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Abstract

Most of the hypotheses of full derandomization fall
into two sets of equivalent statements: Those equiva-
lent to the existence of efficient pseudorandom gener-
ators and those equivalent to approximating the ac-
cepting probability of a circuit. We give the first rel-
ativized world where these sets of equivalent state-
ments are not equivalent to each other.

1 Introduction

Impagliazzo and Wigderson [IW97] show that if there
exists a language E that requires 2% size cir-
cuits then P = BPP. Andreev, Clementi and
Rolim [ACR98] show that if efficient hitting set gen-
erators exist then P = BPP. A careful look reveals
that not only do these papers have the same conclu-
sion but in fact their hypotheses imply each other.

Both of their assumptions produce a pseudorandom
generator that succeeds against all small circuits. It
might be easier to allow the pseudorandom genera-
tor access to the circuit it tries to fool. The exis-
tence of generators with access to the circuit is equiva-
lent to many other derandomization hypotheses such
as efficiently approximating the accepting probabil-
ity of a circuit, Promise-RP is easy, Promise-BPP
is easy, efficiently finding accepting inputs of circuits
that accept many inputs, and the equivalence of the
classes AP and APP defined by Kabanets, Rackoff
and Cook [KRCO00].

We give some evidence that allowing access to the
circuit does help in derandomization. We produce the
first relativized world where efficient pseudorandom
generators do not exist but we still can approximate
the accepting probability of a circuit. In fact our
oracle makes the Impagliazzo-Wigderson assumption
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fail in a strong way relative to it the class E has
linear-size circuits.

Relativization plays an important role in deran-
domization results. Relativization helps explain why
despite a large collection of recent derandomization
results we still lack any nontrivial unconditional de-
randomization of BPP or ZPP. Nearly all of the
derandomization techniques, including all of the re-
sults mentioned in this paper, relativize and there ex-
ist relativized worlds where BPP = NEXP [Hel86]
and ZPP = EXP [Hel84, Kur85]. We will need truly
different and revolutionary new techniques to get un-
conditional derandomization results or to show effi-
ciently approximating the accepting probability of a
circuit implies efficient pseudorandom generators.

In Section 2 we give an overview of the various
notions of full derandomization and how they relate.
In Section 3 we give a proof of our main result of a
relativized world that distinguishes the two important
equivalent classes of full derandomization hypotheses.
In Section 4 we describe the role of relativization in
derandomization results.

2 Full Derandomization

In this section we discuss the various notions of full
derandomization and how they are known to relate.
This section is meant as a survey of these notions. If
no citations are given, the results should be consid-
ered folklore. Proofs, when given, are for complete-
ness. Note that all of the results mentioned in this
section hold relative to any oracle.

Figure 1 shows the hypotheses that we consider in
this paper. To make a long story short, each of these
hypotheses imply all of the ones below it and there
are relativized worlds that prevent all of the reverse
implications. The statements listed in each box are
equivalent. Current belief has Hypothesis I false and
the rest true.

Let us consider the hypotheses in detail. Hypoth-
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Hypothesis I
P =NP

U

Hypothesis 11
Efficient Pseudorandom Generators Exist

Efficient Hitting Set Generators Exist

E contains Exponentially-Hard Sets

4

Hypothesis 111
Circuit Approximation is Easy
Promise BPP is Easy
Promise RP is Easy

Efficiently find accepting inputs of circuits that
accept many inputs
AP = APP

4

Hypothesis IV
P = BPP

4

Hypothesis V
P =RP

4

Hypothesis VI
P =7ZPP

Figure 1: Derandomization Hypotheses

esis I, P = NP, has been studied in great detail (see
the book of Garey and Johnson [GJ79] for example).
P = NP is not a derandomization hypothesis per se
but we include it for comparisons to the other hy-
potheses.

To understand Hypothesis II let us give formal def-
initions of efficient pseudorandom generators and ef-
ficient hitting set generators.

Definition 2.1 An efficient pseudorandom generator

is a function G : Xkl8™ — 37 (for some fixed k)
computable in time polynomial in n such that for all
circuits C of size n

| Pr (C(r)=1)—  Pr (C(Gy)]<

reyn yezklogn

S|

Definition 2.2 A hitting set generator is a function
H mapping 1" to a polynomially large set of strings
of length n such that if C is a circuit with n input
bits and size at most n and

Pr (C(y)=1)>
yebn, (Cl) =1) =

3

S|

then C' accepts some string in H(1"). An efficient
hitting set generator is a hitting set generator H that
runs in time polynomial in n.

