
Gap-De�nable Counting ClassesStephen A. Fenner�Computer Science DepartmentUniversity of Southern Maine96 Falmouth StreetPortland, Maine 04103Lance J. FortnowyStuart A. KurtzComputer Science DepartmentUniversity of Chicago1100 East Fifty-eighth StreetChicago, Illinois 60637July 12, 1992
�Work done while the �rst author was a graduate student at the University of Chicago Computer Science Depart-ment, supported in part by a University of Chicago Fellowship.ySupported by NSF Grant CCR-9009936 1

Running Head: Gap-De�nable Counting ClassesSend proofs to: Stephen FennerComputer Science DepartmentUniversity of Southern Maine96 Falmouth StreetPortland, Maine 04103

2

AbstractThe function class #P lacks an important closure property: it is not closed under subtraction.To remedy this problem, we introduce the function class GapP as a natural alternative to #P.GapP is the closure of #P under subtraction, and has all the other useful closure propertiesof #P as well. We show that most previously studied counting classes, including PP , C=P ,and ModkP , are \gap-de�nable," i.e., de�nable using the values of GapP functions alone. Weshow that there is a smallest gap-de�nable class, SPP , which is still large enough to containFew. We also show that SPP consists of exactly those languages low for GapP, and thus SPPlanguages are low for any gap-de�nable class. These results unify and improve earlier disparateresults of Cai & Hemachandra [7] and K�obler, Sch�oning, Toda, & Tor�an [15]. We show furtherthat any countable collection of languages is contained in a unique minimumgap-de�nable class,which implies that the gap-de�nable classes form a lattice under inclusion. Subtraction seemsnecessary for this result, since nothing similar is known for the #P-de�nable classes.

3

1 IntroductionIn 1979, Valiant [29] de�ned the class #P, the class of functions de�nable as the number ofaccepting computations of some polynomial-time nondeterministic Turing machine. Valiantshowed many natural problems complete for this class, including the permanent of a zero-onematrix. Toda [27] showed that these functions have more power than previously believed; heshowed how to reduce any problem in the polynomial-time hierarchy to a single value of a #Pfunction.The class #P has its shortcomings, however. In particular, #P functions cannot take onnegative values and thus #P is not closed under subtraction. Also, one cannot express as a #Pfunction the permanent of a matrix with arbitrary (possibly negative) integer entries, or even asimple polynomial-time function which outputs negative values.In this paper, we analyze GapP, a function class consisting of differences|\gaps"|betweenthe number of accepting and rejecting paths of NP Turing machines. This class, introducedin section 3, is exactly the closure of #P under subtraction. GapP also has all the other niceclosure properties of #P, such as addition, multiplication, and binomial coe�cients. Beigel,Reingold, & Spielman �rst used gaps to great advantage in [6] to show that PP is closed underintersection. Toda and Ogiwara have also formulated their results in [28] using GapP instead of#P (see section 3). We will argue that GapP is the right way to think about #P-like functions.Many complexity classes, such as NP , UP , BPP , PP , C=P , and �P , have de�nitions basedon the number of accepting paths of an NP machine. In section 4 we will look at complexityclasses de�ned in terms of the gap of an NP machine. Some classes such as PP , C=P , and�P have very simple characterizations in this manner. In particular, in section 5 we studya class SPP , alluded to but not speci�cally named in [15]. This class has also been studiedindependently by Ogiwara & Hemachandra [19] under the name XP , and by Gupta [12] underthe name ZUP . We show that SPP , the gap analog of UP , is the smallest of all reasonablegap-de�nable classes. SPP languages are exactly the low sets for GapP (that is, L 2 SPP ifand only if GapPL = GapP), and thus are low for any gap-de�nable class. We also show thatSPP equals the gap analog of Few, and this gives us an alternate proof that Few is containedin �P ([7, 5, 4, 15]). From containment and lowness considerations, we further conclude thatP , UP , NP , and BPP are unlikely to be gap-de�nable.In section 6 we address the question, �rst asked in [28], of whether the polynomial hierarchy(PH) is randomly reducible to SPP . We show that this question cannot be answered byrelativizable techniques, that is, we show that there is an oracle relative to which NP is notrandomly reducible to SPP (proposition 6.1), but with respect to a random oracle, PH is lowfor SPP .In section 7, we consider the possibility that GapP is closed under certain operations strongerthan those discussed in section 3. We show that such closure is equivalent to certain unlikelycomplexity theoretic collapses. Similar, more extensive results were obtained independently forGapP and #P in [19, 12].In section 8, we determine structural properties of the collection of all gap-de�nable classes.We de�ne GapCl, a simple, albeit nonconstructive, closure operation on sets (the `gap-closure').From this we show that any countable set of languages C has a unique minimum gap-de�nableclass GapCl(C) containing it. We then show that the collection of all gap-de�nable classes is4

closed under intersection and forms a lattice under inclusion. We also show that some classeswhich are not obviously gap-de�nable in fact have this property.Finally, we look at alternatives to the notion of gap-de�nability in section 9. Narrowernotions of gap-de�nability can be advantageous, especially in light of the results in [28]. Wede�ne nice gap-de�nable classes|those for which the proofs in [28] go through. Nice classeshave several other desirable properties, and most of the usual gap-de�nable classes are nice. Onthe negative side, we show that the structural results of section 8 probably do not hold for niceclasses: the intersection of two nice classes is almost always as small as possible|SPP .We pose questions for further research in section 10.2 Notation and De�nitionsWe let � = f0; 1g and let �� denote the set of binary strings, which we identify with the naturalnumbers via the usual binary representation. We let Z denote the set of integers. In this sectiononly, we will once or twice wish to emphasize that �� � Z, so we will then write Z+ in place of��, and reserve �� to refer to the set of inputs to machines. For purposes of computation, wewill also have occasion to identify Z with �� in some standard way, e.g., via the usual binaryrepresentation together with an extra sign bit. For x 2 �� we write jxj for the length of x. Alanguage is a subset of ��, and unless stated otherwise, all functions have domain ��. Followingcustom, we sometimes identify a language L with its characteristic function �L, so we have, forall x 2 ��, L(x) df= �L(x) df= � 1 if x 2 L,0 if x 62 L.If A and B are sets, we let B � A denote the relative complement of A in B. If A � ��, weusually use A as shorthand for ���A. If A;B � ��, we use A�B to denote the join of A andB: A� B df= f2x j x 2 Ag [f2x+ 1 j x 2 Bg:We assume the reader is familiar with the basic concepts of computational complexity the-ory, including Turing machines, complexity classes, polynomial-time reductions (m-reductionsand Turing reductions, and to a lesser extent, tt-reductions), complete sets, nondeterminism,relativization, etc. We also assume that the reader has basic knowledge of computable functionsand recursively enumerable (r.e.) sets. There are a number of good textbooks covering thesesubjects, including [13]. We use P and FP to denote the classes of all polynomial-time com-putable languages and functions respectively. We use NP to denote the class of all languagescomputable in nondeterministic polynomial time, and PH denotes the polynomial hierarchy(see [25]).We say informally that a class of languages or functions is relativizable if its de�nition refers|explicitly or implicitly|to computation and/or computing machines. If C is a relativizable classand L � ��, we follow custom and de�ne CL by replacing each machine directly or indirectlyreferenced in the de�nition of C with an oracle machine with similar properties except that thenew machine has access to L as an oracle. We write C; simply as C as is customary. If D is alanguage class, we write CD for the set SL2DfCLg as usual. We say L is low for C if CL = C.5

