. We will drop the
dependencies on o1 and o1 when they can be inferred
from context.

For each i, let h? = A.

For each i and k > 0, let af"’l = o;(h¥, hY).

For each ¢ and k& > 0, let hf"’l be the k£ 4+ 1 tuple
whose first k coordinates are h¥ and whose k 4 Ist
coordinate is ak'l'1

A repeated stage game consists of a stage game G,
and two sets of strategies, ¥¢ and ©& which are sets
of strategies from St and Sy respectively. Each player
i will choose one strategy o; from X .

We will consider two models for the payoff func-
tions w1 and myp for these games. In the limit of the
means games denoted G we define 7¢° (o1,0m1) =

hm mf Z

In the discounted game with discount 6 (0 < é < 1)
denoted G* we define 7TZG§(O'I, o) =

(1-6 Zék Ly

In general we will be interested in the discounted
games as 6 approaches one.

aI 01, 011), G{I(UI,UII))~ (1)

af (o1, om), afi(or, om). (2)

2.3 Optimal and Dominant Strategies

Fix a strategy oy in EIGI.
We will define optimality separately for the limit of
the means games G and the discounted games G°.
For G*°: A strategy o1 is optimal if for every strat-
egy o} € B¢

oo

7TIG (o1,011) — ﬂ'IGw (o1, 0m) > 0. (3)

For G we are interested in optimal behavior as 6
approaches one: A strategy ot 1s optimal if for every
strategy o} € ¢

8

lim mf( (01, o) — 7TIG (o7, 0m)) > 0. (4)

b—1—
We define a strategy to be e-optimal by replacing
0 by —e in Equations (3) and (4).
A strategy o1 is dominant if for every choice of
strategy oy from X the strategy oy is optimal. Like-
wise we can define e-dominant strategies.

2.4 Handling Vengeful Strategies

For a robust set of strategies £ there may not exist
any dominant strategies o1 because of the existence of
“vengeful” strategies. Loosely, a vengeful strategy orp
may decide to punish Player I infinitely often based
on some action Player I made early in the game.
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Gilboa and Samet [GS89] handle vengeful strate-
gies by removing these strategies from the set
of strategies under consideration by studying only
strongly connected finite automata for .

We will use a different approach. Instead of re-
stricting the types of strategies, we will use a modified
definition of domination called eventually dominant.
This definition allows Player I a “grace period” where
he can learn about o1;. We then only require that oy
be optimal among all the strategies in o7 that perform
the same during that grace period.

Formally two strategies o1 and of in ©¢ are consis-
tent after k rounds if h¥ (o1, o11) = h¥ (o4, o11). Note
that all pairs of strategies in & are consistent after
zero rounds.

A strategy oy is optemal after k rounds if oy 1s opti-
mal where we restrict the choices of o] to those strate-
gies in ©F that are consistent with oy after k rounds.

A strategy oy is eventually optimal if there exists
some k such that o1 is optimal after k& rounds.

We can similarly define e-optimal after k rounds
and eventually c-optimal.

A strategy o1 1s eventually dominant if for every
choice of strategy oy from X, the strategy oy is
eventually optimal. Likewise we can define eventu-
ally e-dominant strategies.

2.5 Bounded Strategies

Usually game theorists allow EIG and EIGI to be any
strategy available to a rational player. Thus we will
let the rational strategies be the set of all possible
strategies o; mapping Hy x Hi to S;.

In this paper we would like to look at smaller sets
of strategies induced by computation devices of pos-
sibly limited resources. First we look at the regular
strategies, the set of strategies realizable by finite au-
tomata. See Gilboa and Samet [GS89] for a formal
definition. However we will not require the automata
to be (strongly) connected. For an example of a fi-
nite automaton that implements a regular strategy
for Prisoner’s Dilemma see Figure 1.

In this paper we would also like to look at strategies
implemented by Turing machines. We call the recur-
swe strategies those strategy functions computed by
some Turing machine that halts on all inputs.

Finally, we define the class of polynomial-time
strategies as the set of all strategy functions com-
puted by a polynomial-time Turing machine. Since
the length of a history is the number of the current
round, the set of polynomial-time strategies is the set
of strategies realized by some Turing machine that
uses p(r) time between rounds r and r + 1 for some
polynomial p.

Note that the set of rational strategies strictly con-
tains the set of recursive strategies which strictly
contains the set of polynomial-time strategies which
strictly contains the set of regular strategies. There is
an uncountable number of rational strategies but only
a countable number of recursive, polynomial-time and
regular strategies.

