
Infinitely-Often Autoreducible Sets

Richard Beigel∗, Temple University

Lance Fortnow†, University of Chicago

Frank Stephan‡, National University of Singapore

Abstract

A set A is autoreducible if one can compute, for all x, the value A(x) by querying A only
at places y 6= x. Furthermore, A is infinitely-often autoreducible if, for infinitely many
x, the value A(x) can be computed by querying A only at places y 6= x. For all other
x, the computation outputs a special symbol to signal that the reduction is undefined.
It is shown that for polynomial time Turing and truth-table autoreducibility there are
sets A, B, C in EXP such that A is not infinitely-often Turing autoreducible, B is
Turing autoreducible but not infinitely-often truth-table autoreducible, C is truth-table
autoreducible with g(n) + 1 queries but not infinitely-often Turing autoreducible with
g(n) queries. Here n is the length of the input, g is nondecreasing and there exists a
polynomial p such that p(n) bounds both, the computation time and the value, of g at
input of length n. Furthermore, connections between notions of infinitely-often autore-
ducibility and notions of approximability are investigated. The Hausdorff-dimension of
the class of sets which are not infinitely-often autoreducible is shown to be 1.

1 Introduction

Consider a set where every element is chosen independently at random. Intuitively the mem-
bership of x should not depend on the membership of the other elements. Indeed, random

∗Department of Computer and Information Sciences, Temple University, Wachman Hall (038-24), 1805
North Broad Street, Philadelphia PA 19122-6094, USA, Email: beigel@cis.temple.edu.

†Department of Computer Science, University of Chicago, 1100 E 58th Street, Chicago, IL 60637, USA,
Email: fortnow@cs.uchicago.edu. Research was done while the author was at the NEC Research Institute.

‡School of Computing and Department of Mathematics, National University of Singapore, 3 Science Drive 2,
Singapore 117543, Republic of Singapore, Email: fstephan@comp.nus.edu.sg. Research was supported by the
Deutsche Forschungsgemeinschaft (DFG), Heisenberg grant Ste 967/1-1 while F. Stephan was working at the
Universität Heidelberg until August 2003. From August 2003 until June 2004, F. Stephan was working at the
National ICT Australia LTD which is funded by the Australian Government’s Department of Communications,
Information Technology and the Arts and the Australian Research Council through Backing Australia’s Ability
and the ICT Centre of Excellence Program. Since July 2004, F. Stephan is working at the National University
of Singapore and partially supported by NUS grant number R252–000–212–112.

1

sets are not autoreducible, that is, it is impossible to compute for every x the membership
of x from the membership of the y 6= x. Ebert [12, 13] gives the surprising result that one
can nevertheless compute correctly the membership of an infinite number of elements of a
random set from the membership of the other ones. The present work extends the study of
this notion, called infinitely-often autoreducible.

Trakhtenbrot [24] introduced in the recursion theoretic context the notion of autoreducibil-
ity. There are many natural examples of autoreducible sets, for example any index set B of
partial recursive functions is autoreducible: by the Padding Lemma there is a recursive strictly
increasing function p such that, for all x, ϕx = ϕp(x). It follows that one can for given x com-
pute the value p(x) which is different from x and query whether p(x) ∈ B. As ϕx = ϕp(x)

one has that either x, p(x) are both in B or both outside B, so one knows whether x ∈ B.
Other natural examples of autoreducible sets are retraceable sets, cylinders, creative sets like
the halting problem, semirecursive sets and recursive sets; see the book of Odifreddi [20] for
the definitions of these types of sets. On one hand, autoreducible sets are quite common and
there are even nonrecursive Turing degrees containing only autoreducible sets [15], on the
other hand Trakhtenbrot [24] constructed recursively enumerable sets which are not autore-
ducible.

The notion of autoreducibility can easily be carried over to resource bounded reducibili-
ties r like polynomial time Turing reducibility.

Definition 1.1. A set is r-autoreducible iff there is an r-reduction that computes for every
x the value A(x) from the oracle A without querying A at x.

For example, a many-one EXP-complete set A satisfies that A is many-one reducible to A via
some function f ; that is, A(x) = A(f(x)) = 1 − A(f(x)). This guarantees that f(x) 6= x for
all x. So one has that A is autoreducible by a polynomial time Turing reduction which asks
exactly one query: what is A at f(x) and knowing this, let A(x) = 1 − A(f(x)).

In the present work, polynomial time truth-table and Turing reducibility are considered
where the number of questions might also be bounded. Truth-table reducibility is different
from Turing reducibility in the sense that the place of the n-th query does not depend on the
oracle answers to the queries asked before and one can compute an explicit polynomially sized
list of places queried. So the oracle is queried at many places in parallel and afterwards its
answers are used by the program of the truth-table reduction without any further interaction
with the oracle.

Also in complexity theory there are many natural examples of autoreducible sets. The
set SAT is truth-table autoreducible with two queries: If φ is any formula with the variable
u build in, then the derived formulas φ[u → 0] and φ[u → 1] where u has been replaced
by the logical constants 0 and 1, respectively, are different from φ and one can compute
with two queries to SAT whether these formulas are satisfiable. Then φ is satisfiable iff at
least one of the formulas φ[u → 0] and φ[u → 1] is. By the way, Schnorr [23] studied this
special case where the autoreduction goes to instances shorter than the original input and
called a set self-reducible if it has such an autoreduction. Buhrman, Fortnow, Melkebeek and
Torenvliet [11] showed that the Turing complete sets for EXP are Turing autoreducible while
some of the Turing complete sets for the class EEXPSPACE of all sets which are, for some
polynomial p, computable in space 22p(n)

, fail to have this property. It is unknown whether all

2

sets Turing complete for EEXP are autoreducible; settling this open question would separate
some complexity classes which are not yet known to be different.

Random sets are not autoreducible, but Ebert [12, 13] showed that they surprisingly satisfy
the following variant which is called infinitely-often autoreducible which is defined as follows.

Definition 1.2. A set A is infinitely-often r-autoreducible iff there is an r-reduction M
which at input x queries A only at places y 6= x. For infinitely many x, M computes A(x)
correctly, for all other x, M is undefined and signals this by outputting a special symbol.

