
Comparing Notions of Full DerandomizationLan
e Fortnow�NEC Resear
h Institute
Abstra
tMost of the hypotheses of full derandomization fallinto two sets of equivalent statements: Those equiva-lent to the existen
e of eÆ
ient pseudorandom gener-ators and those equivalent to approximating the a
-
epting probability of a 
ir
uit. We give the �rst rel-ativized world where these sets of equivalent state-ments are not equivalent to ea
h other.1 Introdu
tionImpagliazzo and Wigderson [IW97℄ show that if thereexists a language E that requires 2
(n) size 
ir-
uits then P = BPP. Andreev, Clementi andRolim [ACR98℄ show that if eÆ
ient hitting set gen-erators exist then P = BPP. A 
areful look revealsthat not only do these papers have the same 
on
lu-sion but in fa
t their hypotheses imply ea
h other.Both of their assumptions produ
e a pseudorandomgenerator that su

eeds against all small 
ir
uits. Itmight be easier to allow the pseudorandom genera-tor a

ess to the 
ir
uit it tries to fool. The exis-ten
e of generators with a

ess to the 
ir
uit is equiva-lent to many other derandomization hypotheses su
has eÆ
iently approximating the a

epting probabil-ity of a 
ir
uit, Promise-RP is easy, Promise-BPPis easy, eÆ
iently �nding a

epting inputs of 
ir
uitsthat a

ept many inputs, and the equivalen
e of the
lasses AP and APP de�ned by Kabanets, Ra
ko�and Cook [KRC00℄.We give some eviden
e that allowing a

ess to the
ir
uit does help in derandomization. We produ
e the�rst relativized world where eÆ
ient pseudorandomgenerators do not exist but we still 
an approximatethe a

epting probability of a 
ir
uit. In fa
t ourora
le makes the Impagliazzo-Wigderson assumption�Address: 4 Independen
e Way, Prin
eton, NJ08540 USA. Email: fortnow�resear
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.
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fail in a strong way|relative to it the 
lass E haslinear-size 
ir
uits.Relativization plays an important role in deran-domization results. Relativization helps explain whydespite a large 
olle
tion of re
ent derandomizationresults we still la
k any nontrivial un
onditional de-randomization of BPP or ZPP. Nearly all of thederandomization te
hniques, in
luding all of the re-sults mentioned in this paper, relativize and there ex-ist relativized worlds where BPP = NEXP [Hel86℄and ZPP = EXP [Hel84, Kur85℄. We will need trulydi�erent and revolutionary new te
hniques to get un-
onditional derandomization results or to show eÆ-
iently approximating the a

epting probability of a
ir
uit implies eÆ
ient pseudorandom generators.In Se
tion 2 we give an overview of the variousnotions of full derandomization and how they relate.In Se
tion 3 we give a proof of our main result of arelativized world that distinguishes the two importantequivalent 
lasses of full derandomization hypotheses.In Se
tion 4 we des
ribe the role of relativization inderandomization results.2 Full DerandomizationIn this se
tion we dis
uss the various notions of fullderandomization and how they are known to relate.This se
tion is meant as a survey of these notions. Ifno 
itations are given, the results should be 
onsid-ered folklore. Proofs, when given, are for 
omplete-ness. Note that all of the results mentioned in thisse
tion hold relative to any ora
le.Figure 1 shows the hypotheses that we 
onsider inthis paper. To make a long story short, ea
h of thesehypotheses imply all of the ones below it and thereare relativized worlds that prevent all of the reverseimpli
ations. The statements listed in ea
h box areequivalent. Current belief has Hypothesis I false andthe rest true.Let us 
onsider the hypotheses in detail. Hypoth-
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Hypothesis IP =NP+Hypothesis IIEÆ
ient Pseudorandom Generators ExistEÆ
ient Hitting Set Generators ExistE 
ontains Exponentially-Hard Sets+Hypothesis IIICir
uit Approximation is EasyPromise BPP is EasyPromise RP is EasyEÆ
iently �nd a