In some cases, we would like to allow behavioral
(probabilistic) strategies. Behavioral versions of the
machines above allow the machines to move according
to a distribution over states instead of to a single
state during each step of computation. In keeping
with the spirit of computation, we require rational
probabilities for these distributions. For an example
of a probabilistic finite automaton that implements a
behavioral regular strategy see Figure 3.

2.6 Bounding the number of rounds

One interpretation of the limit of the means payoff
says that the average value of each finite initial seg-
ment of the game should approach the final payoff of
the game. Since the computation time of the game
will concern us in this paper, we would like to require
a reasonable rate of convergence.

Fix a game G*°. We define the average payoff func-
tion

k

1 , ,

/’LZ'C(O-L UII) = E Z ul(a% (O-Ia O-H)a a%I(UIa UII))~
ji=1

By Equation (1) we have
7TZG(O'I, o) = lim infﬂf(al, o).
k—o0

From the definition of lim inf we have that for all
o > 0 there exists some round ¢ such that for all
rounds k > t,

Nf(UIaUII) > 7TZ'G(0'L0'II) — .

To bound the number of rounds, we will require
that ¢ be a function of o and on the “size” of the
strategy for orr.

Assign a size function s : ©§ — Zt. For example
for a regular strategy orr, let s(o1r) be the number
of states of the smallest finite automaton that real-
izes oqr. For behavioral strategies, the size should
bound the description of the probabilities as well as
the number of states.

Fix a strategy oy from EIGI. A strategy oy converges
in t(m) rounds if for & > 0 and k > t(s(o1)/ @),

pi (o1, om) — 7 (o1, 011) > —a. (5)

Page 4



A behavioral strategy o1 converges in ¢(m) rounds
if the expected value of the left hand side of Equa-
tion (5) is at least —a.

For discounted games, we will use a different ap-
proach: We can use the value of é to bound the num-
ber of rounds. As é approaches 1, Player I can use
more rounds for exploration without affecting the to-
tal payoff by too much. We can formalize this notion
by bounding the growth of the liminf in Equation (4).

For a game G’ and a strategy oy € EIGI, we say
that a strategy o1 converges after t(m) rounds if for
all @ > 0 and for all § > 2-1/t(s(om)/a)

& &
7TIG (o1,011) — 7TIG (o1,011) > —a. (6)

Once again, a behavioral strategy o1 converges in
t(m) rounds if the expected value of the left hand
side of Equation (5) is at least —a.

3 Main Results

In this section we describe the main results of our
paper. All of these results hold for both the limit of
the means and discounted payoffs. Proof sketches for
these results can be found in Section 4.

The first theorem is a reformulation of a theorem by
Gilboa-Samet [GS89]. They proved the existence of a
single algorithm which will become dominant against
the set of strategies realized by strongly connected
finite automata. (A finite automaton is strongly con-
nected if there is a directed path from any state to
any other state.)

Theorem 3.1 (Gilboa-Samet) For any game G,
there is a dominant recursive strategy oy for the class
of rational strategies against strategies realized by
strongly connected finite automata.

The next theorem extends this result and states
that there is an eventually dominant recursive strat-
egy against all strategies realized by finite automata
whether strongly connected or not. Note that we need
to use “eventually dominant” because of vengeful au-
tomata, but for strongly connected finite automata
the notions of optimality and of eventual optimality
coincide.

Theorem 3.2 For any game G, there is a recursive
strateqy o1 which is eventually dominant for the class
of rational strategies against the class of strategies re-
alized by finite automata.

In the proofs of Theorems 3.1 and 3.2 the Tur-
ing machine computing the strategy uses exponential

time per round and converges in an exponential num-
ber of rounds. One can use a delaying tactic to create
a machine that runs in polynomial time by spending
an exponential number of rounds just playing simply
and then using the fact that polynomial time in an
exponential history yields exponential time computa-
tion.

However, what if we require the strategy in The-
orem 3.2 to converge in a polynomial number of
rounds? The answer depends on the type of game.

For Prisoner’s Dilemma, we prove a lower bound
for the number of rounds needed for any strategy
to become eventually dominant over regular strate-
gies. This lower bound is exponential in the number
of states of the minimal automaton that implements
the regular strategy.