The result that random sets are infinitely-often autoreducible received a lot of attention.
Not only because one would not expect that it is possible to make predictions about the
membership of x in a random set by looking which other y are in, but also because Ebert [12]
introduced for his proof a mathematical puzzle which was easy to understand, became famous
and has some interest on its own right: the hat problem. It was the topic of several newspaper
articles, for example in the German weekly newspaper Die Zeit [10] and in the New York
Times [22].

It is already well-known that there are sets which are not infinitely-often autoreducible
[7], but these examples are outside EXP, the class of all exponential time computable sets.
EXP is the first deterministic time class known to contain nondeterministic polynomial time
NP and polynomial space PSPACE. Therefore, it is natural to study the structure of the
sets inside EXP and the main result of the present work, given in Section 2, says that there
is a set A in EXP which is not infinitely-often Turing autoreducible. In Sections 3, the
major autoreducibility notions are separated by showing that there are sets in EXP which
are autoreducible for the first reduction but not infinitely-often autoreducible by the second
reduction; this is done in particular for Turing versus truth-table and for truth-table with
g(n) + 1 queries versus Turing with g(n) queries. This second result implies the separation
of truth-table versus bounded truth-table. In Section 4, the relations between notions of
approximability and infinitely-often autoreducibility are investigated. Finally, in Section 5,
it is shown that there are quite many sets in EXP which are not autoreducible: the class of
these sets has Hausdorff-dimension 1 in exponential time.

Notation 1.3. The notation follows standard textbooks like the one of Odifreddi [20] with
some exceptions: The function x 7→ log(x) denotes the logarithm of basis 2 with the exception
that log(q) = 0 for q < 1 in order to avoid to deal with too many exceptions in logarithmic
expressions. The term log∗(x) denotes the number of iterations of log necessary to reach a
number strictly below 1. So, log∗(0) = 0, log∗(1) = 1 and log∗(2x) = log∗(x) + 1. A set D is
called supersparse iff, for all x, D∩{x, x+1, . . . , 2x} contains at most log∗(x) many elements.
A∆D denotes the symmetric difference of A and D; the set A∆D is called a supersparse
variant of A if D is a supersparse set. Furthermore, the notation O(f) is generalized to
Poly(f) which is the set of all g such that there is a polynomial p with (∀n) [g(n) ≤ p(f(n))].

3

2 Some Set in EXP is not infinitely-often autoreducible

Note that a computation is exponential in the length (= logarithm) of x iff it is quasipoly-
nomial in x itself. Therefore one considers in the case of functionals quasipolynomial time
bounds. More precisely, a partial functional f which assigns to inputs of the form A(0)A(1) . . .
A(x) values ax+1ax+2 . . . ay is called a quasipolynomial time extension functional iff there is a
constant c permitting to compute the extensions in time xlogc(x). Following Lutz [17], one can
introduce the following notion of resource-bounded genericity; see the survey of Ambos-Spies
and Mayordomo [3] for further details.

Definition 2.1. A set A is general generic iff, for every quasipolynomial time computable
functional f ,

• either f(A(0)A(1) . . . A(x)) is undefined for almost all x

• or there are x, y such that x < y, f(A(0)A(1) . . . A(x)) = ax+1ax+2 . . . ay and A(z) = az

for z = x + 1, x + 2, . . . , y.

So, either “A almost always avoids f” or “A meets f”.

General generic sets have to be distinguished from the weaker variant of generic sets as
introduced by Ambos-Spies, Fleischhack and Huwig [2] which either meet or avoid every
quasipolynomial time extension functionals which predicts only one bit whenever defined.
Balcázar and Mayordomo [7] observed that these sets are not infinitely-often autoreducible.

Fact 2.2 [7]. There are sets which are not infinitely-often autoreducible. In particular general
generic sets have this property.

On the other hand, Ambos-Spies, Neis and Terwijn [5] showed that the notions of generic
sets and resource bounded randomness are compatible. As random sets are infinitely-often
autoreducible (even infinitely-often truth-table autoreducible) [12, 13], there are some generic
sets which are infinitely-often autoreducible and Fact 2.2 really needs the stronger version of
general generic sets.

General generic sets cannot be in EXP due to the quasipolynomial time bound. The fol-
lowing result shows that sets which are not infinitely-often autoreducible can be found in EXP.
Note that many-one EXP-complete sets are (everywhere) autoreducible since they are many-
one equivalent to their complement. Buhrman, Fortnow, van Melkebeek and Torenvliet [11]
show that every Turing EXP-complete set is autoreducible.

Theorem 2.3. There is a set in EXP which is not infinitely-often autoreducible with respect
to Turing reducibility.

Proof. Let M0, M1, . . . be an enumeration of all polynomial time autoreductions such that
each Me needs at most time x + e at input x and queries the set A only at places y ≤ 2x

with y 6= x. Note that x is superpolynomial in log(x) and therefore, all polynomial time

4

autoreductions are covered. The set A is constructed by a priority construction and satisfies
at the end for every e one of the following two possibilities.

• There is a number x such that MA
e (x) outputs b ∈ {0, 1} with b 6= A(x).

• For almost every x, MA
e (x) is undefined.

The e-th requirement is then the first of these two conditions. The construction will be
such that it either satisfies the e-th requirement explicitly or enforces the second condition
implicitly.

The construction uses approximations Ax of A where Ax(y) = A(y) for all x, y with y < x.
So one has to simulate the construction only x + 1 stages to know the value of A at x.
Together with a proof that every stage needs time exponential in the length of x it follows
that A ∈ EXP.

Construction of A. Let Ax and re,x be the values of A and re before stage x, in particular,
A0 = ∅ and re,0 = 0 for all x.

In stage x one searches the least e such that there is a finite set D satisfying the following
requirements where D is the set of the positions for which it is intended that Ax+1 and Ax

will differ.

Bound on e: e ≤ log∗(x).

Respecting Restraints: re′,x < x for all e′ ≤ e.