The existence of hitting set generators follows from
picking the range of H at random and showing that
with high probability it fulfills the properties of Def-
inition 2.2. By the definitions, one can see that a
minimum hitting set generator is computable in the
polynomial-time hierarchy so if P = NP then effi-
cient hitting set generators exist. No relativizable
proof of the converse can hold: Relative to a ran-
dom oracle, hitting set generators exist but P #
NP [BG81].

Theorem 2.3 The following are equivalent:

1. Efficient pseudorandom generators exist.
2. Efficient hitting set generators exist.

3. There is a L in E = DTIME(2°") such that
L requires circuits of size 2°™ for some € > 0 and
all but finitely many n.

Proof Sketch:

1 = 2 The range of a pseudorandom generator is also a
hitting set generator.

2 = 3 [ISW99]: Suppose we have a efficient hitting set
generator H on k(n) = clogn inputs. Consider
prefixes of the range of H of size k(n) + 1. This
is in E by trying all inputs but if it has a circuit
of size 2(k(M)+1)/2¢ « p we can create a circuit of
size n that accepts many inputs but misses the
range of H.

3 =1 This was proven by Impagliazzo and Wigder-
son [IW97] in their breakthrough paper.

Now let us consider Hypothesis III.
Definition 2.4 We say Circuit approzimation is easy
if there exists a function f(C,€) computable in time
polynomial in |C| and 1/e such that

Pr(C(z) = 1) - f(C.e)| <.

Definition 2.5 We say Promise-BPP is easy if for

every probabilistic polynomial-time machine M there
exists a language L in P such that for all z,
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e If M(x) accepts with probability at least 2/3
then z is in L, and

e If M(z) accepts with probability at most 1/3
then z is not in L.

We put no restrictions on L when the probability of
acceptance of M is between 1/3 and 2/3.
We can similarly define when Promise-RP is easy.
The classes AP and APP are defined by Kabanets,
Rackoff and Cook [KRCO00].
Definition 2.6

e The class APP consists of those real-valued
functions ¢ : {0,1}* — [0, 1] such that there ex-
ists a probabilistic Turing machine M running in
time polynomial in |z| and 1/e such that

Pr(|M(z,€) — gla)| <€) > 3/4.

e The class AP consists of those real-valued func-
tions g : {0,1}* — [0, 1] such that there exists a
deterministic Turing machine M running in time
polynomial in |z| and 1/e such that

|M(z,€) — g(z)| <e
We can now formally state the equivalences of Hy-
pothesis III.
Theorem 2.7 The following are equivalent:
1. Circuit approzimation is easy.
Promise BPP is easy.

Promise RP is easy.

There exists a polynomial-time computable func-
tion f such that for all circuits C that accepts at
least half of its inputs, C accepts f(C).

5. APP = AP.
Proof Sketch of Theorem 2.7:

1 = 4 Suppose we have a circuit C that accepts half its
inputs. Consider Cy with the first bit set to zero
and C; with the first bit set to one. Approxi-
mate the accepting probability of Cy and C; to
within 1/n2. Pick the one that approximates to
a larger value and repeat until one finds an ac-
cepting input.

4 = 3 We can deterministically convert an RP machine
M on an input z to a circuit polynomial in |z|
whose inputs are the random bits used by M (z).

3 = 2 Buhrman and Fortnow [BF99] show how Laute-

mann’s proof that BPP is in X5 [Lau83] actually

gives promise-BPP in RPPromlse'RP.

2 = 1 Consider the probabilistic machine that on input
M(C,17,1*) picks j random inputs to C' and ac-
cepts if C' accepts at least k of them. By applying
standard Chernoff arguments, one can show that
when the probability that C' accepts is greater
than (k+0(y/7))/j then M will accept with high
probability and when the probability that C' ac-
cepts is at most (k—O(v/7))/j then M will reject
with high probability. Picking j = O(1/€?), we
output k/j for k the least value such that our
deterministic algorithm for promise-BPP algo-
rithm for M(C,17,1%) guarantees that it does
not reject with high probability.

4 & 5 Straightforward.

One can use an efficient pseudorandom genera-
tor in straightforward way to do circuit approxima-
tion. This shows that Hypothesis II implies Hypoth-
esis III. Andreev, Clementi and Rolim [ACR98] (see
also [ACRT99]) directly show that the existence of
efficient hitting set generators imply that Promise-
BPP is easy.

Kabanets and Cai [KC00] show that if one can com-
pute in polynomial time from the truth-table of a
function, the size of its minimum circuit then Hy-
potheses IT and III are equivalent.

The main result of our paper, discussed in Sec-
tion 3, shows that no relativizable proof can show
that Hypotheses IT and III are equivalent.

The implications of Hypothesis III to IV to V
to VI are all immediate from definitions. The rel-
ativized world where IV holds and III fails follows
from many published oracles. In particular consider
a generic oracle built on top of TQBF: Impagliazzo
and Naor [IN88] show that P = BPP relative to this
oracle but one easily gets that Hypothesis III fails.