Theorem 3.3 Consider Prisoner’s Dilemma and fiz
any €, 0 < € < 1 and any n. If o1 is any strategy
for Player 1 there exists some rational strategy orr
of Player 11 implemented by a finite automaton of
n states such that any strategy o1 c-optimal against
orr will require an exponential number of rounds to
converge.

However, for the Matching Pennies game, the situ-
ation changes dramatically:

Theorem 3.4 For the Matching Pennies game,
there exists a polynomial-time strategy that dominates
all finite automata and converges in a polynomial
number of rounds.

However, against probabilistic finite automata,
domination and even optimality cannot be achieved:

Theorem 3.5 There exists a behavioral regular
strateqy for which there is no optimal rational strategy
even for Matching Pennies.

For Prisoner’s Dilemma, Vicki Knoblauch [Kno94]
Ell) and 0';12) where
there 1s no optimal rational strategy for 0';11)
is an optimal rational strategy but no optimal recur-
sive strategy for 0';12).

Now we consider the situation if o1 can be imple-
mented by a polynomial time algorithm. For Pris-
oner’s Dilemma, we get very strong negative results

that extend the techniques and results of Knoblauch.

creates two recursive strategies o

and there

Theorem 3.6 For Prisoner’s Dilemma, there is a
polynomial-time strategy o1 for which there s no
eventually optimal rational strategy oy.

For any € > 0 and any strategy orr, there 1s clearly
some rational e-optimal strategy or. However, we
show that in general o1 will not be recursive.
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Theorem 3.7 For Prisoner’s Dilemma, there 1is
some polynomial-time strategy orp such that there is
an optimal rational strategy but for alle, 0 < € < 1,
there is no eventually c-optimal recursive strateqy for
the class of rational strategies.

However, for Matching Pennies, the situation
changes dramatically.

Theorem 3.8 For Matching Pennies games, there is
a recursive strateqy o which is dominant for the class
of rational strategies against the class of polynomaial
time strategies.

In general for Matching Pennies, if C is any class
of uniformly recursive strategies then C can be dom-
inated by a recursive strategy.

4 Proofs of Main Theorems

Sketch of Proof of Theorem 3.2: We mod-
ify the proof of Gilboa and Samet of Theorem 3.1
[GS89] by first attempting to move the automaton
into a strongly connected component that has no
paths leading out of that component. The rest of
the Gilboa-Samet proof will carry through. O

Sketch of Proof of Theorem 3.3: We create a
regular strategy that only cooperates once Player 1
plays a specific sequence. Any strategy will require
an exponential number of rounds to discover this se-
quence.

For every string w € {e,d}” we create a strategy
ofi that works as follows: Player II will play “D” until
Player I plays the sequence w. Player II will then play
“C” while Player I plays “D”. When Player I plays
“C”, Player II will start all over again.

We can implement strategy of; with an automa-
ton with |w| 4+ 1 states. We give an example of an
automaton that implements ¢£#°°¢ in Figure 1.

Clearly the optimal strategy for Player I against
oy 1s to play w and then always play “d” achieving
a limit of the means payoff of four. It is not hard to
show that for any strategy for Player I and for every
n, there is some w, |w| = n—1 such that Player T will
not play the sequence w in the first 27~ moves. Thus
there exists an automaton with |w|+ 1 = n states
where Player I's strategy can achieve a payoff of at
most one in each of the first 27 ~! rounds. Therefore
Player I will require an exponential number of rounds
to converge if Player I e-dominates finite automata for
e< 3. 0.

Proof of Theorem 3.4: Rivest and Schapire
[RS93] extending techniques of Angluin [Ang87]

present probabilistic polynomial-time algorithms for

Figure 1: An automaton that implements ofc“4.

inferring finite automata in the setting with no reset
but with a teacher that provides counterexamples. In
our setting, we will not have access to such a teacher
but the techniques will still be applicable because any
loss will produce a counterexample.

We do not need to infer the entire automaton, but
only enough to find a winning cycle. We use this
advantage to build a nonbehavioral (deterministic)
polynomial-round polynomial-time strategy to domi-
nate regular strategies playing Matching Pennies, ex-
tending further the techniques of Rivest and Schapire
and Angluin.

We use a - b to denote the concatenation of a and
b and € to denote the empty string. For now, let us
assume that Player I knows n, an upper bound on
the number of states of the minimal automaton that
implements o1;. We will show later how to get rid of
this assumption.