Requirement e not yet done: There is no number x′ < x such that MAx
e (x′) queries Ax only

at places below x and computes a wrong prediction for A(x′).

Requirement e needs attention: MAx∆D
e (x) computes a prediction different from (Ax∆D)(x);

where Ax∆D denotes the symmetric difference of Ax and D.

Size-constraint on D met: D ⊆ {x, x+1, x+2, . . . , 2x} and D has at most 2−e−2 · log∗(x)−2e
many elements.

If the above procedure finds an e (which is the minimal one possible) and D is the corre-
sponding set mentioned above then

Ax+1 = Ax∆D;

re,x+1 = 2x + 2;

re′,x+1 = re′,x for all e′ 6= e;

else nothing changes, that is, Ax+1 = Ax and re′,x+1 = re′,x for all e′.

Verification. One first notes that in stage x the search considers only log∗(x) many values
of e and for each of these, the search runs over computations which make at most x + e
queries where at most 2−e−2 · log∗(x) − 2e of the answers can differ from the current values

5

of Ax as these queries hit elements in D. So, for each e, there are O(xlog∗(x)) many possible
computation paths. As log∗(x) ≤ log(x + 2), the running time of step x of the algorithm
is quasipolynomial in x, that is, exponential in log(x). As A(x) = Ax+1(x), it follows that
one can compute A(x) by running the algorithm for the stages 0, 1, . . . , x and so the overall
running time is quasipolynomial in x, that is, A ∈ EXP.

Note that for sufficiently large x the bound 2−e−2 · log∗(x) − 2e becomes positive as e is
a constant and log∗(x) is unbounded. Therefore, cardinality requirements do not hinder to
satisfy Requirement e for sufficiently large x.

By usual priority arguments, one can show that every e is found only finitely often by
the search algorithm and that re,x converges from below to a final value re,∞. More precisely,
every re,x changes only if the parameter e is selected in the search at stage x. One can show
by induction that this happens only finitely often for all e. Assume that all re′,∞ with e′ < e
exist and have maximum r̃e. If e is not selected in the search at any x > r̃e then re,x changes
only finitely often and converges to some value re,∞. If e is selected at some x > r̃e then the
following happens. Ax+1 is updated such that the autoreduction MAx+1

e (x) returns a wrong
value and queries Ax+1 only at places smaller than 2x + 1. Furthermore, as at no x′ > x
the search selects an e′ < e, the restraint re,x+1 will be respected and the diagonalization
of the autoreduction MAx+1

e will not be undone by changing A at queried places, that is,
Ax(y) = A(y) for all values y queried by MAx+1

e (x). Thus Requirement e will be counted as
“done” at all stages x′ > x and so e will not be selected again by the search condition at
those stages. Thus re,∞ = 2x + 2.

Now it is shown that A is not infinitely-often autoreducible. Consider any autoreduction
Me which does not make any false prediction for A but might be undefined for some inputs.
Let x be so large that 2−e−2 · log∗(x)− 2e > 2 and x > re′,∞ for all e′ ≤ e. So the search does
not return any e′ ≤ e as otherwise the corresponding restraint would be increased again. It
follows that MB

e (x) does not predict any value for input x on any set B of the form Ax∆D with
|D| ≤ 2−e−2 ·log∗(x)−2e−1 and D ⊆ {x, x+1, . . . , 2x} – note that the search in the algorithm
actually covers sets D with up to 2−e−2 · log∗(x)− 2e many elements, but this one additional
element might be needed to make the prediction to be different from (Ax∆D)(x). On the
other hand, it might happen that up to log∗(x) many requirements e′ > e act between stages
x and 2x. Due to the update rule of the restraints, each of them acts only once between these
stages. Furthermore, each e′ changes A at up to 2−e′−2 · log∗(2x)−2e′ ≤ 2−e′−2 · log∗(x)−2e−1
many positions between x and 2x. The symmetric difference of A and Ax contains below x
no element and between x and 2x at most 2−e−2 · log∗(x)− 2e− 1 many elements. So, MA

e (x)
does also not predict any value for A(x) and MA

e is undefined for almost all inputs.

3 On Truth-Table Autoreducibility

The topic of this section is the interrelation of autoreducibility notions with respect to truth-
table reducibility, Turing-reducibility and the variants of these reducibilities where the number
of queries is bounded. It is shown that only the trivial implications hold and that all differences
between the notions can be witnessed by sets in EXP. Theorem 3.2 in particular shows that

6

there is a set in EXP which is tt(n + 1)-autoreducible but not infinitely-often Turing(n)-
autoreducible, where n is the logarithm (= length) of the input, tt(n + 1) means that the
truth-table reduction is permitted to make up to n + 1 queries and Turing(n) means that
the Turing reduction is permitted to make up to n queries. This implies that this set is
tt-autoreducible but not btt-autoreducible.

The proof of the following theorem uses Kolmogorov complexity arguments to construct a
starting set A0 which is Turing but not tt-complete for EXP. Watanabe [25] first constructed
such a set; his ideas are also based on Kolmogorov complexity arguments.

Theorem 3.1. There is a set A in EXP which is Turing autoreducible but not infinitely-
often tt-autoreducible.

Proof. The construction is a modification of the one from Theorem 2.3 with the following
two differences:

• The set A0 is not empty but a set which is Turing complete (but not tt-complete) for
EXP.

• Furthermore, M0, M1, . . . is a list of all polynomial time truth-table autoreductions which
satisfy the same side conditions as in Theorem 2.3; that is, for any oracle X, MX

e (x)
is computed in time e + x and X is queried only at places y ≤ 2x which are different
from x.

The choice of A0 is sensitive to the success of the construction because it must be guaranteed
that one can compute all elements queried by Me. This is done by placing the more difficult
elements at positions which can be accessed by an adapted search but not by a nonadaptive
truth-table reduction.

First one takes a sequence b0b1 . . . of bits which is random for computations using com-
putation time 2n3

but can be computed in time 2n6
and let B be the set of all numbers of

the form 2n +
∑

m<n 2m · bm. B is in EXP. Furthermore let C be a set which is many-one
EXP-complete and contains 0. The set A0 is then given by

A0 = {〈b, c, d〉 : b ∈ B, c ∈ C, c ≤ b, d ∈ lN}.