epting inputs of 
ir
uits thata

ept many inputsAP = APP+Hypothesis IVP = BPP+Hypothesis VP = RP+Hypothesis VIP = ZPPFigure 1: Derandomization Hypothesesesis I, P =NP, has been studied in great detail (seethe book of Garey and Johnson [GJ79℄ for example).P = NP is not a derandomization hypothesis per sebut we in
lude it for 
omparisons to the other hy-potheses.To understand Hypothesis II let us give formal def-initions of eÆ
ient pseudorandom generators and ef-�
ient hitting set generators.De�nition 2.1 An eÆ
ient pseudorandom generatoris a fun
tion G : �k logn ! �n (for some �xed k)
omputable in time polynomial in n su
h that for all
ir
uits C of size nj Prr2�n(C(r) = 1)� Pry2�k logn(C(G(y)))j � 1n:

De�nition 2.2 A hitting set generator is a fun
tionH mapping 1n to a polynomially large set of stringsof length n su
h that if C is a 
ir
uit with n inputbits and size at most n andPry2f0;1gn(C(y) = 1) � 1n;then C a

epts some string in H(1n). An eÆ
ienthitting set generator is a hitting set generator H thatruns in time polynomial in n.The existen
e of hitting set generators follows frompi
king the range of H at random and showing thatwith high probability it ful�lls the properties of Def-inition 2.2. By the de�nitions, one 
an see that aminimum hitting set generator is 
omputable in thepolynomial-time hierar
hy so if P = NP then eÆ-
ient hitting set generators exist. No relativizableproof of the 
onverse 
an hold: Relative to a ran-dom ora
le, hitting set generators exist but P 6=NP [BG81℄.Theorem 2.3 The following are equivalent:1. EÆ
ient pseudorandom generators exist.2. EÆ
ient hitting set generators exist.3. There is a L in E = DTIME(2O(n)) su
h thatL requires 
ir
uits of size 2�n for some � > 0 andall but �nitely many n.Proof Sket
h:1) 2 The range of a pseudorandom generator is also ahitting set generator.2) 3 [ISW99℄: Suppose we have a eÆ
ient hitting setgenerator H on k(n) = 
 logn inputs. Considerpre�xes of the range of H of size k(n) + 1. Thisis in E by trying all inputs but if it has a 
ir
uitof size 2(k(n)+1)=2
 � n we 
an 
reate a 
ir
uit ofsize n that a

epts many inputs but misses therange of H .3) 1 This was proven by Impagliazzo and Wigder-son [IW97℄ in their breakthrough paper.Now let us 
onsider Hypothesis III.De�nition 2.4We say Cir
uit approximation is easyif there exists a fun
tion f(C; �) 
omputable in timepolynomial in jCj and 1=� su
h thatjPr(C(x) = 1)� f(C; �)j � �:De�nition 2.5 We say Promise-BPP is easy if forevery probabilisti
 polynomial-time ma
hineM thereexists a language L in P su
h that for all x,
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� If M(x) a

epts with probability at least 2=3then x is in L, and� If M(x) a

epts with probability at most 1=3then x is not in L.We put no restri
tions on L when the probability ofa

eptan
e of M is between 1=3 and 2=3.We 
an similarly de�ne when Promise-RP is easy.The 
lassesAP andAPP are de�ned by Kabanets,Ra
ko� and Cook [KRC00℄.De�nition 2.6� The 
lass APP 
onsists of those real-valuedfun
tions g : f0; 1g� ! [0; 1℄ su
h that there ex-ists a probabilisti
 Turing ma
hineM running intime polynomial in jxj and 1=� su
h thatPr(jM(x; �)� g(x)j � �) � 3=4:� The 
lass AP 
onsists of those real-valued fun
-tions g : f0; 1g� ! [0; 1℄ su
h that there exists adeterministi
 Turing ma
hineM running in timepolynomial in jxj and 1=� su
h thatjM(x; �)� g(x)j � �:We 
an now formally state the equivalen
es of Hy-pothesis III.Theorem 2.7 The following are equivalent:1. Cir
uit approximation is easy.2. Promise BPP is easy.3. Promise RP is easy.4. There exists a polynomial-time 
omputable fun
-tion f su
h that for all 
ir
uits C that a

epts atleast half of its inputs, C a

epts f(C).5. APP = AP.Proof Sket
h of Theorem 2.7:1) 4 Suppose we have a 
ir
uit C that a

epts half itsinputs. Consider C0 with the �rst bit set to zeroand C1 with the �rst bit set to one. Approxi-mate the a

epting probability of C0 and C1 towithin 1=n2. Pi
k the one that approximates toa larger value and repeat until one �nds an a
-
epting input.4) 3 We 
an deterministi
ally 
onvert anRPma
hineM on an input x to a 
ir
uit polynomial in jxjwhose inputs are the random bits used byM(x).

