
Comparing Notions of Full DerandomizationLane Fortnow�NEC Researh Institute
AbstratMost of the hypotheses of full derandomization fallinto two sets of equivalent statements: Those equiva-lent to the existene of eÆient pseudorandom gener-ators and those equivalent to approximating the a-epting probability of a iruit. We give the �rst rel-ativized world where these sets of equivalent state-ments are not equivalent to eah other.1 IntrodutionImpagliazzo and Wigderson [IW97℄ show that if thereexists a language E that requires 2
(n) size ir-uits then P = BPP. Andreev, Clementi andRolim [ACR98℄ show that if eÆient hitting set gen-erators exist then P = BPP. A areful look revealsthat not only do these papers have the same onlu-sion but in fat their hypotheses imply eah other.Both of their assumptions produe a pseudorandomgenerator that sueeds against all small iruits. Itmight be easier to allow the pseudorandom genera-tor aess to the iruit it tries to fool. The exis-tene of generators with aess to the iruit is equiva-lent to many other derandomization hypotheses suhas eÆiently approximating the aepting probabil-ity of a iruit, Promise-RP is easy, Promise-BPPis easy, eÆiently �nding aepting inputs of iruitsthat aept many inputs, and the equivalene of thelasses AP and APP de�ned by Kabanets, Rako�and Cook [KRC00℄.We give some evidene that allowing aess to theiruit does help in derandomization. We produe the�rst relativized world where eÆient pseudorandomgenerators do not exist but we still an approximatethe aepting probability of a iruit. In fat ourorale makes the Impagliazzo-Wigderson assumption�Address: 4 Independene Way, Prineton, NJ08540 USA. Email: fortnow�researh.nj.ne.om.http://www.nei.nj.ne.om/homepages/fortnow.

fail in a strong way|relative to it the lass E haslinear-size iruits.Relativization plays an important role in deran-domization results. Relativization helps explain whydespite a large olletion of reent derandomizationresults we still lak any nontrivial unonditional de-randomization of BPP or ZPP. Nearly all of thederandomization tehniques, inluding all of the re-sults mentioned in this paper, relativize and there ex-ist relativized worlds where BPP = NEXP [Hel86℄and ZPP = EXP [Hel84, Kur85℄. We will need trulydi�erent and revolutionary new tehniques to get un-onditional derandomization results or to show eÆ-iently approximating the aepting probability of airuit implies eÆient pseudorandom generators.In Setion 2 we give an overview of the variousnotions of full derandomization and how they relate.In Setion 3 we give a proof of our main result of arelativized world that distinguishes the two importantequivalent lasses of full derandomization hypotheses.In Setion 4 we desribe the role of relativization inderandomization results.2 Full DerandomizationIn this setion we disuss the various notions of fullderandomization and how they are known to relate.This setion is meant as a survey of these notions. Ifno itations are given, the results should be onsid-ered folklore. Proofs, when given, are for omplete-ness. Note that all of the results mentioned in thissetion hold relative to any orale.Figure 1 shows the hypotheses that we onsider inthis paper. To make a long story short, eah of thesehypotheses imply all of the ones below it and thereare relativized worlds that prevent all of the reverseimpliations. The statements listed in eah box areequivalent. Current belief has Hypothesis I false andthe rest true.Let us onsider the hypotheses in detail. Hypoth-
