
Algebraic Methods for Interactive Proof SystemsCarsten Lund�Lance FortnowyHoward Karlo�zUniversity of ChicagoNoam NisanxHebrew UniversityAbstractWe present a new algebraic technique for the construction of interactive proof systems. We use ourtechnique to prove that every language in the polynomial-time hierarchy has an interactive proof system.This technique played a pivotal role in the recent proofs that IP=PSPACE [S] and that MIP=NEXP[BFL].1 IntroductionNP can be viewed as the set of languages L with this property: there is a deterministic polynomial-timeveri�er (Vanna) and an in�nitely-powerful prover (Pat) such that for all x, if x is in L, then in polynomialtime Pat can persuade Vanna that x is in L, and if x is not in L, then no prover (Pat or any other)can persuade Vanna that x is in L. Pat and Vanna communicate on a two-way channel (though two-waycommunication is not necessary here). For example, Pat can convince Vanna that a graph G is 3-colorableby exhibiting a 3-coloring. If G is not 3-colorable, no prover will ever succeed in persuading Vanna that Gis 3-colorable. (Of course, co-NP-complete languages are not thought to be in NP. No prover is known whocan convince a skeptical deterministic veri�er that G is not 3-colorable, if it is not 3-colorable.)We can extend this idea of \provability" by allowing Vanna to
ip coins and by requiring instead that ifx is in L, with probability at least 2=3 Pat persuades Vanna that x is in L, and if x is not in L, no provercan convince Vanna that x is in L with probability more than 1=3: Babai [B] and Goldwasser, Micali andRacko� [GMR] developed this interactive proof system model. A summary of previous results on interactiveproof systems can be found in [BM].While certain problems such as graph non-isomorphism which are not known to be in NP were knownto have interactive proof systems [GMW], theoretical computer scientists generally believed that the class�Supported by a fellowship from the University of �Arhus.ySupported by NSF grant CCR-9009936.zSupported by NSF grant CCR-8807534.xSome of this work was performed at MIT and supported by NSF grant CCR-865727 and ARO grant DLL03-86-K-017.1

IP of languages accepted by interactive proof systems was not much larger than NP. In particular, it wasbelieved that co-NP-complete languages did not have interactive proof systems.We prove that interactive proof systems have far greater power than originally believed. Our main resultis an interactive proof system for the language f(A; s)js is the permanent of 0-1 matrix Ag. When combinedwith the fact that the permanent of 0-1 matrices is #P-complete [V] and the fact that #P is hard for thepolynomial-time hierarchy [T], the existence of an interactive proof system for the permanent implies thatevery language in the polynomial-time hierarchy has an interactive proof system. In particular, this meansthat every language in co-NP has an interactive proof system, even the complement of 3-COLORABILITY,for example.For the proof we develop a new technique for reducing the problem of verifying the value of a low-degreepolynomial at two given points to verifying the value at one new point. Shamir [S] has used this techniqueto prove that all languages in PSPACE have interactive proof systems. From the fact that IP�PSPACE [F],it follows that IP=PSPACE. Babai, Fortnow and Lund [BFL] have also used this technique in their proofthat every language in nondeterministic exponential time has a two-prover interactive proof system in whichthe provers cannot communicate with one another.Our results also have implications for program checking, veri�cation and self-correction in the context ofBlum and Kannan [BK], Blum, Luby and Rubinfeld [BLR] and Lipton [L]. In fact, the Blum-Luby-Rubinfeldand Lipton papers inspired our result.Our result does not relativize. Fortnow and Sipser [FS] have created an oracle under which co-NPdoes not have an interactive proof system. To our knowledge this is the �rst result to \go contrary" to apreviously-published oracle. Subsequent to the announcement of our result, Chor, Goldreich and H�astad[CGH] proved the same relativized result for a random oracle.2 De�nitionsA veri�er V is a