A class of languages is low for C if every language in the class is low for C. This notion wasborrowed from recursion theory and was applied to complexity classes in, for example, [15] (see[15] for further references).We now de�ne the machines we will be considering.De�nition 2.1 A counting machine (CM) is a nondeterministic Turing machine running inpolynomial time with two halting states: accepting and rejecting, and every computation pathmust end in one of these states. An oracle machine having the above properties and running inpolynomial time uniformly for all oracles is called an oracle counting machine (OCM).A counting machine is simply an NP machine. We use this alternate terminology to em-phasize that the machine's acceptance criterion is based on the number of accepting and/orrejecting paths. The following notions all pertain to CM's.De�nition 2.2 Let M be a CM. We de�ne the function #M : �� ! Z+ to be such that forall x 2 ��, #M (x) is the number of accepting computation paths of M on input x. Similarly,TotalM : �� ! Z+ is the total number of computation paths of M on input x. The CM M isthe machine identical to M but with the accepting and rejecting states interchanged (thus Mrejects whenever M accepts and vice versa).Notice that for all x 2 ��,#M (x) + #M(x) = TotalM (x) = TotalM (x);and #M (x) is the number of rejecting paths of M on input x.If M is a CM, we de�ne the nondeterministic branching degree of M to be the maximumnumber of possible successors to any instantaneous description (ID) ofM . For any computationpath p of M , we de�ne rank(p) (the rank of p) to be the number of nondeterministic movesmade along p, that is, rank(p) is the number of ID's along p with more than one successor(the halting ID's have no successors). A CM M is in normal form if it has nondeterministicbranching degree at most two, and the rank of any computation path of M is always equalto a �xed positive polynomial in the length of the input. Thus if M is in normal form, thenTotalM (x) = 2q(jxj) for some positive polynomial q. >From now on, all machines will be denotedwith the capital letters M and N , possibly with primes or subscripts, and will be CM's unlessstated otherwise.We now de�ne some of the usual counting classes. These are not always the original de�ni-tions, but can easily be shown to be equivalent to them. See [4] for more details.De�nition 2.3� (Valiant [29]) #P df= f#M jM is a CMg.� (Gill [9]) PP is the class of all languages L such that there exists M and an FP functionf such that, for all x, x 2 L()#M (x) > f(x):The function f is the threshold of M . 6

� (Wagner [30]) C=P is the class of all languages L such that there exists M and an FPfunction f such that, for all x, x 2 L()#M (x) = f(x):� (Beigel, Gill, Hertrampf [5]) For k � 2, de�ne ModkP to be the class of all languages Lsuch that there exists M such that, for all x,x 2 L() #M (x) 6� 0 mod k:The class Mod2P is also called �P (`Parity P'). This class was de�ned by Papadimitriou &Zachos [20] and by Goldschlager & Parberry [10] (see [4] for details). The following two classeswill also be of interest to us:De�nition 2.4� (Allender [1]) For any language L, L 2 FewP if and only if there exist a CM M and apolynomial p such that for all x 2 ��, #M (x) � p(jxj) andx 2 L()#M (x) > 0:� (Cai & Hemachandra [7]) For any language L, L 2 Few if and only if there exist a CMM , a polynomial p, and a polynomial-time computable predicate A(x; y) such that for allx 2 ��, #M (x) � p(jxj) and x 2 L() A(x;#M (x)):Clearly,FewP � NP . This is not known for Few, but it is well-known that Few � PNP [log],and in fact, Few � PFewP [14].3 GapsDe�nition 3.1 If M is a CM, de�ne the function gapM : �� ! Z as follows:gapM df= #M �#M:The function gapM represents the \gap" between the number of accepting and the numberof rejecting paths of M . We de�ne the natural gap analog of the function class #P:De�nition 3.2 GapP df= fgapM jM is a CMg:This class was de�ned independently in [12] and named Z#P. From now on in this chapter,we follow the spirit of [6] and work almost exclusively with gaps. The advantages are thatgap functions can take on positive and negative values, and we can subtract gaps withoutintroducing the large o�sets that we get when we are counting accepting paths only. We canadd and multiply gaps as well, thus GapP has a canonical ring structure.Lemma 3.3 For every CMM , there is a CMN such that gapN = #M . (That is, #P � GapP.)7

Proof: Given an input x, the machine N guesses a path p of M (x). If p is accepting, Naccepts. Otherwise, N branches once, accepting on one branch and rejecting on the other. Wehave, for all x, gapN (x) = #N (x)�#N (x)= #N (x)�#M(x)= #M (x) + #M(x) �#M (x)= #M (x):2It is clear that gaps are no harder to compute than numbers of accepting paths. Proposition3.5 gives (perhaps) the strongest statement of this fact.De�nition 3.4 If C and D are two function classes, de�neC � D df= ff � g j f 2 C & g 2 Dg;where � is some appropriate binary operation, i.e., addition, subtraction, composition, etc.Proposition 3.5 GapP = #P�#P = #P� FP = FP �#P:(Note that here the minus sign refers to elementwise subtraction, not to set theoretic comple-ment.)Proof: For any M we have gapM = #M �#Mby de�nition, so GapP � #P�#P. To show that #P�#P � #P� FP , let f and g be #Pfunctions. We can assume that f = #M and g = #N , where M and N are CM's, and N is innormal form with polynomial q (just pad N with extra rejecting paths so that all paths haverank q; the result is a normal form machine with the same number of accepting paths). Let M 0be the machine which �rst branches once, then simulatesM on one branch and N on the other.We have, for any x, f(x) � g(x) = #M (x)�#N (x)= #M (x) + #N(x)� 2q(jxj)= #M 0(x)� 2q(jxj):Therefore f � g 2 #P� FP , and the inclusion holds. To show that #P� FP � GapP, let fbe a #P function and let g 2 FP . By lemma 3.3 there is an M such that f = gapM . Let Nbe such that for all x 2 ��, N (x) resembles M (x) padded with g(x) rejecting paths. Clearly,gapN = f � g. It now follows that the �rst two equalities hold. The last equality holds since#P�#P is closed under negation. 2 8

We might just as well have taken the �rst equality in proposition 3.5 as the de�nition ofGapP, and altered the proofs below accordingly. This route was indeed taken in [28]. Wenonetheless prefer to use our original de�nition in this chapter, if only for the conceptual easeof associating a single machine to every GapP function.We now list the closure properties of GapP, deferring the proofs until afterwards. It is wellknown that properties 1, 3, 4, and 5 below are also shared by #P. Property 2 clearly is notshared by #P. It is this property that gives GapP its power. Property 6 seems to dependheavily on property 2, so we don't believe it is shared with #P either. From these properties,it is easy to see that the permanent of an arbitrary integer matrix can be computed in GapP,although it cannot be computed in #P.Closure Property 1 GapP � FP = GapP and FP � GapP.Closure Property 2 If f 2 GapP then �f 2 GapP.Closure Property 3 If f 2 GapP and q is a polynomial, then the functiong(x) df= Xjyj�q(jxj) f(hx; yi)is in GapP.Closure Property 4 If f 2 GapP and q is a polynomial, then the functiong(x) df= Y0�y�q(jxj) f(hx; yi)is in GapP.Closure Property 5 If f 2 GapP, k 2 FP , and k(x) is bounded by a polynomial in jxj, thenthe function g(x) df= �f(x)k(x)�is in GapP.Closure Property 6 If f; g 2 GapP and 0 � g(x) � q(jxj) for some polynomial q, then thefunction h(x) df= f(hx; g(x)i)is in GapP.Corollary 3.6 GapP is closed under addition, subtraction, and multiplication.Proof: Let f1 and f2 be in GapP. Let N be a CM such that for all x, gapN (hx; 0i) = f1(x),gapN (hx; 1i) = f2(x), and gapN (hx; ii) = 0 for i � 2. For addition and multiplication, applyclosure properties 3 and 4, respectively, with q(x) � 2 arbitrary. Subtraction follows fromaddition and closure property 2. 2 9

Proof of Closure Property 1: Given a CM M and g 2 FP . Let N be such that N (x)simulates M (g(x)) for all x 2 ��. Clearly, N is a CM and gapN = gapM � g. The secondstatement follows immediately from lemma 3.3. 2Proof of Closure Property 2: Immediate from proposition 3.5. 2Proof of Closure Property 3: If f = gapM for some CM M , then there is a CM Nwhich �rst guesses a y of length not greater than q(jxj), then simulates M on input hx; yi foreach y guessed. Clearly, g = gapN . 2Proof of Closure Property 4: Given f = gapM , the machine N guesses, in sequence,computation paths of M on the inputs hx; 0i, hx; 1i, hx; 2i, and so on through hx; q(jxj)i. Naccepts if an even number of these paths are rejecting, and N rejects if an odd number of thesepaths are rejecting. N is clearly a CM. The fact that g = gapN can be shown by induction onthe value n = q(jxj) as follows: for n = 0, we have gapN (x) = f(hx; 0i) = g(x) because N (x)behaves just as M (hx; 0i) does. If n > 0, assume true for n � 1, and let N 0 be a machine thatacts the same as N except that N 0 only guesses paths of M on inputs hx; 0i; : : : ; hx; n� 1i. Forconvenience, let aN 0 df= #N 0(x), rN 0 df= #N 0(x), aM df= #M (hx; ni), and rM df= #M (hx; ni). Bythe inductive hypothesis, we haveg(x) = gapN 0 (x)f(hx; ni)= gapN 0 (x)gapM(hx; ni)= (aN 0 � rN 0)(aM � rM)= (aN 0aM + rN 0rM)� (aN 0rM + rN 0aM):Now N (x) accepts whenever it guesses an even number of rejecting paths. This happens eitherwhen there are an even number of rejections through hx; n� 1i and the last path is accepting,or when there are an odd number of rejections through hx; n� 1i and the last path is rejecting.Thus by the de�nition ofN 0, the total number of sequences accepted by N (x) is exactly aN 0aM+rN 0rM . Likewise, the total number of sequences rejected by N (x) is aN 0rM + rN 0aM . Thereforeg(x) = gapN (x). 2Of all the closure properties, property 5 is perhaps the most useful and least obvious. Itstates that, like #P, GapP is closed under binomial coe�cients. To prove this closure property,we will need a combinatorial lemma (lemma 3.7). We de�ne the binomial coe�cient as follows:�xy� df= x(x� 1)(x� 2) � � � (x� y + 1)y! ;10