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Hypothesis IP =NP+Hypothesis IIEÆient Pseudorandom Generators ExistEÆient Hitting Set Generators ExistE ontains Exponentially-Hard Sets+Hypothesis IIICiruit Approximation is EasyPromise BPP is EasyPromise RP is EasyEÆiently �nd aepting inputs of iruits thataept many inputsAP = APP+Hypothesis IVP = BPP+Hypothesis VP = RP+Hypothesis VIP = ZPPFigure 1: Derandomization Hypothesesesis I, P =NP, has been studied in great detail (seethe book of Garey and Johnson [GJ79℄ for example).P = NP is not a derandomization hypothesis per sebut we inlude it for omparisons to the other hy-potheses.To understand Hypothesis II let us give formal def-initions of eÆient pseudorandom generators and ef-�ient hitting set generators.De�nition 2.1 An eÆient pseudorandom generatoris a funtion G : �k logn ! �n (for some �xed k)omputable in time polynomial in n suh that for alliruits C of size nj Prr2�n(C(r) = 1)� Pry2�k logn(C(G(y)))j � 1n:

De�nition 2.2 A hitting set generator is a funtionH mapping 1n to a polynomially large set of stringsof length n suh that if C is a iruit with n inputbits and size at most n andPry2f0;1gn(C(y) = 1) � 1n;then C aepts some string in H(1n). An eÆienthitting set generator is a hitting set generator H thatruns in time polynomial in n.The existene of hitting set generators follows frompiking the range of H at random and showing thatwith high probability it ful�lls the properties of Def-inition 2.2. By the de�nitions, one an see that aminimum hitting set generator is omputable in thepolynomial-time hierarhy so if P = NP then eÆ-ient hitting set generators exist. No relativizableproof of the onverse an hold: Relative to a ran-dom orale, hitting set generators exist but P 6=NP [BG81℄.Theorem 2.3 The following are equivalent:1. EÆient pseudorandom generators exist.2. EÆient hitting set generators exist.3. There is a L in E = DTIME(2O(n)) suh thatL requires iruits of size 2�n for some � > 0 andall but �nitely many n.Proof Sketh:1) 2 The range of a pseudorandom generator is also ahitting set generator.2) 3 [ISW99℄: Suppose we have a eÆient hitting setgenerator H on k(n) =  logn inputs. Considerpre�xes of the range of H of size k(n) + 1. Thisis in E by trying all inputs but if it has a iruitof size 2(k(n)+1)=2 � n we an reate a iruit ofsize n that aepts many inputs but misses therange of H .3) 1 This was proven by Impagliazzo and Wigder-son [IW97℄ in their breakthrough paper.Now let us onsider Hypothesis III.De�nition 2.4We say Ciruit approximation is easyif there exists a funtion f(C; �) omputable in timepolynomial in jCj and 1=� suh thatjPr(C(x) = 1)� f(C; �)j � �:De�nition 2.5 We say Promise-BPP is easy if forevery probabilisti polynomial-time mahineM thereexists a language L in P suh that for all x,
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� If M(x) aepts with probability at least 2=3then x is in L, and� If M(x) aepts with probability at most 1=3then x is not in L.We put no restritions on L when the probability ofaeptane of M is between 1=3 and 2=3.We an similarly de�ne when Promise-RP is easy.The lassesAP andAPP are de�ned by Kabanets,Rako� and Cook [KRC00℄.De�nition 2.6� The lass APP onsists of those real-valuedfuntions g : f0; 1g� ! [0; 1℄ suh that there ex-ists a probabilisti Turing mahineM running intime polynomial in jxj and 1=� suh thatPr(jM(x; �)� g(x)j � �) � 3=4:� The lass AP onsists of those real-valued fun-tions g : f0; 1g� ! [0; 1℄ suh that there exists adeterministi Turing mahineM running in timepolynomial in jxj and 1=� suh thatjM(x; �)� g(x)j � �:We an now formally state the equivalenes of Hy-pothesis III.Theorem 2.7 The following are equivalent:1. Ciruit approximation is easy.2. Promise BPP is easy.3. Promise RP is easy.4. There exists a polynomial-time omputable fun-tion f suh that for all iruits C that aepts atleast half of its inputs, C aepts f(C).5. APP = AP.Proof Sketh of Theorem 2.7:1) 4 Suppose we have a iruit C that aepts half itsinputs. Consider C0 with the �rst bit set to zeroand C1 with the �rst bit set to one. Approxi-mate the aepting probability of C0 and C1 towithin 1=n2. Pik the one that approximates toa larger value and repeat until one �nds an a-epting input.4) 3 We an deterministially onvert anRPmahineM on an input x to a iruit polynomial in jxjwhose inputs are the random bits used byM(x).