Now one uses that the e-th truth-table autoreduction Me queries at most x many places and
so any query of it has at most Kolmogorov complexity log(e) + log(x) + k for a constant k
where the Kolmogorov complexity is measured with respect to time bound x3. It follows that
every 〈b, c, d〉 queried satisfies that b has also this bound (plus perhaps a constant) and that,
whenever 〈b, c, d〉 is in A0, then b = 2n +

∑
m<n 2m · bm for some n ≤ 3(log(x) + log(e) + k′)

and c ≤ b where k′ is a suitable constant independent of e, x. So the algorithm to compute
all the values of A0 at places queried by Me at x with e ≤ log∗(x) is exponential in x and this
gives that the set A is also in EXP.

The construction gives that A is not infinitely-often tt-autoreducible in the same way as
the construction in Theorem 2.3 that the set constructed there is not infinitely-often Turing
autoreducible. It remains to show that in this theorem the set A is Turing autoreducible.

Note that for fixed b, c and the two third majority of the numbers y = 〈b, c, d〉 with

7

0 ≤ d ≤ 3 log∗(b + c) + 6 satisfies that A(y) = A0(y). Thus one can every query whether
〈b, c, 0〉 ∈ A0 reduce to polynomially many queries to A (omitting the query to x if it is among
these queries) and so it is sufficient to give in the construction below the queries to A0.

• For input x, compute the c such that A(x) = C(c). This can be done without querying
an oracle as C is many-one EXP-complete.

• For every b ∈ B, there is an n such that b = 2n+
∑

m<n 2m ·bm. Then one of the following
numbers is the next element of B: b + 2n, b + 2n+1 — the first one in case bn = 0, the
second one in case bn = 1. So one can find for each member of B the next member of
B by two queries to B and starting with 1, which is the minimum of B, one can find a
b ≥ c such that b ∈ B with 2 log(c) + 2 queries to B. Since b ∈ B iff 〈b, 0, 0〉 ∈ A0, this
computation can also be done with the same number of queries to A0.

• Having this b ≥ c such that b ∈ B, one can determine A(x) with one query to A0 as
x ∈ A iff 〈b, c, 0〉 ∈ A0.

The so constructed algorithm is a Turing autoreduction as the size log(c) of c is polynomially
bounded in the size log(x) of x. Furthermore, as 3 log∗(b + c) + 6 ≤ 3 log(b + c) + 12, the
number of queries to A is only by a factor polynomial in x greater than the number of queries
to A0 and so the whole algorithm queries A only polynomially often. One can easily verify,
that the running time of the algorithm is also polynomial.

Theorem 3.2. For every polynomial-time computable and nondecreasing function g ∈
Poly(n) there is a set A in EXP such that A is tt(g(n) + 1)-autoreducible but not infinitely-
often Turing(g(n))-autoreducible.

Proof. Let M0, M1, . . . be a list of all polynomial time Turing(g(n)) autoreductions such
that every value Me(x) can be computed in time e + x and Me queries only places below
2x which are different from x. Furthermore, one can produce a polynomial time-computable
partition Π of almost all natural numbers with the following properties:

• There is an integer m such that x ∈ I for some I ∈ Π iff x ≥ 2m, that is, ∪I∈ΠI =
{2m, 2m + 1, . . .};

• For every I ∈ Π there is an integer n(I) such that all numbers x ∈ I satisfy n(I) ≤
log(x) < n(I) + 1;

• The cardinality of every I ∈ Π is either g(n(I)) + 2 or 2g(n(I)) + 3.

As g ∈ Poly(n), one can find an m such that 2(g(n) + 2)2 < 2n holds for all n ≥ m. For each
n ≥ m, one can find a, b such that 2n = a(g(n) + 2) − b and 0 ≤ b ≤ g(n) + 1. Note that
a > 2b and so one can partition the set {2n, 2n + 1, . . . , 2n+1 − 1} into b intervals of length
2g(n) + 3 followed by a− 2b intervals of length g(n) + 2 and put these intervals into Π. The
number n(I) is for these intervals exactly the n with I ⊆ {2n, 2n + 1, . . . , 2n+1 − 1} and the

8

numbers 0, 1, . . . , 2m − 1 do not belong to any interval.
Now given I ∈ Π let L(I) denote the g(n(I))+2 smallest and H(I) the g(n(I))+2 largest

elements in I. The overall construction of the set A will be such that for every interval I ∈ Π
the cardinalities of L(I) ∩ A and H(I) ∩ A are both even. Therefore one has the following
tt(g(n) + 1)-autoreduction for A.

• If x < 2m then output “x /∈ A” and halt.

• Otherwise find the I ∈ Π with x ∈ I.

• If x ∈ L(I) then query the g(n) + 1 elements in L(I)− {x} and let a be the cardinality
of A ∩ (L(I) − {x}) else query the g(n) + 1 elements in H(I) − {x} and let a be the
cardinality of A ∩ (H(I) − {x}).

• If a is odd then output “x ∈ A” else output “x /∈ A”.

This reducibility is definitely a tt(g(n)+1)-autoreduction, can be done in time polynomial in
log(x) and is correct since the cardinalities of L(I) ∩ A and H(I) ∩ A are even.

It remains to show that one can choose in exponential time the set A such that the resulting
set is not infinitely-often Turing(g(n))-autoreducible. The construction is done in stages.

Construction. If x < 2m then let Ax+1 = ∅ and re,x = 0 for all e. If x ≥ 2m then determine
the interval I with x ∈ I. Search for the least e such that there is a set D satisfying the
following conditions.

Bound on e: e ≤ log(x + 1).

Respecting Restraints: re′,x < min(I) for all e′ ≤ e.

Requirement e not yet done: There is no x′ < x such that MAx
e (x′) is defined, queries only

places below min(I) and outputs something different from Ax(x
′).

Requirement e needs attention: MAx∆D
e (x) is defined and differs from (Ax∆D)(x).