polynomial-time, probabilistic Turing machine with a special communication tape. A proverP is an arbitrary map f from each �nite sequence x; q1; q2; q3; :::, where x 2 f0; 1g� and each qi 2 f0; 1g�, toa 0-1 string.The computation proceeds as follows. Both P and V get x 2 f0; 1g�. V then computes for a while, andwrites a query q1 2 f0; 1g� on her communication tape. P responds by replacing the q1 with f(x; q1). Vcomputes, overwrites f(x; q1) with a query q2 2 f0; 1g�, and awaits P 's response, f(x; q1; q2). This processcontinues until V halts and accepts or rejects x. A round is a query from V followed by a response from P .The pair (P; V) forms an interactive proof system for a language L if for all x 2 f0; 1g�:1. If x 2 L, then Pr(V accepts input x when interacting with P) � 23 .2. If x 62 L, then for all provers P 0, Pr(V accepts x when interacting with P 0) � 13 .IP is the class of all languages which have interactive proof systems.The class #P consists of all functions f : f0; 1g� ! IN for which there exists a polynomial-time, nonde-terministic Turing machine M such that for all inputs x, the number of accepting computations of M on xequals f(x). P#P is the class of languages recognized by a polynomial-time oracle Turing machine with an2

oracle for some function f in #P. Given x, the oracle Turing machine can learn f(x) in one time step byquerying its oracle.3 The ProtocolWe will proveTheorem 1. Every language in P#P has an interactive proof system.Together with Toda's result that P#P contains all the languages of the polynomial-time hierarchy [T],Theorem 1 impliesCorollary 2. Every language in the polynomial-time hierarchy has an interactive proof system. In partic-ular, every language in co-NP has an interactive proof system.We list some facts about the permanent of a matrix A that will be crucial in the proof of Theorem 1. IfA = (aij) is r� r, the permanent per(A) =P� a1�(1)a2�(2) � � �ar�(r), where the sum is over all permutations� of f1; 2; :::; rg. We can equivalently de�ne the permanent recursively as per(A) = P1�i�r a1i � per(A1ji)where A1ji, the (1; i)-minor of A, is the matrix A without the �rst row and the ith column. The number ofperfect matchings in an N -boy, N -girl bipartite graph G is equal to the permanent of G's adjacency matrix.We will exhibit an interactive proof system for verifying the permanent of a 0-1 matrix. The followinglemma implies that this is su�cient to prove Theorem 1.Lemma 3. If L = f(A; s)jA is a 0-1 matrix and per(A) = sg has an interactive proof system, then everylanguage in P#P has an interactive proof system.Proof Sketch. From the fact that computing the permanent of 0-1 matrices is #P-complete [V], we canreduce the membership problem for a language L0 2 P#P to that of verifying the permanents of 0-1 matrices.Given an interactive proof system for L, it is easy to construct one for L0.Throughout most of this paper we will work with the permanent over ZZp of an N � N matrix A withentries in ZZp, where p is a prime in (N !; 2N !). (Bertrand's Postulate [NZ] guarantees the existence of sucha prime.) If A is 0-1, then the permanent of A over ZZp coincides with its permanent as an integer matrix,since the permanent of an N �N 0-1 matrix cannot exceed N !. We use the crucial fact that if B is an r� rmatrix over ZZp whose entries are linear polynomials over ZZp, then per(B) is a polynomial of degree at mostr over ZZp. Compared to p, any r � N is minuscule.The veri�er Vanna will use this fact to \trip up" a cheating prover. She will maintain a list of pairsL =< (B1; q1); (B2; q2); :::; (Bt; qt)>, where the Bi's are square matrices of the same size and qi 2 ZZp.Initially L =<(A; s)>. If s = per(A), then a prover who truthfully answers all of Vanna's questions willinduce Vanna eventually to shrink the list to a single pair (B; q), where B is 1� 1 and q = per(B). At thatpoint Vanna will correctly accept the input.If s 6= per(A), then however the prover answers Vanna's questions, with very high probability Vanna willmaintain this \invariant": the list contains at least one pair (Bi; qi) such that qi 6= per(Bi). (\Invariant"appears in quotes because with extremely low probability, at some point every qi might equal per(Bi).)When the list shrinks to one pair (B; q) where B is 1� 1 and q 6= per(B), Vanna will reject the input (if notearlier). 3