3) 2 Buhrman and Fortnow [BF99℄ show how Laute-mann's proof that BPP is in �p2 [Lau83℄ atuallygives promise-BPP in RPPromise-RP.2) 1 Consider the probabilisti mahine that on inputM(C; 1j ; 1k) piks j random inputs to C and a-epts if C aepts at least k of them. By applyingstandard Cherno� arguments, one an show thatwhen the probability that C aepts is greaterthan (k+O(pj))=j thenM will aept with highprobability and when the probability that C a-epts is at most (k�O(pj))=j thenM will rejetwith high probability. Piking j = O(1=�2), weoutput k=j for k the least value suh that ourdeterministi algorithm for promise-BPP algo-rithm for M(C; 1j ; 1k) guarantees that it doesnot rejet with high probability.4, 5 Straightforward.One an use an eÆient pseudorandom genera-tor in straightforward way to do iruit approxima-tion. This shows that Hypothesis II implies Hypoth-esis III. Andreev, Clementi and Rolim [ACR98℄ (seealso [ACRT99℄) diretly show that the existene ofeÆient hitting set generators imply that Promise-BPP is easy.Kabanets and Cai [KC00℄ show that if one an om-pute in polynomial time from the truth-table of afuntion, the size of its minimum iruit then Hy-potheses II and III are equivalent.The main result of our paper, disussed in Se-tion 3, shows that no relativizable proof an showthat Hypotheses II and III are equivalent.The impliations of Hypothesis III to IV to Vto VI are all immediate from de�nitions. The rel-ativized world where IV holds and III fails followsfrom many published orales. In partiular onsidera generi orale built on top of TQBF: Impagliazzoand Naor [IN88℄ show that P = BPP relative to thisorale but one easily gets that Hypothesis III fails.Muhnik and Vereshhagin [MV96℄ give relativizedworlds where IV fails and V holds and where V failsand VI holds.Baker, Gill and Solovay [BGS75℄ give an oralewhere all the hypotheses hold. Heller [Hel84℄ andKurtz [Kur85℄ give a relativized world where ZPP =EXP and all of the hypotheses fail in a strong way.3 Main ResultIn this setion we give a relativized world where Hy-pothesis II fails but Hypothesis III holds. We needonly show E has size 2o(n) iruits for in�nitely many
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n to get II to fail but in fat we will get somethingonsiderably stronger.Theorem 3.1 There exists a orale A suh that EAhas linear size iruits and we an eÆiently (relativeto A) �nd aepting inputs of relativized iruits thataept many inputs.Corollary 3.2 There exists a relativized world whereiruit approximation is easy but eÆient pseudoran-dom generators do not exist.One an think of the di�erene between iruit ap-proximation and eÆient pseudorandom generatorsas a one of order of quanti�ers. A pseudorandomgenerator must fool all iruits of a ertain size. Airuit approximator needs only approximate a spe-i� iruit given as input.Our proof will enode an EXP-omplete languageat a very hard to �nd plae that an be pointed towith advie. This will have the e�et of making apseudorandom generator fail on hard to �nd iruits.We will also enode in these same hard to �nd plaesenough information so that an algorithm given a ir-uit that aepts many inputs, an use the iruit to�nd this information and use it to �nd an aeptinginput.Proof of Theorem 3.1:We will onstrut our orale A in stages. In stagem of the onstrution we will only add strings to theorale of the form hm; ym; : : :i for some �xed ym oflength 5m though eah stage will add in�nitely manystrings to the orale.Let KA be a relativizable DTIMEA(2n) mahinethat aepts a linear-time omplete set for EA. Wewill guarantee in the onstrution that for all x,x 2 L(KA), hjxj; yjxj; x; 1i 2 AThe ym will serve as the advie for the linear-sizeiruit aepting L(KA).We also guarantee that for every iruit CA thataepts half of its inputs, there will be a polynomial-time in A proedure that given C �nds an aeptedinput.We de�ne the key of an orale query hm; y; : : :i tobe y, the seond element of the tuple.We give the onstrution of A in Figure 2.By onstrutionKA(x) is una�eted by any stringsadded in stage m = jxj or later. So by using ym asadvie we an determine whether KA(x) aepts byquerying hm; ym; x; 1i.Let CA be a iruit that aepts at least half itsinputs. We will give a polynomial-time in A algo-rithm for �nding an aepted input. Our algorithmwill have y1 hardwired.