which makes sense for all real numbers x and all nonnegative integers y. (If y = 0 then �xy� df= 1by convention.) Lemma 3.7 is proved using Vandermonde's convolution [11, page 174], whichstates that for integers a; b and k � 0,�a+ bk � = kXi=0 �ai�� bk � i�:An intuition behind this equality is that choosing a committee of k people from a group of awomen and b men is the same as �rst choosing i women then k� i men independently for eachpossible i.Lemma 3.7 For all integers r; j; k with k � 0,�jk� = kXi=0(�1)i�r + ii ��r + j + 1k � i �:Proof: Negate the �rst binomial coe�cient on the right hand side (see [11, page 174]) to get(right hand side) = kXi=0 ��r � 1i ��r + j + 1k � i �:Now apply Vandermonde's convolution to getkXi=0 ��r � 1i ��r + j + 1k � i � = �jk�:2It is important to note that the identity of lemma 3.7 holds for all integers j and nonnegativeintegers k.Proof of Closure Property 5: Note that if M1 is a CM running in time t df= t(n), andk df= k(x) is a FP function, then there is a nondeterministic machineM2 running in time O(kt)such that for all inputs x of length n,#M2(x) = �#M1(x)k(x) �:The machine M2 simply guesses a sequence of k paths of M1, and accepts if and only if thepaths are in strictly increasing lexicographical order and all of them are accepting. Note furtherthat if k(x) and t(n) are polynomially bounded, then M2 is a CM.11

Let f = gapM . By setting r df= #M(x), j df= gapM (x), and k df= k(x) in lemma 3.7 above, weget �f(x)k(x)� = k(x)Xi=0(�1)i�#M(x) + ii ��#M (x) + 1k(x)� i �:By the previous paragraph and lemma 3.3, there is a machineN that can generate a gap equal toeach of the binomial coe�cients on the right-hand side. By lemma closure properties 1 through4, it can combine these gaps to generate the whole right-hand side as a gap. (The machineN computes the factors by padding M with one accepting path, padding M with i acceptingpaths, then computing the resulting binomial coe�cients.) 2The following \delta" functions will be useful in many places later on: for integers k and Bwith 0 � k � B, de�ne �Bk (x) df= �xk��B � xB � k�for all x 2 Z. Notice that �Bk (x) = 8<: 0 if 0 � x < k,1 if x = k,0 if k < x � B.We now use these delta functions to prove closure property 6, which says that GapP is closedunder a limited form of composition.Proof of Closure Property 6: Notice that for any x,f(hx; g(x)i) = qXi=0 f(hx; ii)�qi (g(x));where q = q(jxj). The statement follows by the previous closure properties. 2Closure property 6 immediately gives a number of other limited closure properties, amongthem a strengthening of closure property 5.Corollary 3.8 If f; g 2 GapP and 0 � g(x) � q(jxj) for some polynomial q, then the functions�f(x)g(x)� and f(x)g(x)are in GapP.Proof: Apply closure property 6 with f̂ and g, wheref̂ (hx; ii) df= �f(x)i �for the �rst function, and f̂ (hx; ii) df= f(x)ifor the second. 2 12

4 Counting ClassesMost counting classes that have been studied previously can be de�ned using the gap functionalone. We will call such classes gap-de�nable.De�nition 4.1 A class C of languages is gap-de�nable if there exist disjoint sets A;R � ���Zsuch that, for any language L, L 2 C if and only if there exists a CM M withx 2 L =) (x; gapM (x)) 2 A;x 62 L =) (x; gapM (x)) 2 R;for all x 2 ��. We let Gap(A;R) denote the class C.We call A and R respectively the accepting and rejecting sets. We allow them to be com-pletely arbitrary, perhaps nonrecursive. We say that a CMM is (A;R)-proper if (x; gapM (x)) 2A [R for all x 2 ��, and we de�neLA;R(M) df= fx 2 �� j (x; gapM (x)) 2 Ag:To relativize de�nition 4.1 to an arbitrary �xed oracle, we permit M to be an OCM withaccess to that oracle. It must be noted, however, that A and R are arbitrary sets independent ofany machine. Therefore we have two natural ways of de�ning gap-de�nability for a relativizedclass: we say that a relativized class is uniformly gap-de�nable if it is gap-de�nable with respectto any oracle, but with the sets A and R �xed and independent of the oracle; a relativized classis nonuniformly gap-de�nable if it is gap-de�nable with respect to any oracle, where A and Rare chosen after the oracle and thus may vary depending on the oracle. This distinction will beimportant in section 5, especially for corollary 5.7. For now, unless otherwise stated, when werelativize a class Gap(A;R) to an oracle, A and R will remain �xed independent of the oracle,in accordance with our remarks at the beginning of section 2.There are other more restricted notions of gap-de�nability that are possible. For a discussionof some of these alternate de�nitions, see section 9.Proposition 4.2 The classes PP , C=P , and ModkP (for k � 2) are all (uniformly) gap-de�nable; in fact, the following are true for any language L:1. L 2 PP () (9M)(8x)[x 2 L$ gapM (x) > 0]:2. L 2 C=P () (9M)(8x)[x 2 L$ gapM (x) = 0]:3. L 2 ModkP () (9M)(8x)[x 2 L$ gapM (x) 6� 0 mod k]:The proof of proposition 4.2, given below, is straightforward with the aid of a normal formlemma. Unlike the case with #Pmachines, we cannot assume that GapPmachines are in normalform (a normal form machine always generates an even gap, for example). The following lemmais almost as good.Lemma 4.3 Let f be a function from �� to Z. Then f = gapM for some CM M in normalform if and only if f = 2gapN for some arbitrary CM N .13

Proof: Suppose M is a CM in normal form, and let q(jxj) be the rank of any path of Mon input x. The machine N guesses a partial path p of M (x) up through the �rst q(jxj) � 1nondeterministic choices. Let p1 and p2 be the two extensions of p made by the last branchof M . If both p1 and p2 are accepting, then N accepts; if they are both rejecting, N rejects;otherwise, N branches once to one accepting and one rejecting path. From this it is clear thatgapM = 2gapN .Conversely, let N be a CM (not necessarily in normal form). We can assume without lossof generality that N has branching degree at most two. Let q be a polynomial which is strictlygreater than the running time of N . The machine M simulates N (x), branching as N does,to guess a path p of N . Then M branches further, extending p with 2q(jxj)�rank(p) paths,all of rank q(jxj). If p is an accepting path, M makes exactly 2q(jxj)�rank(p)�1 + 1 of thesepaths to be accepting; if p rejects, then M makes 2q(jxj)�rank(p)�1� 1 of these paths accepting.The contribution to gapM(x) of the paths extending p is respectively +2 or �2, depending onwhether p accepts or rejects. Therefore, M (x) generates twice the gap of N (x), and M is innormal form. 2Proof of Proposition 4.2: All the left-to-right implications follow immediately fromlemma 3.3 and the fact that we can subtract a polynomial time computable function froma gap. The �rst two right-to-left implications are clear by lemma 4.3; we take the thresholdfunction f to be 2q(jxj)�1, where q is the polynomial associated with the normal form machine.We show the third right-to-left implication by building a CM whose number of accepting pathsis congruent mod k to the gap of a given CM as follows: given a CM M , let N be a CM that�rst generates k branches, then simulatesM on one branch andM on the other k� 1 branches.Clearly, #N = #M + (k � 1) �#M = gapM + k �#M;so #N � gapM mod k:The implication follows.This proof clearly relativizes, so all the classes mentioned in proposition 4.2 are uniformlygap-de�nable. 2Lemma 4.3 allows us to characterize GapP in terms of predicates in P .Proposition 4.4 If f : �� ! Z is any function, then f 2 GapP if and only if there is a predicateR(x; y) 2 P and a positive polynomial q such that for all x 2 ��,f(x) = 12 ����ny 2 f0; 1gq(jxj):R(x; y)o���� ���ny 2 f0; 1gq(jxj)::R(x; y)o���� :Proof: Immediate by lemma 4.3. 2There is yet another characterization of GapP as the class of functions computed by uniformfamilies of retarded arithmetic programs as described by Babai and Fortnow [2, section 3].14