How Vanna manipulates the list is the crux of the protocol. When L =<(B; q)> (B = (bij), 1 � i; j � r,and r > 1), for each i = 1; 2; :::; r, Vanna constructs the minor Bi = B1ji, asks Pat for the permanent of Bi,and gets qi in return. Vanna checks that q =Pri=1 b1iqi; if not, she halts and rejects. If q =Pri=1 b1iqi, sheexpands L by replacing L by <(B1; q1); (B2; q2); :::; (Br; qr)>. Provided that q 6= per(B), qi 6= per(Bi) forsome i.When the list has more than one pair, Vanna shrinks the list by replacing the �rst two pairs (C; c); (D; d)by a new pair (E; e), in the following way. The function f(x) = per(C+x(D�C)) is a polynomial of degreeat most r over ZZp. Vanna asks Pat for the r + 1 coe�cients of f and constructs a polynomial g from theresponses. (Or Vanna could just ask for the value of f at r + 1 arbitrary points and interpolate herself.) Ifg(0) 6= c or g(1) 6= d, Vanna rejects.Vanna now uniformly chooses a random a 2 ZZp,1 sends it to Pat, constructs E = C + a(D � C) ande = g(a), and replaces the pairs (C; c); (D; d) in L by the one pair (E; e). The crucial fact is that if c 6= per(C)or d 6= per(D), then with probability at least 1� r=p, per(E) 6= e. This follows from Lemma 4.Lemma 4. Let C and D be r � r matrices over ZZp. Let g be a polynomial of degree at most r over ZZpsuch that either g(0) 6= per(C) or g(1) 6= per(D). Then if a is chosen uniformly at random from ZZp,Pr[per(C + a(D �C)) = g(a)] � rp :Proof. Let f(x) = per(C+x(D�C)), a polynomial of degree at most r over ZZp. Since f(0) = per(C) andf(1) = per(D), clearly f 6= g. But two nonidentical polynomials of degree at most r over ZZp can coincideon at most r points. It follows that there are at most r values a such thatg(a) = f(a) = per(C + a(D � C)):If L =< (B1; q1); (B2; q2); :::; (Bt; qt)> and at least one i satis�es per(Bi) 6= qi, then with very highprobability, after t � 1 shrinkings L will consist of one pair (H;h) with h 6= per(H). The idea, then, is toreplace the initial list L =<(A; s)> by lists of smaller and smaller matrices, until eventually L =<(B; q)>where B is 1 � 1. If q 6= per(B)|a condition Vanna can easily test|Vanna will reject. Otherwise she'llaccept.How likely is it that Vanna will be able to maintain the \invariant?" A sequence of one expansion stepfollowed by r� 1 shrinking steps will replace L =<(B; q)>, where B is r� r, by L =<(B0; q0)>, where B0 is(r� 1)� (r� 1). Thus fewer than N2 steps (of either kind) su�ce to reduce L =<(A; s)> to L =<(B; q)>,where B is 1 � 1. It follows that the probability that a cheating prover can induce Vanna to erroneouslyaccept (A; s) is less than N2 times the minuscule probability (at most N=p) that a given expand or shrinkstep �rst violates the \invariant."Now we give the full proof of Theorem 1.Proof of Theorem 1. By Lemma 3, it su�ces to exhibit an interactive proof system forL = f(A; s)jA is a 0-1 matrix and per(A) = sg:1Throughout the paper, we will assume that Vanna can choose elements of ZZp uniformly at random, despite the fact thatshe can only pick bits uniformly at random. In reality, she will pick integers a uniformly at random from f0;1; 2; :::;M � 1g,where M is the least power of two exceeding p, until one is less than p. If enough trials fail to �nd an a less than p, she willjust halt and accept x. This increases the probability of erroneously accepting an x 62 L only slightly.4

Here is a formal description of the protocol. A is an N �N 0-1 matrix and 0 � s � N !.beginLet L =<(A; s)>. Pat picks an integer p in (N !; 2N !) and provides a short proof to Vanna that p isprime [Pr]. All arithmetic in this protocol is done mod p.Repeat until L =<(B; q)> for some 1� 1 matrix B:If L =<(B; q)> then doExpand: Suppose that B = (bij) is r � r. Vanna constructs Bi = B1ji for 1 � i � r. She asks Pat forthe permanents of Bi, 1 � i � r, and gets qi for the permanent of Bi. IfPri=1 b1iqi 6= q, Vanna rejects.Otherwise, she sets L = < (B1; q1); (B2; q2); :::; (Br; qr)>.Else (L has two or more pairs) doShrink: Vanna chooses the �rst two pairs (C; c) and (D; d) from L, asks