Our algorithm will �rst either �nd an aepted in-put or �nd a yj for j > 1. We repeat this proeduregetting larger j's eah time until we �nd an aeptedinput. Our algorithm must halt with some j � jCjsine CA(x) annot query any string with a key of ymfor m > jCj.Let Am represent the state of the orale A af-ter stage m. Note that C annot query any stringhm; ym; C 0; : : :i for jC 0j � jCj. The iruit CAmqueries exatly the same strings as when we proessedC in stage m.Let k = 1. We assume the algorithm knows yk. Werepeat the following until we have found an aeptedinput.Look at hk; yk; C; : : : ; 2i and see whether we haveenoded an input x or a set of keys S.If we have enoded an input x then simulate CA(x).If it aepts we are done. If not then we have CAk (x)aepts but CA(x) rejets. So CAk(x) must havequeried some string hj; yj ; : : :i 2 A � Ak with j > k.The algorithm now knows yj and we then repeat theproedure for k = j.If we have enoded a set S, searh for a string yjin S suh that j > k and hj; yj ; 0i is in A. Let k = jand repeat the proedure.If we have enoded a set S of strings then CAkrejets on all inputs but CA aepts on at least half ofthe inputs. On eah of the inputs x suh that CA(x)aepts, CAk (x) must have queried some string witha key of yj with k < j � jCj. For one of these j, yjmust be a key on strings queried on at least a 12jCjfration of inputs and thus yj 2 S. �4 Relativization andDerandomizationDerandomization results in the past years havemade onsiderable us of ombinatoris and algebrawhih might lead one to believe that many of theproofs do not relativize. However most results onderandomization do relativize inluding every re-sult mentioned in Setion 2. In fat Klivans andvan Melkebeek [KvM99℄ show that the Impagliazzo-Wigderson [IW97℄ result relativizes in a very strongway.Theorem 4.1 (Klivans-van Melkebeek) Let Abe a lass of orales and B an orale. If there is aboolean funtion f in EA suh that no iruit familyof size 2o(n) with orale gates for B an ompute fthen there exists an eÆient pseudorandom genera-tor omputable with an orale for A seure againstiruits with orale gates for B.
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Initially set A = ;.Stage m:Pik a ym of length 5m suh that for all x of length at most m, KA(x) does not querya string with a key of ym. By a simple ounting argument suh a ym must exist. Puthm; ym; 0i in A.For eah x of length m put hm; ym; x; 1i in A if KA(x) aepts.For every iruit C in inreasing order of iruit size do the following:If CA aepts some string then pik suh a string x and enode x at hm; ym; C; : : : ; 2i, i.e.,put hm; ym; C; i; 2i in A if the ith bit of x is one.If CA does not aept any string then onsider the set S of keys v suh that on at least a 12jCjfration of the inputs x, CA(x) queries some string with a key of v. Note that jSj � 2jCj2.Enode S at hm; ym; C; : : : ; 2i.This ends stage m. Figure 2: Constrution of AOnly very few results in the area of derandomiza-tion do not relativize. Babai, Fortnow, Nisan andWigderson [BFNW93℄ give a nonrelativizing proof ofthe following.Theorem 4.2 (BFNW) If BPP is not in�nitelyoften in subexponential time then EXP =MA.However one should not view Theorem 4.2 as a non-relativizing derandomization result but as a ombi-nation of a relativizing derandomization result anda nonrelativizing result based on interative proofs.Indeed Babai, Fortnow, Nisan and Wigderson proveTheorem 4.2 by giving a relativizing proof of Theo-rem 4.3.Theorem 4.3 (BFNW) If BPP is not in�nitelyoften in subexponential time then EXP haspolynomial-size iruits.Theorem 4.2 follows from Theorem 4.3 and the follow-ing result based on an observation of Nisan [LFKN92℄and the proof of Babai, Fortnow and Lund [BFL91℄showing that NEXP has multiprover interativeproof systems.Theorem 4.4 (Nisan,Babai-Fortnow-Lund) IfEXP has polynomial-size iruits then EXP =MA.Results on interative proofs have so far given thebest examples of nonrelativizing results (see the sur-vey of Fortnow [For94℄). It should ome as no surprisethen that appliations of these results to derandom-ization do not relativize either.