Subtraction has been quite useful in simplifyingmany existing proofs about counting classes.As an easy example, consider the following proof that C=P � PP :Proof: Given L 2 C=P as witnessed by f 2 GapP, de�neg(x) df= 1� [f(x)]2:Clearly, g 2 GapP, and for all x, x 2 L() g(x) > 0:Thus L 2 PP . 2The reader may wish to compare the proof above with the one in [23].More signi�cantly, Toda and Ogiwara [28] have simpli�ed their results using GapP. Westate their main results here, using slightly altered notation. We �rst de�ne a subfamily of thegap-de�nable classes.De�nition 4.5 Let Q � Z be any set. De�neGapIn[Q] df= Gap(�� �Q;�� � (Z �Q)):Thus GapIn[Q] identi�es those gap-de�nable classes where the accepting and rejecting setspartition �� � Z and the acceptance criterion is independent of the input. Next, we de�ne thedBP operator from [28], which is a modi�cation of the BP operator of Sch�oning [22]:De�nition 4.6 ([28], De�nition 2.1) Let K be any class of languages. A language L is indBP � K if for every polynomial e, there exist a set A 2 K and a polynomial p such that for everyx 2 ��, jfw : jwj = p(jxj) & (x 2 L$ hx;wi 2 A)gj � 2p(jxj)(1� 2�e(jxj)):Remark: Sch�oning's BP operator is de�ned similarly, except that the polynomial e is re-placed with the constant 2. The class BPP (bounded error probabilistic polynomial time) canbe de�ned naturally as BP � P .Toda and Ogiwara showed the following technical lemma:Lemma 4.7 ([28, Lemma 2.3]) Let F be any function in GapPPH and let e be any polyno-mial. Then there exist a function H 2 GapP and a polynomial s such that for every x 2 ��,jfw : jwj = s(jxj) & H(hx;wi) = F (x)gj � 2s(jxj)(1� 2�e(jxj)):Their main theorem follows easily:Theorem 4.8 ([28, Theorem 2.4]) Let Q be an arbitrary subset of Z. ThenGapIn[Q]PH �dBP �GapIn[Q]:This theorem states that PH is \randomly low" for every gap-de�nable class of the formGapIn[Q]. One must bear in mind, however, that the result probably does not extend to allgap-de�nable classes. See section 6 below. 15

5 SPPIn de�nition 4.1, the accepting and rejecting sets need not partition �� � Z. That is, we cande�ne new gap-de�nable counting classes by putting restrictions on the behavior of CM's. Wewill be interested chie
y in the following class:De�nition 5.1 SPP is the class of all languages L such that there exists M such that, for allx, x 2 L =) gapM (x) = 1;x 62 L =) gapM (x) = 0:An SPP -like machine was �rst described in [15], and as mentioned earlier, SPP is the sameclass as XP and ZUP , studied independently in [19] and [12] respectively. These papers studyclosure properties of #P and GapP. Recently, K�obler, Sch�oning, & Tor�an [17] showed that theGraph Automorphism problem (does a given graph have any nontrivial automorphisms) is inSPP . They also showed that the Graph Isomorphism problem is in the class LWPP , de�nedat the end of this section.Clearly SPP � C=P \ co-C=P . It is also clear by lemma 3.3 that UP � SPP � ModkPfor any k. Notice that if we replace gapM with #M in the de�nition of SPP , we get UP . Thuson purely syntactic grounds, we might have called this class Gap-UP , although UP bears littleresemblance to its gap analog (SPP is closed under complements, for example). In the samespirit, we may de�ne the gap analog of the class Few:De�nition 5.2 Gap-Few is the class of all languages L such that there exists a CM M , apolynomial time predicate A(x; k), and a polynomial q such that, for all x of length n,0 � gapM (x) � q(n);and x 2 L() A(x; gapM (x)):If we replace gapM with #M above, we get the class Few. Clearly, Few � Gap-Few bylemma 3.3. It is not obvious, however, that Gap-Few is a gap-de�nable class. The reason isthat we must �x the accepting and rejecting sets in advance to work for all predicates A(x; k).It is not clear how we can do this. Theorem 5.9, however, provides a relativizable proof thatGap-Few = SPP , which implies Gap-Few is gap-de�nable, and indeed uniformly gap-de�nable.The sets A and R of de�nition 4.1 can be chosen arbitrarily (as long as they are disjoint).This freedom allows for many small, uninteresting gap-de�nable classes. For example, if L isany language, then fLg is clearly gap de�nable:fLg = Gap(L � Z;L� Z):To avoid these cases, we concentrate on reasonable gap-de�nable classes.De�nition 5.3 A gap-de�nable class C is reasonable if ; 2 C and �� 2 C.16

All the gap-de�nable classes introduced above are clearly reasonable. The next theoremimplies that SPP is the smallest reasonable gap-de�nable class.Theorem 5.4 Let C df= Gap(A;R) be a gap-de�nable class. The following are equivalent:1. C is reasonable.2. SPP � C.3. There exist f; g 2 GapP such that (x; f(x)) 2 A and (x; g(x)) 2 R for all x 2 ��.Proof: We show 1 =) 3 =) 2 =) 1.(1 =) 3): Let M and N be CM's recognizing ; and ��, respectively. Let f df= gapN andg df= gapM .(3 =) 2): Suppose L 2 SPP is recognized by the CMM with gap either 0 or 1. By corollary3.6, there is a CM N such that gapN = gapM � (f � g) + g:Thus L 2 C as witnessed by the machine N .(2 =) 1): Obvious. 2We still have a great deal of freedom in choosing A and R to get reasonable gap-de�nableclasses. In fact, it will be shown in section 8 that any countable collection of languages iscontained in a reasonable gap-de�nable class, which in turn implies that there are uncountablymany reasonable gap-de�nable classes.The next theorem says that SPP consists of exactly those languages which are low for GapP.Theorem 5.5 SPP = fL j GapPL = GapPg:Remark: It is unlikely that #PSPP = #P, or even that #PUP = #P. It follows immedi-ately from arguments in [16] that the latter equality implies UP = co-UP .Proof of Theorem5.5: We �rst show that SPP contains all GapP-low languages. SupposeL is a language such that GapPL = GapP. Let M be an OCM that, on input x, queries theoracle on x. If x is in the oracle,M accepts; if x is not in the oracle, M generates one acceptingand one rejecting path. Clearly,gapML(x) = � 1 if x 2 L,0 otherwise.By hypothesis, there is a CM N which computes the same gap as ML but without an oracle.Thus L 2 SPP as witnessed by N . 17

Conversely, we show that if M is an OCM and L is a language in SPP , there is a CM N(without an oracle) such that gapN = gapML :This part of the proof has the same
avor as the proof that �P�P = �P in [20]. Let M1 be anSPP machine recognizing L. We may assume without loss of generality that for any oracle Aand input x of length n,MA(x) makes exactly k(1n) oracle queries on each path, where k 2 FP .Fix n and let k df= k(1n). The CM N does the following|in sequence|on input x of lengthn: 1. Guesses a sequence a1; : : : ; ak of bits (oracle query answers).2. Guesses a legal path of M , substituting ai for the answer to the ith oracle query qi of M .(Let p be the computation path of N de�ned thus far.)3. Generates a gap Gp extending p, where Gp is de�ned as follows: for 1 � i � k letgi df= � gapM1(qi) if ai = 1,1� gapM1(qi) if ai = 0.If p ends in an accepting state of M , Gp df= Qki=1 gi. If p ends in a rejecting state,Gp df= �Qki=1 gi.For each path p above, N can clearly generate the corresponding gap Gp by simulatingM1 inpolynomial time, as is evident by the expressions for Gp and the closure properties of GapP.We have gi = � 1 if ai = L(qi),0 otherwise.Thus for any path p above, Gp = �1 if all ofM1's queries were answered correctly along p (i.e.,according to the language L), and Gp = 0 otherwise. Thus paths with incorrectly answeredqueries do not contribute anything to the gap of N , and the remaining gap is simply that ofML.More carefully, the gap generated byM on input x is the sum of the gaps generated for eachpath p, i.e., gapN (x) =Xp (gap generated from path p) =Xp Gp:The sum on the right can be divided into three parts depending on the type of the path p. LetA be the set of all paths p ending in an accepting state of M where all of M 's oracle queriesalong p are answered according to L. Let R be the set of all p ending in a rejecting state of Mwith all oracle queries answered according to L. Let E consist of the remaining paths, i.e., theones where some query along p is not answered according to L. We have, for any x,gapN (x) = Xp2AGp +Xp2RGp +Xp2EGp18