D not too large: D intersects only intervals J which either contain x or an y > x queried by
the MAx∆D

e (x). Furthermore, min(I) ≤ min(D ∪ {x}), max(D ∪ {x}) ≤ 2x and the sets
L(J) ∩D and H(J) ∩D have an even number of elements for every interval J ∈ Π.

If the above procedure finds an e (which is the minimal one possible) and D is the corre-
sponding set mentioned above then

Ax+1 = Ax∆D;

re,x+1 = 2x + 2;

re′,x+1 = re′,x for all e′ 6= e;

else nothing changes, that is, Ax+1 = Ax and re′,x+1 = re′,x for all e′.

9

Verification. The set A is in EXP as the search in every stage goes only through exponen-
tially many possibilities (e ≤ log(x + 1) and at most g(log(x)) + 2 many queries by Me where
g is polynomially bounded). Furthermore, every set D has on every interval of the form L(I)
and H(I) an even number of elements so that the resulting set A has the same property:
A ∩ L(I) and A ∩H(I) have an even number of elements.

It follows from standard priority arguments that every e is found only finitely often by the
above search conditions and that the restraints re,x all take eventually a final value re,∞.

Now assume that MA
e never outputs an incorrect value. Consider any x in an interval

I ∈ Π such that min(I) > max({r0,∞, r1,∞, . . . , re,∞}). Assume by way of contradiction that
MA

e (x) is defined. Let E be the union of all intersections J ∩ (Ax∆A) where J contains
either x or an y > x which is queried by MA

e (x). Note that for all intervals J , L(J) ∩ E
and H(J) ∩ E have an even number of elements. Furthermore, Ax∆E and A coincide on all
relevant elements, thus MAx∆E

e (x) = A(x).
Let l and h be elements of I different from x and not queried by MAx∆E

e (x) such that
l ∈ L(I), h ∈ H(I) and both sets {l, h, x} ∩ L(I) and {l, h, x} ∩ H(I) have even cardinality;
note that L(I) = H(I) = I and l = h in the case that I has g(n)+2 elements. It follows from
easy cardinality arguments that l, h exist. Now let D = E∆{l, h, x}. The autoreduction Me

behaves at x for the sets Ax∆E and Ax∆D exactly in the same way, but the output is wrong
in the case that one considers Ax∆D. So, this e witnessed by this D or some e′ < e would
qualify for the search in stage x which contradicts to the restraints r0,∞, r1,∞, . . . , re,∞ being
below x in the limit. From this contradiction it follows that MA

e (x) is undefined for almost
all x.

So, A is in EXP, A is tt(g(n)+1)-autoreducible but A is not infinitely-often Turing(g(n))-
autoreducible.

An autoreduction is a bounded truth-table reduction iff there is a constant k such that the
reduction makes for every input at most k queries. If a set A is tt(n + 1)-autoreducible
but not infinitely-often Turing(n)-autoreducible, then A is clearly tt-autoreducible but not
infinitely-often btt-autoreducible. This gives the following corollary.

Corollary 3.3. There is a set in EXP which is truth-table autoreducible but not infinitely-
often bounded truth-table autoreducible.

4 Notions of Approximability

A set is called (a, b)-recursive iff there is a function f such that for all distinct x1, x2, . . . , xb

the function f computes a tuple (y1, y2, . . . , yb) of bits such that at least a of the equations
A(xk) = yk are true. If there are a, b such that 1 ≤ a ≤ b and if there is a polynomial time
computable function f such that A is (a, b)-recursive via f then A is called approximable [9]
and if in addition 2a > b then A is called easily approximable.

In the recursion theoretic setting, every set which is (1, b)-recursive for some b is also
autoreducible [16]. This does not carry over to complexity theory: Returning to the world

10

of polynomial time computations, supersparse sets are (1, 2)-recursive but not Turing autore-
ducible. Supersparse sets are related to k-cheatable sets [8]. Nevertheless, approximable sets
are still infinitely-often autoreducible.

Proposition 4.1. Every approximable set is infinitely-often btt-autoreducible.

Proof. Assume that A is approximable via f and let l be the largest constant such that for
infinitely many inputs of the form x+1, x+2, . . . , x+ k at least l of the bits y1, y2, . . . , yk are
wrong. Let u be so large that it never happens for an x > u that more than l of these bits
are wrong. Now A is btt-autoreducible as follows.

Algorithm. Ignore inputs x < u + k. For x ≥ u + k query A at all numbers x′ with
x − k < x′ < x + k and x′ 6= x. If there is a x′ with x − k ≤ x′ < x such that the answers
y1, y2, . . . , yk computed by f from input x′ + 1, x′ + 2, . . . , x′ + k satisfy that yk′ 6= A(x′ + k′)
for l numbers k′ ∈ {1, 2, . . . , k} − {x − x′} then predict yx−x′ for A(x) else do not make any
prediction.

Verification. The correctness follows from the fact that there are at most l differences
between A(x′ + k′) and yk′ and these errors have been localized at places different from x.
That this reduction works for infinitely many x is a consequence of the choice of l.

Ogihara [21] also considered sets which are (1, b(n))-recursive where b is a function in Poly(n)
and the parameter n is log(max{1, x1, x2, . . . , xb}) where x1, x2, . . . , xb is the input to the
function to compute the approximation. This generalized notion does no longer enforce that
A is infinitely-often autoreducible.

Example 4.2. The set from Theorem 2.3 satisfies Ogihara’s generalized approximability
condition but is not infinitely-often Turing autoreducible.

Proof. It is sufficient to show that the set A constructed in Theorem 2.3 is (1, b(n))-recursive
with b(n) = 6 log∗(n) + 3: On input x1, x2, . . . , xb(n), let

yk =
{

0 if xk > log log(n);
A(xk) if xk ≤ log log(n).

and predict (y1, y2, . . . , yb(n)). If xk ≤ log log(n) then A(xk) = yk and this prediction is correct.
Otherwise one knows that between log log(n) and n the set A has at most 6 log∗(n) + 2
many elements. It follows that at least one of the predicted 0s is correct. Furthermore, the
computations involved can all be done in polynomial time since A(xk) can be computed in
time 2Poly(log log(n)) whenever xk ≤ log log(n).