3) 2 Buhrman and Fortnow [BF99℄ show how Laute-mann's proof that BPP is in �p2 [Lau83℄ a
tuallygives promise-BPP in RPPromise-RP.2) 1 Consider the probabilisti
 ma
hine that on inputM(C; 1j ; 1k) pi
ks j random inputs to C and a
-
epts if C a

epts at least k of them. By applyingstandard Cherno� arguments, one 
an show thatwhen the probability that C a

epts is greaterthan (k+O(pj))=j thenM will a

ept with highprobability and when the probability that C a
-
epts is at most (k�O(pj))=j thenM will reje
twith high probability. Pi
king j = O(1=�2), weoutput k=j for k the least value su
h that ourdeterministi
 algorithm for promise-BPP algo-rithm for M(C; 1j ; 1k) guarantees that it doesnot reje
t with high probability.4, 5 Straightforward.One 
an use an eÆ
ient pseudorandom genera-tor in straightforward way to do 
ir
uit approxima-tion. This shows that Hypothesis II implies Hypoth-esis III. Andreev, Clementi and Rolim [ACR98℄ (seealso [ACRT99℄) dire
tly show that the existen
e ofeÆ
ient hitting set generators imply that Promise-BPP is easy.Kabanets and Cai [KC00℄ show that if one 
an 
om-pute in polynomial time from the truth-table of afun
tion, the size of its minimum 
ir
uit then Hy-potheses II and III are equivalent.The main result of our paper, dis
ussed in Se
-tion 3, shows that no relativizable proof 
an showthat Hypotheses II and III are equivalent.The impli
ations of Hypothesis III to IV to Vto VI are all immediate from de�nitions. The rel-ativized world where IV holds and III fails followsfrom many published ora
les. In parti
ular 
onsidera generi
 ora
le built on top of TQBF: Impagliazzoand Naor [IN88℄ show that P = BPP relative to thisora
le but one easily gets that Hypothesis III fails.Mu
hnik and Veresh
hagin [MV96℄ give relativizedworlds where IV fails and V holds and where V failsand VI holds.Baker, Gill and Solovay [BGS75℄ give an ora
lewhere all the hypotheses hold. Heller [Hel84℄ andKurtz [Kur85℄ give a relativized world where ZPP =EXP and all of the hypotheses fail in a strong way.3 Main ResultIn this se
tion we give a relativized world where Hy-pothesis II fails but Hypothesis III holds. We needonly show E has size 2o(n) 
ir
uits for in�nitely many
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n to get II to fail but in fa
t we will get something
onsiderably stronger.Theorem 3.1 There exists a ora
le A su
h that EAhas linear size 
ir
uits and we 
an eÆ
iently (relativeto A) �nd a

epting inputs of relativized 
ir
uits thata

ept many inputs.Corollary 3.2 There exists a relativized world where
ir
uit approximation is easy but eÆ
ient pseudoran-dom generators do not exist.One 
an think of the di�eren
e between 
ir
uit ap-proximation and eÆ
ient pseudorandom generatorsas a one of order of quanti�ers. A pseudorandomgenerator must fool all 
ir
uits of a 
ertain size. A
ir
uit approximator needs only approximate a spe-
i�
 
ir
uit given as input.Our proof will en
ode an EXP-
omplete languageat a very hard to �nd pla
e that 
an be pointed towith advi
e. This will have the e�e
t of making apseudorandom generator fail on hard to �nd 
ir
uits.We will also en
ode in these same hard to �nd pla
esenough information so that an algorithm given a 
ir-
uit that a

epts many inputs, 
an use the 
ir
uit to�nd this information and use it to �nd an a