Impagliazzo, Kabanets and Wigderson [IKW01℄use derandomization tehniques to prove the follow-ing result.Theorem 4.5 (IKW) If NEXP has polynomial-size iruits then NEXP =MA.Their proof does not relativize even with the weakeronlusion NEXP = EXP. However if one looksarefully at their proof one sees that the only nonrel-ativizing tool they use is one again Theorem 4.4. Infat the following version of Theorem 4.5 does holdrelative to all orales.Theorem 4.6 (IKW) If NEXP has polynomial-size iruits and EXP = AM then NEXP = EXP.Perhaps the most interesting potentially nonrela-tivizing tehnique in derandomization is due to the\other" Impagliazzo-Wigderson result [IW98℄.Theorem 4.7 (Impagliazzo-Wigderson) IfBPP 6= EXP then BPP in�nitely often has asubexponential heuristi simulation.Their proof uses a random-self-reduible property ofthe permanent funtion whih in itself does not rela-tivize. This is the same property that led to a non-relativizing interative proof system for the perma-nent [LFKN92℄. It remains open whether there existsa relativizing proof of Theorem 4.7.Impagliazzo, Kabanets and Wigderson [IKW01℄use Theorem 4.7 to prove the following interestingonsequene.
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Theorem 4.8 (IKW) If every tally set in EXP isin BPP then EXP = BPP.We give a relativizing proof for this result.Proof of Theorem 4.8: We onsider two asesbased on whether EXP has polynomial-size iruits.If EXP does not have polynomial-size iruits thenby Theorem 4.3, BPP is in�nitely often in subexpo-nential time but by simple diagonalization there existtally sets in EXP that do not have this property.If EXP has polynomial-size iruits, let K be anEXP-omplete set and suppose K has iruits of sizenj . Let L onsist of 1hn;ii suh that the ith bit ofthe lexiographially �rst iruit of size at most njomputing K on strings of length n is one. Note thatL is a tally set omputable in EXP so by assumptionL is in BPP. To ompute K in BPP, on input x we�rst �nd the iruit C for K on strings of length jxjby omputing L. We then just output C(x). �5 Further ResearhHow does an hypothesis like Promise-ZPP is easy�t in with the other hypotheses? If Promise-(NP \oNP) is easy then P = NP by doing a self-redution [ESY84℄. One might hope that a simi-lar tehnique ould show that Promise-ZPP is easywould imply Promise-RP is easy.AknowledgmentsI would like to thank Dieter van Melkebeek who sug-gested the problem, helped desribe the results in Se-tions 2 and 4 and has given many useful omments onthe urrent exposition. Vinodhandran Variyam hasalso given useful omments on the exposition. I alsothank Harry Buhrman, Steve Cook and Lua Tre-visan for helpful disussions.Referenes[ACR98℄ A. Andreev, A. Clementi, and J. Rolim.A new general derandomization method.Journal of the ACM, 45(1):179{213, Jan-uary 1998.[ACRT99℄ A. Andreev, A. Clementi, J. Rolim, andL. Trevisan. Weak random soures, hit-ting sets, and BPP simulations. SIAMJournal on Computing, 28(6):2103{2116,Deember 1999.
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