Pat for the r + 1 coe�cientsof f(x) = per(C + x(D �C)) (where C and D are r � r), and constructs g(x) from them. If g(0) 6= cor g(1) 6= d, Vanna rejects. Otherwise, she chooses a random a 2 ZZp, sends it to Pat, and replaces thepairs (C; c); (D; d) in L by (C + a(D �C); g(a)):When L =<(B; q)> and B is 1� 1, Vanna accepts if q = per(B) and rejects if q 6= per(B).end.The protocol contains exactly N � 1 Expand steps and (N � 1) + (N � 2) + � � �+ 2 + 1 Shrink steps ifVanna accepts (A; s):We will prove:(1) There is a prover Pat such that for all N and all N � N 0-1 matrices A, if s = per(A) thenPr[Vanna accepts (A; s)] = 1:(2) If s 6= per(A), then for all provers, Pr[Vanna accepts (A; s)] < N3=p < 1=3 (if N � 6).It is easy to see that a prover who truthfully answers all of Vanna's questions when per(A) = s inducesVanna with probability one to reduce L to < (B; q)> with B 1 � 1 and q = per(B). At this point Vannaaccepts. This completes the proof of (1).For (2), let s 6= per(A). Fix any prover Pat. If Vanna accepts (A; s), then at some time L =<(B; q)>with q = per(B); initially L =<(A; s)> with s 6= per(A). We say that Pat succeeds in iteration m if therepeat loop is executed in full at least m times, andq = per(B) for all (B; q) in L�rst occurs just after the repeat loop has been executed exactly m times. Pat succeeds in some iterationif Vanna accepts. Since there are only N + (N � 1) + � � � + 2 < N2 iterations, it su�ces to prove thatPr[Pat succeeds in iteration m] < N=p:Fix an m. Without loss of generality, we may assume that Pat never induces Vanna to reject until Lconsists of only one pair, in which the matrix is 1 � 1. (Otherwise, we may replace Pat by another proverPat0 who, instead of inducing Vanna to reject early, answers the remaining questions in a way consistentwith his earlier responses, as long as possible. Against such a prover Vanna will not halt until the last stageof the protocol. The probability that Pat succeeds in iteration m is no greater than the probability that Pat05

does.)Pat simply cannot succeed in an Expand step: if L = < (B; q) > with q 6= per(B) becomes L =< (B1; q1); :::; (Br; qr)> with qi = per(Bi) for all i, Vanna immediately rejects.If iteration m is a Shrink step, L contains (C; c) and (D; d) before the step and (E; e) afterward. Ifc = per(C) and d = per(D), then L contained a pair (H;h) with h 6= per(H). It still does. So we mayassume that either c 6= per(C) or d 6= per(D). In this case Lemma 4 tells us that Pr[e = per(E)] < N=p:Thus Pr[Pat succeeds in iteration m] < Np :4 ExtensionsThe protocol above requires
(N2) rounds of prover-veri�er communication when the input matrix is N�N .Babai has suggested the following scheme to reduce the number of rounds to O(N). His idea makes it possibleto shrink a list L with r pairs into a list L0 with one pair in one round. For 1 � i � r, letfi(x) = Yj:j 6=i;1�j�r (x� j)(i� j) :Note that fi(x) is a polynomial over ZZp of degree r � 1 with fi(i) = 1, and if j 6= i, then fi(j) = 0. LetL =<(B1; q1); (B2; q2); :::; (Br; qr)> and de�ne C(x) =Pri=1 fi(x)Bi. The matrixC(x) has entries consistingof polynomials of degree at most r � 1. Now f(x) = per(C(x)) is a polynomial of degree at most r(r � 1)with f(i) = per(C(i)) = per(Bi) for all i, 1 � i � r. This gives us an alternative Shrink procedure:Shrink: Vanna asks Pat for the r(r � 1) + 1 coe�cients of f(x) = per(C(x)) and constructs g(x) fromthem. If g(i) 6= qi for some 1 � i � r, then Vanna rejects. Otherwise, she chooses a random a 2 ZZp, sendsit to Pat and replaces L by <(C(a); g(a))> :The proof of correctness is similar to that of Theorem 1 and is omitted here.Because the number of rounds of an interactive proof system can be reduced by a constant factor [BM],for any � > 0 there is a variant of our permanent protocol running in at most �N rounds. A bounded-roundprotocol for the permanent would imply that the polynomial-time hierarchy collapses, since Boppana, H�astadand Zachos [BHZ] have shown that if all co-NP languages have bounded-round protocols, then the hierarchycollapses. To our knowledge this is the �rst example of an interactive proof system that appears to requirean unbounded number of rounds.Babai and