Muchnik and Vereshchagin [MV96] give relativized
worlds where IV fails and V holds and where V fails
and VI holds.

Baker, Gill and Solovay [BGS75] give an oracle
where all the hypotheses hold. Heller [Hel84] and
Kurtz [Kur85] give a relativized world where ZPP =
EXP and all of the hypotheses fail in a strong way.

3 Main Result

In this section we give a relativized world where Hy-
pothesis II fails but Hypothesis III holds. We need
only show E has size 2°(") circuits for infinitely many
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n to get II to fail but in fact we will get something
considerably stronger.

Theorem 3.1 There exists a oracle A such that EA
has linear size circuits and we can efficiently (relative
to A) find accepting inputs of relativized circuits that
accept many inputs.

Corollary 3.2 There exists a relativized world where
circuit approximation is easy but efficient pseudoran-
dom generators do not exist.

One can think of the difference between circuit ap-
proximation and efficient pseudorandom generators
as a one of order of quantifiers. A pseudorandom
generator must fool all circuits of a certain size. A
circuit approximator needs only approximate a spe-
cific circuit given as input.

Our proof will encode an EXP-complete language
at a very hard to find place that can be pointed to
with advice. This will have the effect of making a
pseudorandom generator fail on hard to find circuits.
We will also encode in these same hard to find places
enough information so that an algorithm given a cir-
cuit that accepts many inputs, can use the circuit to
find this information and use it to find an accepting
input.

Proof of Theorem 3.1:

We will construct our oracle A in stages. In stage
m of the construction we will only add strings to the
oracle of the form (m,y,,,...) for some fixed y,, of
length 5m though each stage will add infinitely many
strings to the oracle.

Let K4 be a relativizable DTIME# (2") machine
that accepts a linear-time complete set for E4. We
will guarantee in the construction that for all z,

re L(KY & (|z], Yz, z, 1) € A

The y,, will serve as the advice for the linear-size
circuit accepting L(K*4).

We also guarantee that for every circuit C4 that
accepts half of its inputs, there will be a polynomial-
time in A procedure that given C finds an accepted
input.

We define the key of an oracle query (m,y, ..
be y, the second element of the tuple.

We give the construction of A in Figure 2.

By construction K4 (z) is unaffected by any strings
added in stage m = |z| or later. So by using y,, as
advice we can determine whether K (z) accepts by
querying (m, ym, z, 1).

Let C4 be a circuit that accepts at least half its
inputs. We will give a polynomial-time in A algo-
rithm for finding an accepted input. Our algorithm
will have y; hardwired.

.) to

Our algorithm will first either find an accepted in-
put or find a y; for j > 1. We repeat this procedure
getting larger j’s each time until we find an accepted
input. Our algorithm must halt with some j < |C]
since C4(z) cannot query any string with a key of y,,
for m > |C|.

Let A,, represent the state of the oracle A af-
ter stage m. Note that C cannot query any string
(m,ym,C",...) for |C'| > |C|. The circuit C4m
queries exactly the same strings as when we processed
C in stage m.

Let £ = 1. We assume the algorithm knows y;. We
repeat the following until we have found an accepted
input.

Look at (k,yr,C,...,2) and see whether we have
encoded an input x or a set of keys S.

If we have encoded an input « then simulate C4(x).
If it accepts we are done. If not then we have C4* (x)
accepts but C4(z) rejects. So CA*(x) must have
queried some string (j,y;,...) € A — Ay with j > k.
The algorithm now knows y; and we then repeat the
procedure for k = j.

If we have encoded a set S, search for a string y;
in S such that j > k and (j,y;,0) is in A. Let k = j
and repeat the procedure.

If we have encoded a set S of strings then C“4*
rejects on all inputs but C accepts on at least half of
the inputs. On each of the inputs z such that C4(z)
accepts, C4* () must have queried some string with
a key of y; with & < j < |C]. For one of these j, y;
must be a key on strings queried on at least a

fraction of inputs and thus y; € S. O

_1
2[C]

4 Relativization and
Derandomization

Derandomization results in the past years have
made considerable us of combinatorics and algebra
which might lead one to believe that many of the
proofs do not relativize. However most results on
derandomization do relativize including every re-
sult mentioned in Section 2. In fact Klivans and
van Melkebeek [KvM99] show that the Impagliazzo-
Wigderson [IW97] result relativizes in a very strong
way.