eptinginput.Proof of Theorem 3.1:We will 
onstru
t our ora
le A in stages. In stagem of the 
onstru
tion we will only add strings to theora
le of the form hm; ym; : : :i for some �xed ym oflength 5m though ea
h stage will add in�nitely manystrings to the ora
le.Let KA be a relativizable DTIMEA(2n) ma
hinethat a

epts a linear-time 
omplete set for EA. Wewill guarantee in the 
onstru
tion that for all x,x 2 L(KA), hjxj; yjxj; x; 1i 2 AThe ym will serve as the advi
e for the linear-size
ir
uit a

epting L(KA).We also guarantee that for every 
ir
uit CA thata

epts half of its inputs, there will be a polynomial-time in A pro
edure that given C �nds an a

eptedinput.We de�ne the key of an ora
le query hm; y; : : :i tobe y, the se
ond element of the tuple.We give the 
onstru
tion of A in Figure 2.By 
onstru
tionKA(x) is una�e
ted by any stringsadded in stage m = jxj or later. So by using ym asadvi
e we 
an determine whether KA(x) a

epts byquerying hm; ym; x; 1i.Let CA be a 
ir
uit that a

epts at least half itsinputs. We will give a polynomial-time in A algo-rithm for �nding an a

epted input. Our algorithmwill have y1 hardwired.

Our algorithm will �rst either �nd an a

epted in-put or �nd a yj for j > 1. We repeat this pro
eduregetting larger j's ea
h time until we �nd an a

eptedinput. Our algorithm must halt with some j � jCjsin
e CA(x) 
annot query any string with a key of ymfor m > jCj.Let Am represent the state of the ora
le A af-ter stage m. Note that C 
annot query any stringhm; ym; C 0; : : :i for jC 0j � jCj. The 
ir
uit CAmqueries exa
tly the same strings as when we pro
essedC in stage m.Let k = 1. We assume the algorithm knows yk. Werepeat the following until we have found an a

eptedinput.Look at hk; yk; C; : : : ; 2i and see whether we haveen
oded an input x or a set of keys S.If we have en
oded an input x then simulate CA(x).If it a

epts we are done. If not then we have CAk (x)a

epts but CA(x) reje
ts. So CAk(x) must havequeried some string hj; yj ; : : :i 2 A � Ak with j > k.The algorithm now knows yj and we then repeat thepro
edure for k = j.If we have en
oded a set S, sear
h for a string yjin S su
h that j > k and hj; yj ; 0i is in A. Let k = jand repeat the pro
edure.If we have en
oded a set S of strings then CAkreje
ts on all inputs but CA a

epts on at least half ofthe inputs. On ea
h of the inputs x su
h that CA(x)a

epts, CAk (x) must have queried some string witha key of yj with k < j � jCj. For one of these j, yjmust be a key on strings queried on at least a 12jCjfra
tion of inputs and thus yj 2 S. �4 Relativization andDerandomizationDerandomization results in the past years havemade 
onsiderable us of 
ombinatori
s and algebrawhi
h might lead one to believe that many of theproofs do not relativize. However most results onderandomization do relativize in
luding every re-sult mentioned in Se
tion 2. In fa
t Klivans andvan Melkebeek [KvM99℄ show that the Impagliazzo-Wigderson [IW97℄ result relativizes in a very strongway.Theorem 4.1 (Klivans-van Melkebeek) Let Abe a 
lass of ora
les and B an ora
le. If there is aboolean fun
tion f in EA su
h that no 
ir
uit familyof size 2o(n) with ora
le gates for B 
an 
ompute fthen there exists an eÆ
ient pseudorandom genera-tor 
omputable with an ora
le for A se
ure against
ir
uits with ora
le gates for B.
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Initially set A = ;.Stage m:Pi
k a ym of length 5m su
h that for all x of length at most m, KA(x) does not querya string with a key of ym. By a simple 
ounting argument su
h a ym must exist. Puthm; ym; 0i in A.For ea
h x of length m put hm; ym; x; 1i in A if KA(x) a

epts.For every 
ir
uit C in in
reasing order of 
ir
uit size do the following:If CA a

epts some string then pi
k su
h a string x and en
ode x at hm; ym; C; : : : ; 2i, i.e.,put hm; ym; C; i; 2i in A if the ith bit of x is one.If CA does not a