= Xp2A 1 +Xp2R(�1) +Xp2E 0= #ML(x)�#ML(x) + 0= gapML(x):2Corollary 5.6 GapPSPP = GapP:Corollary 5.7 If C is any uniformly gap-de�nable class, then CSPP = C.Proof: Let C = Gap(A;R) for some A;R � Z, let L 2 SPP , and let S 2 CL. By the remarksin section 4, there is an OCM M such that for all x 2 ��,x 2 S =) gapML(x) 2 A;x 62 S =) gapML(x) 2 R:By corollary 5.6, we have gapML = gapN for some unrelativized CM N . Thus N witnesses thatS 2 C. 2Corollary 5.8 SPP is closed under polynomial-time Turing reductions.Proof: SPP � P SPP � SPPSPP � SPPby corollary 5.7. Thus SPP = P SPP . 2It should be noted that there may be languages not in SPP which are low for some particulargap-de�nable classes. For example, K�obler, et al. [17] showed that Graph Isomorphism (GI) islow for PP and C=P (see below), and it is not known that GI 2 SPP . As another example,all �P sets are low for �P ([20]), and it is not likely that SPP = �P . Also, the class WPP ,de�ned later in this section, is low for PP ([26]), and we don't believe that SPP =WPP . Thesame is true for BPP , de�ned in the remark following de�nition 4.6 (see later in this section).K�obler et al. [15] showed that BPP is low for PP , and it is unlikely that BPP � SPP .We now generalize [15] to theorem 5.9 below regarding gaps.Theorem 5.9 SPP = Gap-Few:19

Proof: Clearly SPP � Gap-Few. Let L be in Gap-Few as witnessed by the CM M , thepolynomial time predicate A(x; k), and the polynomial q. Let ~A(hx; ki) be the 0-1-valued func-tion corresponding to the truth value of A(x; k). Finally, let f(x) df= ~A(x; gapM(x)). By closureproperty 6, f 2 GapP, furthermore, f(x) = 1 if x 2 L, and f(x) = 0 otherwise. Thus L 2 SPPas witnessed by f . 2Corollary 5.10 Few � SPP:Corollary 5.11 Few is contained in any reasonable gap-de�nable class. In particular,� Few � C=P ([15, 5, 4]).� Few �ModkP for any k � 2 ([7, 5, 4]).Proof: Immediate from theorem 5.4 and corollary 5.10. 2Corollary 5.11 also follows from related work of Beigel, Gill, & Hertrampf [5]: Few �PCPQ(�) for any predicate Q such that Q(0) = 0 and Q(1) = 1. See [4] for a de�nition ofPCPQ(�) . The next corollary subsumes all the lowness results in [15].Corollary 5.12 Few is low for any uniformly gap-de�nable class. In particular, Few is lowfor each of the classes PP , C=P , and �P ([15]).Proof: Immediate from corollaries 5.7 and 5.10. 2The proof of theorem 5.9 relativizes to show that SPPX = Gap-FewX for any oracle X,thus Gap-Few is uniformly gap-de�nable.Because of theorem 5.4 and its corollaries, there are several counting classes that are not gap-de�nable unless certain unlikely complexity theoretic inclusions hold. For example, if BPP isgap-de�nable, then UP � BPP , and if BPP is uniformly gap-de�nable, then BPPUP = BPP .Of course, these facts about BPP also hold for P , UP , and NP .The following class is a simple generalization of SPP :De�nition 5.13 WPP (\wide" PP) is the class of all languages L such that there exists aCM M and a function f 2 FP with 0 62 range(f) such that for all x,x 2 L =) gapM (x) = f(x);x 62 L =) gapM (x) = 0:Toda has studied this class, which he names Two, and has a clever proof that WPP is lowfor PP ([26], see Appendix A). It is clear that SPP � WPP � C=P \ co-C=P , and bothinclusions appear to be proper. We may also de�ne a restricted version of WPP , where thefunction f in the de�nition can depend only on the length of x. We'll call this class LWPP .20

It appears that SPP 6= LWPP as well. The proof of theorem 5.5 can be modi�ed easily toshow that LWPP is low for PP and C=P . K�obler, et al. [17] show that GI and other relatedproblems are low for these classes by showing that GI 2 LWPP .Unfortunately, we cannot modify the proof of theorem 5.5 to show that LWPP is low forWPP or for LWPP . The reason lies in the way these classes are relativized. If L is a �xedlanguage in LWPP , we say that A 2WPPL if and only if there exists an everywhere nonzerofunction f : �� ! Z, computable in polynomial time relative to L, and a GapPL function g suchthat, for all x 2 ��, x 2 A =) g(x) = f(x);x 62 A =) g(x) = 0:The problem is that L can be used in the computation of f . There is no reason to believethat A is then in WPP witnessed by a polynomial-time unrelativized function f . The samegoes for the class LWPPLWPP . We can, however, adapt the proof of theorem 5.5 to show thatSPPLWPP = LWPP . Thus LWPP is closed under polynomial-time Turing reductions, andso any problem Turing reducible to GI is in LWPP .At �rst blush, the classes WPP and LWPP appear not to be gap-de�nable, since theaccepting and rejecting sets cannot be �xed once and for all, but rather must vary dependingon the choice of the function f . We show in section 8.1, however, that WPP and LWPP areindeed nonuniformly gap-de�nable. The nonuniformity appears necessary, because to relativizethe de�nitions of the two classes properly to an oracle X, one must allow f to be a function inFPX as above, thus the accepting set depends on the oracle.6 Randomized CountingOne might wonder whether theorem 4.8 holds for a class such as SPP , i.e., is it true thatSPPPH � dBP � SPP , or even that PH � dBP � SPP? Toda & Ogiwara address this questionin [28] and conclude that this is probably not the case since the de�nition of any SPP languageincludes a promise that the gap of some machine is either 0 or 1, and the proof of theorem 4.8relies on there being no such promise for a language in GapIn[Q]. As further evidence that SPPis not as hard as PH, we now show that there is an oracle relative to which NP 6� dBP � SPP .(An observation in [28] implies that dBP �SPP = BP �SPP since SPP is closed under majority-tt-reductions.) In fact, the oracle constructed in [3] will do.Proposition 6.1 There exists an oracle A such that NPA 6� (dBP � SPP)A.Proof: The following implications all relativize:NP � dBP � SPP =) PNP � PcBP �SPP=) PNP � PBPPSPP=) PNP � BPP SPP=) PNP � PPSPP=) PNP � PP:21

The last implication follows from corollary 5.7. Beigel [3] constructed an oracle relative to whichPNP 6� PP . Relative to this same oracle then, NP 6� dBP � SPP . 2The most we can say at present is that the statement PH � SPP is \almost" true. If welet F be the characteristic function of some PH language L in lemma 4.7, we get the followingcorollary:Corollary 6.2 (to Lemma 4.7) For every L 2 PH and polynomial e, there exist a functionH 2 GapP and a polynomial s such that, for all x,jfw : jwj = s(jxj) & H(hx;wi) = �L(x)gj � 2s(jxj)(1 � 2�e(jxj)):We may make the following de�nition: for any relativizable class C, a language L is inAlmost(C) if and only if PrA [L 2 CA] = 1:Here, the probability is taken over all oracles A where each x 2 �� is independently put into Awith probability 1=2. The next proposition follows by standard techniques from a relativizationof lemma 4.7.Proposition 6.3 With respect to a random oracle, PH is low for GapP, i.e.,PrR [GapPPHR = GapPR] = 1:Proof: Lemma 4.7 can be relativized to any oracle categorically. That is, given any functionFX computed by some appropriate oracle machine MX so that FX 2 GapPPHX for all Xuniformly, and given any polynomial e, there exist a polynomial s and an OCM N such that forall x of length n and all oracles A,���w : jwj = s(n) & GA(hx;wi) = FA(x)	�� � 2s(n)(1 � 2�e(n));where GA df= gapNA . We may also assume that all queries to A in the computation of GA(hx;wi)are bounded by the running time of M . Let r be a polynomial bounding the running time ofM . De�ne, for any oracle A and any x of length n,ĜA(x) df= GA(hx;wAi);where wA df= A(x0r(n)+1)A(x0r(n)+2) � � �A(x0r(n)+s(n)):Clearly there is an OCM N̂ such that ĜA = gapN̂A for all A. Fix x of length n. The string wAis made up of bits consisting of the values of A on arguments which are not used in either thecomputation of FA(x) or the computation of GA(hx;wi) for any w of length s(n). Because ofthis independence, we have PrR [ĜR(x) 6= FR(x)] � 2�e(n):22