Fortnow [BF] and Shamir [S] have provided alternate interactive proof systems for verifying thevalues of #P functions by counting the number of assignments satisfying a CNF formula, thus circumventingthe need for Valiant's result on the completeness of the permanent. They have shown how to \arithmetize"a formula as a low-degree polynomial so that Pat and Vanna can use a protocol similar to that of Section 3to verify the number of satisfying assignments.Shamir [S] has shown how to arithmetize a QBF formula, using dummy variables to keep the degreelow. Using a protocol similar to that in Section 3, he then proves that every language in PSPACE has aninteractive proof system. Shen [Sh] later provided a \degree-reduction operator" as an alternate techniqueto keep the degree low.Babai, Fortnow and Lund [BFL] have applied the techniques of this paper to multiple-prover interactive6

proof systems, de�ned by Ben-Or, Goldwasser, Kilian and Wigderson [BGKW] as interactive proof systemshaving a polynomial number of provers unable to communicate among themselves or to see the conversationbetween any other prover and the veri�er. Babai, Fortnow and Lund have proven that any language com-putable in nondeterministic exponential time has a multiple-prover interactive proof system. Their proofuses ideas similar to those of [BF] and [S] in order to reduce the problem to that of testing the multilinearityof a function.Cai, Condon and Lipton [CCL] have used the protocols of this paper and of Shamir [S] to prove thatevery PSPACE language has a bounded-round multiple-prover interactive proof system.Fortnow and Lund [FL] have extended the techniques from this and Shamir's paper [S] to exhibit apolynomial equivalence between time-space complexity of alternating Turing machines and the time-spacecomplexity of the veri�er in a public-coin interactive proof system. In particular, they prove that everylanguage in NC has a interactive proof system with a public-coin, polynomial-time, logarithmic-space veri�er.5 ImplicationsGoldwasser and Sipser [GS] have shown that one can convert any interactive proof system to one in whichthe veri�er uses public coins, i.e., the veri�er juxtaposes her coin tosses and her query message qi on hercommunication tape. Furer, Goldreich, Mansour, Sipser and Zachos [FGMSZ] have shown how to modifyan interactive proof system so that for true instances the veri�er is convinced with probability one. Both ofthese properties already hold for our protocol.Some simple corollaries that follow from these results:Corollary 5. If cryptographic one-way functions exist then every language in the polynomial-time hierar-chy has a zero-knowledge interactive proof system.Proof. Every language with an interactive proof system has a zero-knowledge interactive proof system ifone-way functions exist [BGGHKMR, IY].From Shamir [S], we infer that all languages computable in polynomial space have zero-knowledge inter-active proof systems if cryptographic one-way functions exist.Corollary 6. If every language in IP has a bounded-round interactive proof system, then the polynomial-time hierarchy collapses.This is immediate from Boppana, H�astad and Zachos [BHZ]. Previously Aiello, Goldwasser and H�astad[AGH] constructed an oracle relative to which the class of languages with unbounded-round interactive proofsystems di�ers from those with bounded-round interactive proof systems.Our theorem also has applications to program checking, veri�cation and self-correction. Lipton [L], usingideas of Beaver and Feigenbaum [BeF], showed that the permanent function can be \tested." Our protocolsextend this idea and show the permanent has a self-testing/correcting pair [BLR], a pair of functions the�rst of which veri�es that a program computes the permanent correctly on most inputs and the second ofwhich converts a program that passes the �rst test into one that correctly computes the permanent on allinputs with high probability.Theorem 1 also provides a program correctness checker [BK] for the permanent:7