Theorem 4.1 (Klivans-van Melkebeek) Let A
be a class of oracles and B an oracle. If there is a
boolean function f in EA such that no circuit family
of size 2°") with oracle gates for B can compute f
then there exists an efficient pseudorandom genera-
tor computable with an oracle for A secure against
circuits with oracle gates for B.
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Initially set A = 0.

Stage m:

(m,ym,0) in A.

3

Encode S at (m,ym,C,...,2).

This ends stage m.

Pick a y,, of length 5m such that for all = of length at most m, K“(z) does not query
a string with a key of y,,. By a simple counting argument such a y,, must exist. Put

For each z of length m put (m,y,,,z,1) in A if K4 (z) accepts.
For every circuit C in increasing order of circuit size do the following:

If C4 accepts some string then pick such a string = and encode = at (m,y,,, C,..
put (m,ym,C,i,2) in A if the ith bit of z is one.

If C4 does not accept any string then consider the set S of keys v such that on at least a 51—
fraction of the inputs =, C(z) queries some string with a key of v. Note that |S| < 2|C|?.

5 2), ie.,

1
2[0]

Figure 2: Construction of A

Only very few results in the area of derandomiza-
tion do not relativize. Babai, Fortnow, Nisan and
Wigderson [BFNW93] give a nonrelativizing proof of
the following.

Theorem 4.2 (BFNW) If BPP is not infinitely
often in subexponential time then EXP = MA.

However one should not view Theorem 4.2 as a non-
relativizing derandomization result but as a combi-
nation of a relativizing derandomization result and
a nonrelativizing result based on interactive proofs.
Indeed Babai, Fortnow, Nisan and Wigderson prove
Theorem 4.2 by giving a relativizing proof of Theo-
rem 4.3.

Theorem 4.3 (BFNW) If BPP is not infinitely
often in subexponential time then EXP has
polynomial-size circuits.

Theorem 4.2 follows from Theorem 4.3 and the follow-
ing result based on an observation of Nisan [LFKN92]
and the proof of Babai, Fortnow and Lund [BFL91]
showing that NEXP has multiprover interactive
proof systems.

Theorem 4.4 (Nisan,Babai-Fortnow-Lund) If
EXP has polynomial-size circuits then EXP = MA.

Results on interactive proofs have so far given the
best examples of nonrelativizing results (see the sur-
vey of Fortnow [For94]). It should come as no surprise
then that applications of these results to derandom-
ization do not relativize either.

Impagliazzo, Kabanets and Wigderson [IKWO01]
use derandomization techniques to prove the follow-
ing result.

Theorem 4.5 (IKW) If NEXP has polynomial-
size circuits then NEXP = MA.

Their proof does not relativize even with the weaker
conclusion NEXP = EXP. However if one looks
carefully at their proof one sees that the only nonrel-
ativizing tool they use is once again Theorem 4.4. In
fact the following version of Theorem 4.5 does hold
relative to all oracles.

Theorem 4.6 (IKW) If NEXP has polynomial-
size circuits and EXP = AM then NEXP = EXP.

Perhaps the most interesting potentially nonrela-
tivizing technique in derandomization is due to the
“other” Impagliazzo-Wigderson result [TW98].

Theorem 4.7 (Impagliazzo-Wigderson) If
BPP # EXP then BPP infinitely often has a
subexponential heuristic simulation.

Their proof uses a random-self-reducible property of
the permanent function which in itself does not rela-
tivize. This is the same property that led to a non-
relativizing interactive proof system for the perma-
nent [LFKN92]. It remains open whether there exists
a relativizing proof of Theorem 4.7.

Impagliazzo, Kabanets and Wigderson [IKWO01]
use Theorem 4.7 to prove the following interesting
consequence.
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Theorem 4.8 (IKW) If every tally set in EXP is
in BPP then EXP = BPP.

We give a relativizing proof for this result.

Proof of Theorem 4.8: We consider two cases
based on whether EXP has polynomial-size circuits.

If EXP does not have polynomial-size circuits then
by Theorem 4.3, BPP is infinitely often in subexpo-
nential time but by simple diagonalization there exist
tally sets in EXP that do not have this property.

If EXP has polynomial-size circuits, let K be an
EXP-complete set and suppose K has circuits of size
n?. Let L consist of 1% such that the ith bit of
the lexicographically first circuit of size at most n/
computing K on strings of length n is one. Note that
L is a tally set computable in EXP so by assumption
L is in BPP. To compute K in BPP, on input = we
first find the circuit C for K on strings of length |z
by computing L. We then just output C(z). O

5 Further Research

How does an hypothesis like Promise-ZPP is easy
fit in with the other hypotheses? If Promise-(NP N
coNP) is easy then P = NP by doing a self-
reduction [ESY84]. One might hope that a simi-
lar technique could show that Promise-ZPP is easy
would imply Promise-RP is easy.
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