An easily approximable set A has the property that every set B Turing reducible to A is also
tt-reducible to A. This property is called T-easy. The next theorem shows that every T-easy
set is either infinitely-often autoreducible or satisfies Ogihara’s generalized approximability
notion with a = 1 and b = log2(n).

Theorem 4.3. Every set A satisfies at least one of the following properties.

11

(a) Not T-easy: There is a set B which is polynomial time Turing reducible but not polyno-
mial time truth-table reducible to A;

(b) Infinitely-often truth-table autoreducible: For infinitely many z, A(z) can be computed
by queries to places different from z;

(c) Generalized approximable: A is (1, 1 + log2(n))-recursive via some function computable
in polynomial time.

Proof. Let A be any set. Furthermore, define a tuple-function which at input x1, x2, . . . , xm

computes the binary representations u0, u1, . . . , um of these numbers and outputs a number,
denoted as 〈x1, x2, . . . , xm〉, which has the ternary representation u12u22 . . . 2um2. Note that
〈x1, x2, . . . , xm〉 > xk for k = 1, 2, . . . ,m. Furthermore, n = log(max{1, x1, x2, . . . , xm})
satisfies 〈x1, x2, . . . , xm〉 < 3(n+3)m. Let y(x1, x2, . . . , xm : A) be the number represented by
the binary string A(x1)A(x2) . . . A(xn). Depending on the question what type of reducibilities
from

B = {〈x1, x2, . . . , xm〉 : 〈x1, x2, . . . , xm, y(x1, x2, . . . , xm : A)〉 ∈ A}

to A exist, one of three properties hold.
(a) B is not truth-table reducible to A. Then A is not T-easy. This is verified by showing

that B is Turing reducible to A as follows. One first queries whether x1, x2, . . . , xm ∈ A, then
computes y(x1, x2, . . . , xm : A) and at last queries whether 〈x1, x2, . . . , xm, y(x1, x2, . . . , xm :
A)〉 is in A.

(b) B is truth-table reducible to A by a reduction which for infinitely many tuples
〈x1, x2, . . . , xm〉 computes B(〈x1, x2, . . . , xm〉) without querying A whether 〈x1, x2, . . . , xm,
y(x1, x2, . . . , xm : A)〉 is in A. Then A is infinitely-often truth-table autoreducible by f defined
as follows. Let F (x) denote the set of queries which the truth-table reduction from B to A
makes at input x. On input z, f checks whether there is a set E and numbers m, x1, x2, . . . , xm

such that

• z = 〈x1, x2, . . . , xm, y(x1, x2, . . . , xm : E)〉 and

• z /∈ F (E(x1)E(x2) . . . E(xm)) ∪ {x1, x2, . . . , xm}.

If so, then f queries A at the members of the set F (〈x1, x2, . . . , xm〉) ∪ {x1, x2, . . . , xm}
and outputs the result of the truth-table reduction from B to A computed for the value
B(〈x1, x2, . . . , xm〉) in the case that A(x1) = E(x1), . . . , A(xm) = E(xm). If z is not of the
above form or if the supposed values of E do not coincide with A or z ∈ F (〈x1, x2, . . . , xm〉)
then f(z) is undefined. Note that whenever f(z) is defined, the value computed coincides with
A(z) and f does not query A(z) as x1, x2, . . . , xm < 〈x1, x2, . . . , xm, y(x1, x2, . . . , xm : E)〉 = z
and z /∈ F (E(x1)E(x2) . . . E(xm)).

(c) The two previous cases do not hold. Then A is (1, b(n))-recursive with b(n) =
1 + blog2(n)c. As (a) does not hold, there is a tt-reduction from B to A. Let F (x) be
the set of queries made at input x. There is a constant c such that the cardinality of
F (x) is at most logc(x) for almost all x. If n is sufficient large and x = 〈x1, x2, . . . , xm〉

12

with x1 < x2 < . . . < xm and n = blog(xm)c and m = b(n), then the following facts hold:
y(x1, x2, . . . , xm : A) ∈ F (〈x1, x2, . . . , xm〉) as (b) does not hold, n > m and (log(3)·m·(n+3))c

< n4c < nlog(n). As 2m > nlog(n), it follows that there is a number y with binary representa-
tion d1d2 . . . dm such that 〈x1, x2, . . . , xm, y〉 /∈ F (〈x1, x2, . . . , xm〉). Thus at least one of the
conditions A(x1) 6= d1, A(x2) 6= d2, . . . , A(xm) 6= dm holds and so A is (1, b(n))-recursive by
outputting the vector (1− d(x1), 1− d(x2), . . . , 1− d(xm)). The remaining case is where n is
too small. But there are only finitely many x1, x2, . . . , xm where this can happen and one can
output the characteristic vector (A(x1), A(x2), . . . , A(xm)) in these finitely many cases. One
can easily verify that the proposed algorithm runs in polynomial time and so A is (1, b(n))-
recursive.

5 Hausdorff Dimension

Hausdorff [14] introduced a generalized notion of dimension for metric spaces; it also enables
to measure the size of fractal objects. Lutz [19] adapted the notion for complexity theory in
order to measure the size of subclasses of the natural numbers. The following definition – one
among several equivalent ones – defines the Hausdorff-dimension in terms of the growth rate
of the capital accumulated by a gambler who bets inductively on the bits of the characteristic
functions of any set in the given class. Such growth rate functionals are called martingales.

Definition 5.1. A quasipolynomial time computable functional f is called a martingale,
iff it maps binary strings to positive numbers, the empty string to 1 and satisfies

2f(a0a1 . . . ax) = f(a0a1 . . . ax0) + f(a0a1 . . . ax1)

for all binary strings a0a1 . . . ax. The Hausdorff-dimension (with respect to EXP) of a class
S is the infimum of all s such that there is a quasipolynomial time computable martingale f
succeeding on every set in A ∈ S with growth rate 21−s, that is, f satisfies

(∀A ∈ S) (∃∞x) [f(A(0)A(1) . . . A(x)) ≥ 2(1−s)x].