We describe the strategy o1 by the algorithm in
Figure 2. The strategy creates a “homing sequence”
w based loosely on the homing sequences of Rivest
and Schapire. Player I will play w and use Player
IT’s response 7 to help guess what state ¢ Player II is
currently in. If Player I guesses incorrectly then this
helps refine the homing sequence. Otherwise Player 1
is able to add one new move to the winning sequence
¢; starting at state ¢. Once the winning sequence
is long enough than Player I can discover a winning
cycle in the automaton.

We need to show that given that Player II uses a
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START: w—h ; k—0
NEW w: r1,...,7p,C1,...,Cp < €
PLAY: Play the whole sequence w. Let r be the response
string of Player II to w.
If r = r; for some ¢ < k then Goto EXTEND
If £ > n then ERROR
Tep1 — 1 ki — k41
EXTEND: Play ¢; (If ¢; = € do nothing.)
If a loss occurs during play of ¢; then w «— w-¢;; Goto
NEW w
If |¢;| > n? 4 3n then Goto ANALYZE
Play “h”
If win results then ¢; «— ¢; - h
If loss results then ¢; «— ¢; - ¢
GOTO PLAY

ANALYZE: Analyze ¢; to find a minimal length cycle «
that has been repeated for the last n? of the moves
in ¢;. Repeat z indefinitely. If a loss ever results

then ERROR.

Figure 2: Polynomial-time strategy to dominate reg-
ular strategies playing Matching Pennies. The string
¢; 1s the “winning continuation” after r; is received
as a response to w, the homing sequence which the
algorithm generates.

strategy implemented by a finite automaton using at
most n states:

1. The algorithm will reach the ANALYZE phase
within only a polynomial in n number of compu-
tation steps and rounds.

2. The algorithm will never output “ERROR”.

The first requirement follows from Lemma 4.1.

Lemma 4.1 The algorithm extends w at most (g) =
O(n?) times. Also, each time w is extended, it is
extended by a string of length at most n® + 3n.

Proof: w is extended when the finite automaton
starts on two different states ¢, and ¢; and produces
the same response r but different responses on the
extended word w - ¢;. The new w = w - ¢; now dis-
tinguishes ¢, from g;. The number of pairs of states
(¢a, q») for which ¢, # ¢; is at most (g) Each time
w is extended, 1t is extended by ¢; whose length is at
most n? + 3n. O (Lemma 4.1)

If the first ERROR occurs that means that there
exists more than n responses to a fixed w. This can-
not occur if oyy 1s implemented by a finite automaton
of at most n states.

Now suppose that algorithm has reached the ANA-
LYZE phase. Observe that for every state of the finite
automaton M implementing oyy, there is a unique
winning action for Player 1. If the algorithm wins
for more than 3n rounds consecutively, it must have
repeated a “cycle” of states: At most n rounds to
enter a cycle, and then at most 2n rounds to play a
sequence twice.

Suppose we have a finite automaton M’ that has
the same response to ¢; as M but on ¢; is in a cycle z
where z is not multiple iterations of #. Since # and z
do not have any factor words in common, the string
z1?l £ 217l However since |¢1?l] = |217l] < n? this
i1s a contradiction, because Player I would have lost
on one of the two strings, producing a loss within n?
rounds.

Therefore Player II must be using an automaton
that is in a cycle consisting of repetitions of &. Thus
Player I repeatedly playing = will always win.

Now suppose Player I does not know the value of
n. Player I initially assumes n = 2 and uses the algo-
rithm in Figure 2. If an ERROR occurs then Player
I starts all over again doubling his assumption about
the value of n. Eventually, either no more errors occur
in which case Player I always wins or Player I's as-
sumption about n will dominate the number of states
of the automaton used by Player IT. O (Theorem 3.4)

Proof of Theorem 3.5:
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Figure 3: A probabilistic automaton for which no op-
timal strategy exists.

Look at the behavioral regular strategy orp imple-
mented by the probabilistic finite automaton in Fig-
ure 3. When the automaton enters a coin state, it
chooses a dotted path independently with probabil-
ity one-half.

For any k, there exists a (regular) strategy op for
Player I that achieves an expected payoff of 1—27% by
playing “t” for the first £ moves and then always play-
ing “h”. However, an expected payoff of one is im-
possible: a strategy of always playing tails will yield
a payoff of —1 and if Player I ever plays heads there
is always a small probability that or; will be in the
bottom part of the automaton giving Player I a payoff
of zero. O

Sketch of Proof of Theorem 3.6:
the much simpler game:

Consider

0 1
a | (0,0) | (1,0)
b | (0,0) | (1,0)

We design a “reward” function with two properties:
first, that the longer o1 “waits,” the larger the reward;
and second, that the reward is not paid while o1 waits.
Note as a consequence, if o1 waits forever, he is paid
nothing. opr will play as to allow o1 to achieve (finite
stage) means that converge to this reward.