Letting c be any natural number and letting e(n) df= 2n+ c+ 1, we havePrR [ĜR 6= FR]= PrR [(9x)ĜR(x) 6= FR(x)]� 1Xn=0 Xx:jxj=nPrR [ĜR(x) 6= FR(x)]� 1Xn=0 Xx:jxj=n 2�2n�c�1= 1Xn=02�n�c�1= 2�c;which in turn implies that 1� 2�c � PrR [FR = ĜR]� PrR [FR 2 GapPR]:Since PrR[FR 2 GapPR] is independent of c, we may take c arbitrarily large to getPrR [FR 2 GapPR] = 1:Since GapPPHX = SF FX where the F 's are computed by only countably many machines Mdescribed above, we obtain PrR [GapPPHR = GapPR] = 1:2Corollary 6.4 Almost(SPPPH) = Almost(SPP).Proof: Let L be any language. We haveL 2 SPPPHA for a.e. A() �L 2 GapPPHA for a.e. A() �L 2 GapPA for a.e. Aby proposition 6.3. 2Subsequent research [8] implies that Almost(SPP) is also nonuniformly gap-de�nable.For the next corollary, a natural way to relativize Almost(C) to an oracle A is to say thatL 2 (Almost(C))A if and only if PrR[L 2 CR�A] = 1. With this de�nition, Almost(P)relativizes the same way as BPP with the usual machine-based de�nition.Corollary 6.5 PH is low for Almost(SPP).23

Proof: It can be easily shown that (Almost(SPP))PH is a subclass of Almost(SPPPH)and a superclass of Almost(SPP). The corollary follows from the equality of the two latterclasses. 2Corollary 6.6 PH � Almost(SPP).Corollary 6.7 With respect to a random oracle, PH � SPP , in fact, PH is low for SPP .Proof: For a.e. A we havePHA � SPPPHA = fL j �L 2 GapPPHAg = fL j �L 2 GapPAg = SPPA:27 Closure Properties of GapPIt is natural to ask if, in addition to the closure properties enumerated in section 3, GapP hasany other closure properties. For example, is GapP closed under unrestricted composition withitself? Is GapP closed under left composition with functions in FP? We know from section 3that GapP is closed under left composition with the \bounded" delta function �Bk . Is GapPalso closed under left composition with the \unbounded" delta function�(x) df= � 1 if x = 0,0 otherwise,de�ned for all x 2 Z?The answer to all of these questions is no, unless certain unlikely complexity theoretic iden-tities hold. Ogiwara & Hemachandra [19] have studied closure questions such as these in detail,primarily for the class #P. They and Gupta [12] also address closure properties of GapP. Weobtained theorem 7.1 independently of their work. See [19] for a nice, uni�ed treatment of thesequestions.In theorem 7.1 below, if P (~x) is any predicate, we de�ne the function[P (~x)] df= � 1 if P (~x) is true,0 otherwise.For example, [x = 0] = �(x) as de�ned above. Also recall that we have identi�ed �� with Z forcomputational purposes.Theorem 7.1 The following are equivalent:1. f�g �GapP � GapP.2. f�xy:[x = y]g � (GapP� GapP) � GapP.24

3. GapP �GapP � GapP.4. f�x:[0 < x]g �GapP � GapP.5. f�xy:[x < y]g � (GapP� GapP) � GapP.6. SPP = PP .7. SPP = C=P .8. (�xy:[x = y]) � (#P�#P) � GapP.9. FP �GapP � GapP.Proof Sketch: In what follows, f and g are arbitrary functions in GapP.1 =) 2: [f(x) = g(x)] = �(f(x) � g(x)).2 =) 3: g(f(x)) =Py2Z g(y) � [y = f(x)].3 =) 1: Follows from the fact that � 2 GapP.2 =) 4: [0 < f(x)] =Py>0[y = f(x)].4 =) 5: [f(x) < g(x)] = [0 < g(x)� f(x)].5 =) 1: �(f(x)) = 1� [0 < f(x)]� [f(x) < 0].4 =) 6: If L 2 PP witnessed by f 2 GapP, then L 2 SPP witnessed by [0 < f(x)].6 =) 7: Follows from the fact that C=P � PP .7 =) 1: The C=P set fx j f(x) = 0g is in SPP witnessed by the function [f(x) = 0] = �(f(x)).Hence � � f 2 GapP.2 =) 8: Follows from the fact that #P � GapP.8 =) 1: If f = f1 � f2 where f1; f2 2 #P, then [f(x) = 0] = [f1(x) = f2(x)].3 =) 9: Follows from the fact that FP � GapP.9 =) 1: Follows from the fact that � 2 FP .2Ogiwara & Hemachandra [19] and independently Gupta [12] show further that statements 6and 7 are equivalent to the polynomial counting hierarchy collapsing to SPP (see either sourcefor de�nitions).8 Structure of the Gap-De�nable ClassesIn this section we examine the collection G of all gap-de�nable classes, partially ordered byinclusion. We show that any countable class of languages is contained in a unique minimumgap-de�nable class (its `gap-closure'). From this we show that G is closed under intersection, andfurther that G is a lattice under inclusion, i.e., any two gap-de�nable classes have a gap-de�nableleast-upper-bound and a gap-de�nable greatest-lower-bound.In section 8.1 we will de�ne a gap-closure operator, GapCl, which maps countable classes oflanguages to other countable classes of languages. There we will show that GapCl satis�es thefollowing axioms for any countable classes D and E :25

1. GapCl(D) is gap-de�nable.2. D � GapCl(D).3. If D is gap-de�nable, then GapCl(D) = D.4. D � E =) GapCl(D) � GapCl(E) (GapCl is monotone).In order to prove these results, we must build accepting and rejecting sets that are not recursive(see section 8.1). (Despite this fact, the complexity of GapCl(C) is not a great deal higher thatthat of C; in particular, if C consists only of recursive sets, than so does GapCl(C).) We use thesame technique in section 8.1 to show that the classes WPP and LWPP are (nonuniformly)gap-de�nable.We can use GapCl to get structural information about the gap-de�nable classes, summarizedin the following theorem:Theorem 8.11. GapCl(GapCl(D)) = GapCl(D) (GapCl is idempotent).2. If D is a countable class, there is a unique minimum gap-de�nable class which contains D.3. Any countable collection of gap-de�nable classes has a gap-de�nable least-upper-bound(under inclusion).4. The intersection of an arbitrary collection of gap-de�nable classes is gap-de�nable.5. The gap-de�nable classes form a lattice (under inclusion).Proof:1. Follows immediately from axioms 1 and 3.2. Clearly, D � GapCl(D) by axiom 2, and GapCl(D) is gap-de�nable by axiom 1. If E isany gap-de�nable class containing D, then by axioms 3 and 4, GapCl(D) � GapCl(E) = E .Therefore, GapCl(D) is the least gap-de�nable class containing D.3. Let fDigi2�� be a collection of gap-de�nable classes. All the Di are countable, so D =Si2�� Di is countable, and GapCl(D) is the required least-upper-bound.4. Let fDigi2I be an arbitrary collection of gap-de�nable classes, and let D df= Ti2I Di. Forall i 2 I, we have D � Di, so by axioms 3 and 4, we have GapCl(D) � GapCl(Di) = Di.Thus GapCl(D) � D, and so GapCl(D) = D by axiom 2. Thus D is gap-de�nable byaxiom 1.5. This follows immediately from the previous two claims. The least-upper-bound of twoclasses is the gap-closure of their union, and the greatest-lower-bound is their intersection.2The operator GapCl satis�es some other nice properties besides axioms 1{4. For example, ifD is closed downward under ptimem-reductions, then GapCl(D) is similarly closed (theorem 8.5in section 8.1). Thus we know immediately that GapCl(NP) is closed under ptimem-reductions,for instance. 26