Remark 5.2. The class of all sets as well as the class EXP have Hausdorff-dimension 1.
The upper bound is witnessed by the martingale mapping all strings to 1, the lower bound is
obtained by constructing for any given quasipolynomial martingale f the set A in EXP which
satisfies for x = 0, 1, . . . that

f(A(0)A(1) . . . A(x)A(x + 1)) ≤ f(A(0)A(1) . . . A(x)),

that is, A(x+1) takes just the value adversary to A(x). Note that in EXP one cannot have one
set doing this for all martingales due to the fact that every single set in EXP is predictable by
a suitable quasipolynomial time computable martingale. There are also sets A random for all
quasipolynomial time computable martingales and thus satisfy that the Hausdorff-dimension
of {A} is 1, but no such A is in EXP.

13

Ambos-Spies, Merkle, Reimann and Stephan [4, Corollary 16] considered Hausdorff-dimension
adapted to the class E = {A : (∃c) (∃M) (∀x) [M computes A(x) in time c + xc]}. They
showed that the class of many-one autoreducible sets in E has Hausdorff-dimension 1. This
fact directly carries over to EXP.

Fact 5.3. The class {A in EXP: (∀x) [A(x) = A(x2)]} consists only of many-one auto-
reducible sets and has Hausdorff-dimension 1. In particular, the classes of the many-one
autoreducible, truth-table autoreducible and Turing autoreducible sets in EXP have Haus-
dorff-dimension 1.

An interesting obvious question is to determine the Hausdorff-dimension of the class of those
sets in EXP which are not infinitely-often r-autoreducible. The next theorem shows, that the
Hausdorff-dimension is already 1 for the case of the polynomial time Turing reducibility; it
then follows also for the other polynomial time reducibilities r. As Ebert [12, 13] showed that
every set which is x3-random is already infinitely-often autoreducible, the class S is one of
the natural witnesses that there are classes which have Hausdorff-dimension 1 and measure 0
with respect to quasipolynomial time martingales.

Theorem 5.4. The class of all sets in EXP which are not infinitely-often autoreducible has
Hausdorff-dimension 1.

Proof. The basic idea of the proof is to use the same construction as in Theorem 2.3.
But one has to do the following changes. One has to construct for every quasipolynomial
time martingale f such a set A. Furthermore, for given f , A0 has to be chosen such that
f does not have a fast growth rate neither on A0 nor on any supersparse variant of A0.
In particular the supersparse variant A of A0 will satisfy that there is no s < 1 with
(∃∞x) [f(A(0)A(1) . . . A(x)) ≥ 2(1−s)·x]. Furthermore, A0 has to be chosen such that not
only A0 itself but also the A constructed from A0 is in EXP.

To meet these constraints, one chooses the polynomial time Turing reductions M0, M1, . . .
a bit more restrictive than in Theorem 2.3, namely the Me have to satisfy the following
properties:

• MX
e (x) queries any given oracle X at up to (log(x))log log(x) many places; these places

are below 2x and different from x;

• MX
e (x) needs at most running time e + (log(x))log log(x).

Note that the bound (log(x))log log(x) is superpolynomial and thus one has, starting with a
given reduction, only to modify it on finitely many inputs, where one can put the correct
result into a table so that no query is necessary at all. Thus whenever A is infinitely-often
autoreducible then A is infinitely-often autoreducible by some Me.

As f might behave on A very differently as on A0, one has to define A0 such that the
growth rate of f does not only on A0 but also on all supersparse variants of A0 fail to reach
21−s for any s < 1.

So one considers the following functional f ′: Let rD be the product of all 1 + 1/(1 +

14

d · d) where d ∈ D, r∅ = 1. Now f ′(B(0)B(1) . . . B(x)) is the sum over all terms rD ·
f(C(0)C(1) . . . C(x)) where C ⊆ {0, 1, . . . , x}, D = {y ≤ x : B(y) 6= C(y)} and D is a
supersparse set. The functional f ′ is no longer a martingale, but it satisfies the following
condition:

f ′(a0a1 . . . ax0) + f ′(a0a1 . . . ax1) ≤ 2 · 2+(x+1)·(x+1)
1+(x+1)·(x+1)

· f ′(a0a1 . . . ax).

Now one defines the set A0 inductively as follows. A0(0) = 0. A0(x + 1) = 0 iff one of the
following two conditions holds and A0(x + 1) = 1 otherwise:

(a) there is an y < x1/5, an e ≤ log∗(x) and a supersparse set D ⊆ {0, 1, . . . , 2x} such that
M (A0∩{0,1,...,x})∆D

e (y) queries x;

(b) f ′(a0a1 . . . ax0) ≤ 2+(x+1)·(x+1)
1+(x+1)·(x+1)

· f ′(a0a1 . . . ax).

Note that the search over the queried elements can be done in exponential time: every Me

queries at most (log(x))log log(x) many elements and at most (log∗(x) + 1)2 of them can differ
from the corresponding value of A0∩{0, 1, . . . , x} as one searches over answers given by A0∆D
and not just A0. So one has to consider ((log(x))log log(x))(log∗(x)+2)2 many computation paths
for every y ≤ x1/5 and e ≤ log∗(x), each path might need up to log∗(x) · (log(x))log log(x) many
steps. As except x1/5 all these factors grow slower than every function xq, q > 0, there is a
constant c such that, for every x, the number of steps to be simulated is at most x1/4 + c. As
every 0 caused by condition (a) in the construction of A0 is due to a query of one of these
simulated paths, there are at most x1/4 + c many of places y ≤ x where A0(y + 1) = 0 due to
condition (a).