Suppose the history of Player I at round n, A, has
the form

aopmoa e g 2™ L g

for some k£ > 0, and some sequence ng, mg, ...ng, Mg
where all n; > 0 and all m; > 0 except for possibly
ng and my.

Define V(h}) as follows:
k

n L —(z
Vi) = 3 e
i=0 *

The polynomial time strategy oy will play 0 on the
first round. On round n 4 1, the algorithm looks at
the previous action of o1, af.

If af = b and pf (o1, 0m) < V(h]), then onr plays
1, otherwise oq1 plays 0. Player I waits and increases
its future payoffs during the rounds in which he plays
a, and he is paid his reward when he plays b.

Lemma 4.2 For any history hi and for any o1 which
is consistent with h7, there is a of also consistent with
T such that

oo

o (o1,0m)

7 (o, 0m1) > ¢

Proof omitted.

The lemma shows us that no o1 can be eventually
optimal. The reasoning will also apply to the Pris-
oner’s Dilemma game. O (Theorem 3.6)

Sketch of Proof of Theorem 3.7: The rough
idea is to have Player II in phase m = (¢, j, k) “pun-
ish” Player I if the ¢th partial recursive function on
the history up to round 2{%9) computes in exactly k
steps the action taken by Player I in round 2(57) 4 1.
Thus any recursive strategy will be “punished” in-
finitely often.

Formally, the strategy o plays in phases, where
the mth phase consists of 27 rounds. Let m =
(1,7, k). The strategy plays “D” for the whole phase
if, given the move history up to round 2() the ith
partial recursive function would have played the ac-
tion made by Player I in round 209} 4+ 1 in exactly k
steps. Otherwise, the strategy will play “C” for the
whole phase. Observe the following two lemmas:

Lemma 4.3 FEvery recursive strateqy o1 will achieve
a payoff of at most 2.5.

Proof: Suppose strategy o7 is implemented by the
ith recursive function. Let (¢, j) be the number of
steps used by this function to compute the action in
round 2(%7) 4+ 1. By the construction of oy, Player
IT will play “D” during phase (¢, j,t(¢,j)). Player I
could only achieve a payoff of one during this phase.
At the end of this phase, Player I could have at best
an average payoff of 2.5. Since this will happen for
every j, the lim inf of the average payoffs will be at
most 2.5. O.

Lemma 4.4 There ts a rational strategy for Player
I that achieves a payoff of four against oyr.

Proof: The strategy op will play “c” in the mth
round if m is of the form 2(%9) + 1 and the ith par-
tial recursive function given the current history would
have halted with output “d”. Otherwise, o1 will play
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“d”. Note that against o1, Player II will always play
“C”. Thus Player I will achieve a utility of four in
every round that is not one greater than a power of
two and thus in the limit Player I will have a payoff
of four.

Hence, by the two lemmas, if € < 1.5, then no recur-
sive strategy can become e-optimal. O (Theorem 3.7)

Sketch of Proof of Theorem 3.8: Let 01,09, ...
be an enumeration of the polynomial-time strategies
for Player II. Player I will assume that Player II is
using strategy o1 until Player I loses. Player T will
then assume that Player II is using strategy oo, etc.
Eventually, Player I’s assumptions will be correct and
Player I will win from that point on. O

5 Open Questions

Theorem 3.5 only scratches the surface on our knowl-
edge of optimality and domination when Player II
uses a behavioral regular strategy. All of the follow-
ing questions remain open:

e Does there exist a behavioral regular strategy
for which there is no eventually optimal ratio-
nal strategy?

e For some ¢ > 0 does there exist a behavioral
regular strategy for which there i1s no eventually
e-optimal recursive or polynomial-time strategy?

e In the other extreme, does there exist a
polynomial-time or recursive strategy that even-
tually dominates all behavioral regular strate-
gies.

We are also interested in questions about optimal-
ity and domination in other types of games such as
infinite games that are not repeated stage games per-
haps with imperfect information. Also, is there a way
to formalize computational issues for finite games?

Finally, we would like to see how other game the-
oretic issues are affected by polynomial-time strate-
gies. For example, what kinds of equilibria might be
achieved by players using polynomial-time strategies
in various different games?
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