8.1 The Gap-Closure Operator, GapClLet W be an immune set, i.e., W has the following two properties:1. W is in�nite.2. W has no in�nite recursively enumerable subsets.It is well-known that such sets exist (see [21, 24]); for example, we can takeW df= fx 2 �� j K(x) � jxj=2g;where K(x) is the Kolmogorov complexity of x with respect to some �xed universal DTM (see[18]). We let W = fw1; w2; w3; : : :g, where w1 < w2 < w3 < : : : .Now suppose D = fL1; L2; L3; : : :g is a countable collection of languages. De�neAD df= f(x;wi) j x 2 Ligand RD df= f(x;wi) j x 62 Lig;and de�ne GapCl(D) df= Gap(AD; RD).Fact 8.2 If M is an (AD; RD)-proper CM, then range(gapM) is a �nite subset of W .Proof: Clearly, range(gapM) � W by the de�nitions of AD and RD. Since gapM is a com-putable function, its range is recursively enumerable and hence �nite by the second property ofW . 2Theorem 8.3 The operator GapCl satis�es axioms 1{4 above.Proof:1. GapCl(D) is gap-de�nable by de�nition.2. If L 2 D = fL1; L2; : : :g, then L = Li for some i � 1. Any CM M that generates aconstant gap of wi is (AD; RD)-proper, and L = LAD ;RD (M). Thus L 2 GapCl(D).3. Suppose D = fL1; L2; : : :g = Gap(A;R) for some A and R, and let M1;M2; : : : be (A;R)-proper CM's such that Li = LA;R(Mi) for all i � 1. Suppose L is a language in GapCl(D).We have L = LAD;RD (M)for some (AD; RD)-proper CM M . By fact 8.2 above, there is some k � 1 such thatrange(gapM) � fw1; : : : ; wkg. Consider a CM N such thatgapN (x) = kXi=1 �wkwi (gapM(x))gapMi(x);27

where the �wkwi are the delta functions de�ned in section 3. Such an N clearly exists. Givenan input x, suppose gapM (x) = wi0 for some 1 � i0 � k. Then gapN (x) = gapMi0 (x).Furthermore, x 2 L =) (x; gapM (x)) 2 AD=) (x;wi0) 2 AD=) x 2 Li0=) (x; gapMi0 (x)) 2 A=) (x; gapN (x)) 2 A:Similarly, x 62 L =) (x; gapN (x)) 2 R. Thus N is (A;R)-proper and L = LA;R(N), soL 2 Gap(A;R) = D.4. Suppose D = fL1; L2; : : :g and E = fL01; L02; : : :g are countable language classes and D � E .Assume L = LAD ;RD (M) for some (AD; RD)-proper CMM . We show that L 2 GapCl(E).As before, there exists a k such that range(gapM) � fw1; : : : ; wkg. Since D � E , thereexist n1; : : : ; nk such that Li = L0ni for 1 � i � k. Let N be a CM such thatgapN (x) = kXi=1 �wkwi (gapM(x))wni :By an argument similar to the one above, we have that N is (AE ; RE)-proper and L =LAE ;RE (N). Thus L 2 GapCl(E).2The preceding proof relativizes to any oracle, but only nonuniformly. This is because givenan oracle, we must choose W to be immune relative to that oracle. Thus the accepting andrejecting sets that we construct must depend on the oracle. This means that the gap-closure ofa class is not necessarily uniformly gap-de�nable.We now use the same technique to show that WPP and LWPP are nonuniformly gap-de�nable.Proposition 8.4 The classes WPP and LWPP are (nonuniformly) gap-de�nable.Proof: We show that WPP = GapCl(WPP). The proof for LWPP is similar. Let WPP =fL1; L2; : : :g such that for all i > 0 and x 2 ��,x 2 Li =) gapMi(x) = fi(x);x 62 Li =) gapMi(x) = 0;for CM's M1;M2; : : : and FP functions f1; f2; : : : . As in the proof of theorem 8.3, let L df=LAWPP ;RWPP(M) for some CM M , and let k be as before. De�ne F 2 FP byF (x) df= kYj=1 fj(x):28

Let N be a CM such thatgapN (x) =kXi=1 24�wkwi (gapM (x)) � gapMi(x) � Y1�j�k & j 6=ifj(x)35 :By arguments similar to theorem 8.3, L 2 WPP as witnessed by the CM N and FP functionF . 2What closure properties of a class D are inherited by GapCl(D)? We can show the following:Theorem 8.5 Let D be a countable class of languages.1. If D is closed downward under ptime m-reductions, then GapCl(D) is closed downwardunder ptime m-reductions.2. If D is closed under complements, then GapCl(D) is closed under complements.3. If D is closed downward under ptime 1-tt-reductions, then GapCl(D) is closed downwardunder ptime 1-tt-reductions.Proof: We only prove the �rst statement. The other two are similar. Suppose D, as above, isclosed under ptime m-reductions, L 2 GapCl(D), and f is any function in FP . We must showthat f�1[L] 2 GapCl(D). Let L = LAD ;RD (M) and k be as before. Since D is closed underptime m-reductions, there exist n1; : : : ; nk such that Lni = f�1[Li] for 1 � i � k. Let N be aCM such that gapN (x) = kXi=1 �wkwi (gapM (f(x)))wni :By arguments similar to those for theorem 8.3, we get f�1[L] = LAD ;RD (N). 2Subsequent research [8] has shown that GapCl also preserves closure under union, intersec-tion, join, and �nite di�erence. Moreover, the de�nition of GapCl and gap-de�nability can begreatly simpli�ed for classes closed under union and intersection.9 Alternative Notions of Gap-De�nabilityThere are three natural conditions one can add to the de�nition of gap-de�nability:1. The accepting and rejecting sets A and R must partition �� � Z, i.e., A [R = �� � Z.2. The criteria for acceptance/rejection must be independent of the input, i.e., A = �� � A0and R = �� �R0 for disjoint sets A0; R0 � Z.3. The sets A and R must be of low complexity.29

The second and third conditions both lead to proper restrictions of the notion of gap-de�nability,even when one considers only reasonable gap-de�nable classes (exercise). This is not known forthe �rst condition, however (see section 10). Each restriction has its own advantages: the �rstrestriction guarantees that all CM's are (A;R)-proper, and hence the resulting classes are allrecursively presentable, at least relative to A and R; the second restriction guarantees that theresulting classes are closed under joins, �nite di�erences (provided the classes are reasonable),and polynomial-timem-reductions; the third restriction ensures that the resulting classes are ofreasonably low complexity. The �rst two conditions taken together yield the classes GapIn[Q](see de�nition 4.5) considered by Toda & Ogiwara [28], which we will call nice classes. Aswell as having all the properties mentioned above, nice classes also have complete sets (underpolynomial time m-reductions). Despite these restrictions, all the well-known gap-de�nableclasses|PP , C=P , and ModkP|are nice, and have simple acceptance/rejection criteria.A disadvantage of these restrictions is that the theorems of section 8 apparently do not holdfor any of them. At present, we see no way of getting around the use of (nonrecursive) immunesets to verify the properties of GapCl. It also appears that the intersection of two nice classesis most likely not nice, in fact, we have the following proposition:Proposition 9.1 If Q1; Q2 � Z are chosen independently at random, thenGapIn[Q1] \GapIn[Q2] = SPPwith probability 1.Proposition 9.1 follows immediately from lemmas 9.3 and 9.4, below, with a simple applica-tion of Fubini's Theorem. Recall that we identify �� with Z.De�nition 9.2 Fix an oracle A � ��. A set S � Z is immune relative to A if1. S is in�nite, and2. every A-r.e. subset of S is �nite.The set S is bi-immune relative to A if both S and Z � S are immune relative to A.Lemma 9.3 For every set A � ��,PrS [S is bi-immune relative to A] = 1:Proof: Fix an A-r.e. set W � Z and let S � Z be chosen at random. Since there are onlycountably many �nite and co�nite sets, S and Z�S are both in�nite with probability 1. Clearly,PrS [W � S _ W � Z � S] = 2�jW j+1if W is �nite, and PrS [W � S _ W � Z � S] = 0 if W is in�nite. Since there are onlycountably many in�nite A-r.e. sets, we havePrS [S is not bi-immune relative to A]30