If A0(x + 1) = 0 is caused by condition (a), then the value of f ′ can go up by the factor

2 · 2+(x+1)·(x+1)
1+(x+1)·(x+1)

else A(x + 1) is chosen such that the value of f ′ goes only up by half of that,

that is, by the factor 2+(x+1)·(x+1)
1+(x+1)·(x+1)

. The product over f ′(A(0)) and all numbers 2+(x+1)·(x+1)
1+(x+1)·(x+1)

is

bounded by a constant d. So it follows that, for every x, f ′(A0(x)A1(x) . . . Ax(x)) ≤ 2x1/4+c ·d.
The construction of Theorem 2.3 gives that A is a supersparse variant of A0. Let B = A∆A0.
For almost all x, D = B ∩ {0, 1, . . . , x} has at most (log∗(x))2 many elements, 1/rD ≤ x|D| ≤
2x1/4

and f(A(0)A(1) . . . A(x)) ≤ f ′(A(0)A(1) . . . A(x))/rD ≤ 2x1/4+c+1 · d. It follows that
there is no s < 1 such that f(A(0)A(1) . . . A(x)) ≥ 2(1−s)x for infinitely many x.

It remains to show that A is in EXP. Note that it follows from the construction of Theo-
rem 2.3, that at every stage x and every D considered in the search condition, the set Ax∆D
is a supersparse variant of A0. It follows from the definition of A0 that whenever MAx∆D

e (x)
queries an element y > x5, then A0(y) = 0. As A0 is in EXP, there is a polynomial p such
that one can compute in time 2p(log(x)) the value of A0(y) for any given y ≤ x5. It follows that
one can compute A0(y) in all queried places in time exponential in log(x). Every stage in the
construction changes the approximation of A at less than x places, so one can bookkeep these
changes and compute A in exponential time. This completes the proof.

Acknowledgments. The authors would like to thank Klaus Ambos-Spies, Jack H. Lutz and
Wolfgang Merkle for helpful discussions; furthermore, Jack H. Lutz proposed to investigate the
Hausdorff-dimension of the class of sets in EXP which are not infinitely-often autoreducible.

15

References

[1] Klaus Ambos-Spies. Resource-bounded genericity. In S. B. Cooper et al., editor, Com-
putability, Enumerability, Unsolvability, volume 224 of London Mathematical Society Lec-
ture Notes Series, pages 1–59. Cambridge University Press, 1996.

[2] Klaus Ambos-Spies, Hans Fleischhack and Hagen Huwig. Diagonalizations over polyno-
mial time computable sets. Theoretical Computer Science 51:177-204, 1997.

[3] Klaus Ambos-Spies and Elvira Mayordomo. Resource-bounded measure and randomness.
In A. Sorbi, editor, Complexity, Logic, and Recursion Theory, volume 187 of Lecture
Notes in Pure and Applied Mathematics, pages 1–47, 1997.

[4] Klaus Ambos-Spies, Wolfgang Merkle, Jan Reimann and Frank Stephan. Hausdorff
dimension in exponential time. Proceedings Sixteenth Annual IEEE Conference on Com-
putational Complexity, IEEE Computer Society, 210–217, 2001.

[5] Klaus Ambos-Spies, Hans-Christian Neis and Sebastiaan A. Terwijn. Genericity and
measure for exponential time. Theoretical Computer Science, 168:3–19, 1996.

[6] Klaus Ambos-Spies, Sebastiaan A. Terwijn and Xizhong Zheng. Resource bounded ran-
domness and weakly complete problems. Theoretical Computer Science, 172:195–207,
1997.

[7] José L. Balcázar and Elvira Mayordomo. A note on genericity and bi-immunity. Proceed-
ings of the Tenths Annual Structure in Complexity Theory Conference, IEEE Computer
Society Press, pages 193–196, 1995.

[8] Richard Beigel. Bi-immunity results for cheatable sets. Theoretical Computer Science,
73:249–263, 1990.

[9] Richard Beigel, Martin Kummer and Frank Stephan. Approximable sets. Information
and Computation, 120:304–314, 1995.

[10] W. Blum. Denksport für Hutträger. Die Zeit, Hamburg, 03 May 2001.

[11] Harry Buhrman, Lance Fortnow, Dieter van Melkebeek and Leen Torenvliet. Using
autoreducibility to separate complexity classes. Siam Journal on Computing, 29(5):1497–
1520, 2000.

[12] Todd Ebert. Applications of Recursive Operators to Randomness and Complexity. PhD
Thesis, University of California at Santa Barbara, 1998.

[13] Todd Ebert, Wolfgang Merkle and Heribert Vollmer. On the autoreducibility of random
sequences. SIAM Journal on Computing, 32(6):1542–1569, 2003.

[14] Felix Hausdorff. Dimension und äusseres Maß. Mathematische Annalen, 79:157–189,
1919.

16

[15] Carl G. Jockusch and Micheal S. Paterson. Completely autoreducible degrees. Zeitschrift
für Mathematische Logik und Grundlagen der Mathematik, 22:571–575, 1976.

[16] Martin Kummer and Frank Stephan. Recursion theoretic properties of frequency com-
putation and bounded queries. Information and Computation, 120:59–77, 1995.

[17] Jack H. Lutz. Category and measure in complexity classes. SIAM Journal on Computing,
19:1100–1131, 1990.

[18] Jack H. Lutz. Almost everywhere high non-uniform complexity. Journal of Computer
and System Sciences, 44:220–258, 1992.

[19] Jack H. Lutz. Dimension in complexity classes. Proceedings Fifteenth Annual IEEE
Conference on Computational Complexity (formerly Structure in Complexity Theory),
IEEE Computer Society, 158–169, 2000.

[20] Piergiorgio Odifreddi. Classical recursion theory. North-Holland, Amsterdam, 1989.

[21] Mitsunori Ogihara. Polynomial-time membership comparable sets. In Proceedings of the
9th Conference on Structure in Complexity Theory, IEEE Computer Society Press, 2–11,
1994.

[22] Sarah Robinson. Why mathematicians now care about their hat color. The New York
Times, New York, 10 April 2001.

[23] Claus-Peter Schnorr. Optimal algorithms for self-reducible problems. In Third Interna-
tional Colloquium on Automata, Languages and Programming, ICALP 1976, University
of Edinburgh Press, pages 322–337, 1976.

[24] Boris A. Trakhtenbrot. On autoreducibility. Soviet Mathematics Doklady 11:814–817,
1970.

[25] Osamu Watanabe. A comparison of polynomial time completeness notions. Theoretical
Computer Science 54:249–265, 1987.

17