ept any string then 
onsider the set S of keys v su
h that on at least a 12jCjfra
tion of the inputs x, CA(x) queries some string with a key of v. Note that jSj � 2jCj2.En
ode S at hm; ym; C; : : : ; 2i.This ends stage m. Figure 2: Constru
tion of AOnly very few results in the area of derandomiza-tion do not relativize. Babai, Fortnow, Nisan andWigderson [BFNW93℄ give a nonrelativizing proof ofthe following.Theorem 4.2 (BFNW) If BPP is not in�nitelyoften in subexponential time then EXP =MA.However one should not view Theorem 4.2 as a non-relativizing derandomization result but as a 
ombi-nation of a relativizing derandomization result anda nonrelativizing result based on intera
tive proofs.Indeed Babai, Fortnow, Nisan and Wigderson proveTheorem 4.2 by giving a relativizing proof of Theo-rem 4.3.Theorem 4.3 (BFNW) If BPP is not in�nitelyoften in subexponential time then EXP haspolynomial-size 
ir
uits.Theorem 4.2 follows from Theorem 4.3 and the follow-ing result based on an observation of Nisan [LFKN92℄and the proof of Babai, Fortnow and Lund [BFL91℄showing that NEXP has multiprover intera
tiveproof systems.Theorem 4.4 (Nisan,Babai-Fortnow-Lund) IfEXP has polynomial-size 
ir
uits then EXP =MA.Results on intera
tive proofs have so far given thebest examples of nonrelativizing results (see the sur-vey of Fortnow [For94℄). It should 
ome as no surprisethen that appli
ations of these results to derandom-ization do not relativize either.

Impagliazzo, Kabanets and Wigderson [IKW01℄use derandomization te
hniques to prove the follow-ing result.Theorem 4.5 (IKW) If NEXP has polynomial-size 
ir
uits then NEXP =MA.Their proof does not relativize even with the weaker
on
lusion NEXP = EXP. However if one looks
arefully at their proof one sees that the only nonrel-ativizing tool they use is on
e again Theorem 4.4. Infa
t the following version of Theorem 4.5 does holdrelative to all ora
les.Theorem 4.6 (IKW) If NEXP has polynomial-size 
ir
uits and EXP = AM then NEXP = EXP.Perhaps the most interesting potentially nonrela-tivizing te
hnique in derandomization is due to the\other" Impagliazzo-Wigderson result [IW98℄.Theorem 4.7 (Impagliazzo-Wigderson) IfBPP 6= EXP then BPP in�nitely often has asubexponential heuristi
 simulation.Their proof uses a random-self-redu
ible property ofthe permanent fun
tion whi
h in itself does not rela-tivize. This is the same property that led to a non-relativizing intera
tive proof system for the perma-nent [LFKN92℄. It remains open whether there existsa relativizing proof of Theorem 4.7.Impagliazzo, Kabanets and Wigderson [IKW01℄use Theorem 4.7 to prove the following interesting
onsequen
e.
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Theorem 4.8 (IKW) If every tally set in EXP isin BPP then EXP = BPP.We give a relativizing proof for this result.Proof of Theorem 4.8: We 
onsider two 
asesbased on whether EXP has polynomial-size 
ir
uits.If EXP does not have polynomial-size 
ir
uits thenby Theorem 4.3, BPP is in�nitely often in subexpo-nential time but by simple diagonalization there existtally sets in EXP that do not have this property.If EXP has polynomial-size 
ir
uits, let K be anEXP-
omplete set and suppose K has 
ir
uits of sizenj . Let L 
onsist of 1hn;ii su
h that the ith bit ofthe lexi
ographi
ally �rst 
ir
uit of size at most nj
omputing K on strings of length n is one. Note thatL is a tally set 
omputable in EXP so by assumptionL is in BPP. To 
ompute K in BPP, on input x we�rst �nd the 
ir
uit C for K on strings of length jxjby 
omputing L. We then just output C(x). �5 Further Resear
hHow does an hypothesis like Promise-ZPP is easy�t in with the other hypotheses? If Promise-(NP \
oNP) is easy then P = NP by doing a self-redu
tion [ESY84℄. One might hope that a simi-lar te
hnique 
ould show that Promise-ZPP is easywould imply Promise-RP is easy.A
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