= PrS [(9W in�nite A-r.e.) W � S _ W � Z � S]� XW inf A-r.e. PrS [W � S _ W � Z � S]= 0;so the lemma holds. 2Lemma 9.4 For every Q1; Q2 � Z, if Q1 62 f;; Zg and Q2 is bi-immune relative to Q1, thenGapIn[Q1]\GapIn[Q2] = SPP:Proof: Clearly, SPP � GapIn[Q1] \GapIn[Q2] by theorem 5.4 and the fact that GapIn[Q1]and GapIn[Q2] are both reasonable gap-de�nable classes.Let L � �� be a language in GapIn[Q1]\GapIn[Q2]. There exist f; g 2 GapP such that forall x 2 ��, x 2 L() f(x) 2 Q1 () g(x) 2 Q2:The �rst biconditional implies that L is recursive in Q1, which in turn implies that both g[L]and g[L] are Q1-r.e. But since g[L] � Q2 and g[L] � Z � Q2, both sets are �nite, and thus ghas �nite range. It is then clear that L 2 Gap-Few, and so by theorem 5.9, L 2 SPP . 210 Open QuestionsThere are several interesting questions regarding gap-de�nable classes.� Because WPP and LWPP are only nonuniformly gap-de�nable, it is not at all clear thatWPPSPP = WPP . The best we are able to show is that WPPSPP � C=P \ co-C=P .� Is WPP uniformly gap-de�nable?� Does WPP = SPP , or even LWPP = SPP?� Is WPP closed under polynomial-time Turing reductions?� Is there a GapP function Turing equivalent to an NP -complete language?� How does BPP relate to the gap-de�nable classes? In particular, is it the case thatGapCl(BPP) = PP?� Does GapCl preserve closure under less restricted reductions, e.g., ptime tt-reductions?� Is there a reasonable gap-de�nable class which does not satisfy the �rst condition in section9? Is SPP such a class?� Are there two nice classes whose intersection is known not to be nice?� Are there other interesting gap-de�nable classes not previously studied?31

AcknowledgmentsWe would like to thank Seinosuke Toda, Richard Beigel, Nick Reingold, and Lane Hemachandrafor many helpful discussions and suggestions. We would also like to thank Krzysztof Lorys forpointing out an error in an earlier version of the paper.References[1] E. W. Allender. The complexity of sparse sets in P. In Structure in Complexity Theory,volume 223 of Lecture Notes in Computer Science, pages 1{11. Springer-Verlag, June 1986.[2] L. Babai and L. Fortnow. Arithmetization: A new method in structural complexity theory.Computational Complexity, 1(1):41{67, 1991. A previous version appeared in Proceedingsof the 31st annual IEEE Symposium on Foundations of Computer Science, pages 26{34,1990.[3] R. Beigel. Perceptrons, PP and the polynomial hierarchy. In Proceedings of the 7th Structurein Complexity Theory Conference, pages 14{19, 1992.[4] R. Beigel and J. Gill. Counting classes: Thresholds, parity, mods, and fewness. Unpublishedmanuscript, October 1990.[5] R. Beigel, J. Gill, and U. Hertrampf. Counting classes: Thresholds, parity, mods, and few-ness. In Proceedings of the Seventh Annual Symposium on Theoretical Aspects of ComputerScience, volume 415 of Lecture Notes in Computer Science, pages 49{57. Springer-Verlag,1990.[6] R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection. In Proceedingsof the 23rd annual ACM Symposium on Theory of Computing, pages 1{9, 1991.[7] J. Cai and L. Hemachandra. On the power of parity polynomial time.Mathematical SystemsTheory, 23(2):95{106, 1990.[8] S. Fenner, L. Fortnow, and L. Li. Gap-de�nability as a closure property. Unpublished,1992.[9] J. Gill. Computational complexity of probabilistic complexity classes. SIAM Journal onComputing, 6:675{695, 1977.[10] L. M. Goldschlager and I. Parberry. On the construction of parallel computers form variousbases of Boolean functions. Theoretical Computer Science, 43:43{58, 1986.[11] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-WesleyPublishing House, 1989.[12] S. Gupta. The power of witness reduction. In Proceedings of the 6th Annual IEEE Structurein Complexity Theory Conference, pages 43{59, 1991.[13] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation.Addison-Wesley, 1979.[14] J. K�obler. Strukturelle Komplexit�at von Anzahlproblemen. PhD thesis, Universit�atStuttgart, 1989. Page 62. 32

[15] J. K�obler, U. Sch�oning, S. Toda, and J. Tor�an. Turing machines with few accepting com-putations and low sets for PP. Journal of Computer and System Sciences, 44(2):272{286,1992.[16] J. K�obler, U. Sch�oning, and J. Tor�an. On counting and approximation. Acta Informatica,26:363{379, 1989.[17] J. K�obler, U. Sch�oning, and J. Tor�an. Graph Isomorphism is low for PP. In Proceedings ofthe Ninth Annual Symposium on Theoretical Aspects of Computer Science, volume 577 ofLecture Notes in Computer Science, pages 401{411. Springer-Verlag, 1992.[18] M. Li and P. M. B. Vit�anyi. Applications of Kolmogorov complexity in the theory ofcomputation. In A. L. Selman, editor, Complexity Theory Retrospective, chapter 6, pages147{203. Springer-Verlag, 1990.[19] M. Ogiwara and L. A. Hemachandra. A complexity theory of feasible closure properties.In Proceedings of the 6th Annual IEEE Structure in Complexity Theory Conference, pages16{29, 1991.[20] C. H. Papadimitriou and S. K. Zachos. Two Remarks on the Power of Counting, pages269{276. Lecture Notes in Computer Science 145. Springer-Verlag, 1983.[21] H. Rogers. Theory of Recursive Functions and E�ective Computability. McGraw-Hill, 1967.Reprinted. MIT Press. 1987.[22] U. Sch�oning. Probabilistic complexity classes and lowness. Journal of Computer and SystemSciences, 39:84{100, 1988. Also appeared in Proceedings of the 2nd Annual IEEE Structurein Complexity Theory Conference, pages 2{8, 1987.[23] J. Simon. On Some Central Problems in Computational Complexity. PhD thesis, CornellUniversity, Ithaca, N. Y., January 1975. Available as Cornell Department of ComputerScience Technical Report TR75-224.[24] R. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag, 1987.[25] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1{22,1977.[26] S. Toda, 1990. Private communication.[27] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,20(5):865{877, 1991.[28] S. Toda and M. Ogiwara. Counting classes are at least as hard as the polynomial-timehierarchy. SIAM Journal on Computing, 21(2):316{328, 1992.[29] L. Valiant. The complexity of computing the permanent. Theoretical Computer Science,pages 189{201, 1979.[30] K. Wagner. The complexity of combinatorial problems with succinct input representation.Acta Informatica, 23:325{356, 1986. 33

A WPPWe reproduce here Toda's result [26] mentioned in section 5.Theorem A.1 (Toda) PPWPP = PP .The theorem follows immediately from the following three lemmas:Lemma A.2 PPWPP = C � PWPPctt , where C� is Wagner's counting operator [30], and PWPPcttis the closure of WPP under conjunctive tt-reductions. 2Lemma A.3 PWPPctt = WPP .Proof Sketch: Suppose L �pctt S via the function r(x) df= hq1; : : : ; qmi, and S 2 WPPwitnessed by the FP function f and GapP function g. Then L 2 WPP witnessed by the FPfunction h(x) df=Qq2r(x) f(q) and the GapP function k(x) df= Qq2r(x) g(q). 2Lemma A.4 C �WPP = PP .Proof Sketch: Obviously PP = C �P � C �WPP . Conversely, let L be in C �WPP . Thenthere exist A 2WPP and a polynomial p such that for all x of length n,x 2 L() ���fw 2 f0; 1gp(n) j x#w 2 Ag��� > 2p(n)�1:Moreover, there exist functions F 2 GapP and f 2 FP such that for all y, f(y) 6= 0 and1. F (y) is either 0 or f(y), and2. y 2 A() F (y) = f(y).We can assume without loss of generality that f(y) > 0 for all y. Let q be a polynomial satisfyingq(n) > p(n) for all n, and 2q(n) > f(x#w) for all x of length n and w of length p(n). Then,de�ne a function G as follows: for all x of length n,G(x) df= Xw2f0;1gp(n) l22q(n)=f(x#w)m �F (x#w):Obviously, G 2 GapP. It is now easy to show that for all x of length n,x 2 L() G(x) � (2p(n)�1 + 1) � 22q(n):Therefore L 2 PP . 2 34