Corollary 7. There exists a probabilistic polynomial-time machine M that given access to a program Pand a matrix A, will output with a high degree of con�dence either \P outputs the correct value of thepermanent of A" or \P does not correctly compute the permanent of some matrix."Proof. In the proof of Theorem 1 the prover need only answer questions about the permanents of variousmatrices. We can have M simulate the veri�er and use P as the prover.A further discussion of the relationship between interactive proof systems and program testing can befound in [BFL].MA is the class of languages accepted by an interactive proof system consisting of a single message fromthe prover to the veri�er followed by probabilistic veri�cation by the veri�er. We can think of this class asthe set of \publishable proofs," \proofs" that can be written down now and randomly veri�ed years laterwithout any help from the prover. Babai has proven that MA� �P2 \�P2 [B]. Corollary 8 implies that if #Phas polynomial-size circuits, then P#P, and hence the polynomial-time hierarchy, lies in MA.Corollary 8. If #P has polynomial-size circuits then P#P � MA.Proof. The prover gives the veri�er a circuit computing the permanent. She uses this circuit as the proverin the protocol in Section 3.A general discussion of Corollary 8 appears in [BFL] where it is shown that a similar result holds forPSPACE and EXP. Contrast Corollary 8 with the result of Karp and Lipton [KL] that if NP has polynomial-size circuits, then the polynomial-time hierarchy collapses to �P2 .6 Further ResearchWe have proven that every language reducible to a #P-complete problem has an interactive proof system,and thus so does every language in the polynomial-time hierarchy. In particular, every language in co-NP hasan interactive proof system. However, even for a co-NP-complete language, in the protocol above the provermust answer #P-complete questions. Is there an interactive proof system for co-SAT where the prover needonly answer questions about the satis�ability of CNF formulas? Such a proof system would give an instancechecker for NP-complete languages.We believe that one should study why this result does not relativize. One simple answer is that we haveexhibited an interactive proof system for a very speci�c #P-complete function|the permanent|which is not#P-complete relative to any su�ciently complex oracle (since the permanent does not depend on the oracle).Babai and Fortnow [BF] have exhibited a simple characterization of #P functions by polynomials and haveused this characterization to prove the main theorem of this paper without any reference to permanents.This algebraic formulation of #P does not hold in relativized worlds. Studying the algebraic structure ofwell-known complexity classes may lead to yet more exciting relationships among them.References[AGH] W. Aiello, S. Goldwasser, and J. H�astad. On the power of interaction. Combinatorica, 10(1):3{25, 1990. 8

[B] L. Babai. Trading group theory for randomness. In Proc. of the 17th ACM Symp. on theTheory of Computing, pages 421{429, 1985.[BeF] D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In Proc. 7th Symp. onTheoretical Aspects of Comp. Sci. LNCS 415:37{48, 1990.[BF] L. Babai and L. Fortnow. Arithmetization: a new method in structural complexity theory.Computational Complexity, 1:41{66, 1991.[BFL] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover in-teractive protocols. Computational Complexity, 1:3{40, 1991.[BGGHKMR] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H�astad, J. Kilian, S. Micali, and P. Rogaway.Everything provable is provable in zero-knowledge. In Proc. Crypto 88, pages 37{56, 1988.[BGKW] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive proofs:How to remove intractability assumptions. In Proc. of the 20th ACM Symp. on the Theory ofComputing, pages 113{131, 1988.[BHZ] R. Boppana, J. H�astad, and S. Zachos. Does co-NP have short interactive proofs? InformationProcessing Letters, 25(2):127{132, 1987.[BK] M. Blum and S. Kannan. Designing programs that check their work. In Proc. of the 21st ACMSymp. on the Theory of Computing, pages 86{97, 1989.[BLR] M. Blum, M. Luby, and R. Rubinfeld. Self-testing and self-correcting programs, with applica-tions to numerical programs. In Proc. of the 22nd ACM Symp. on the Theory of Computing,1990.[BM] L. Babai and S. Moran. Arthur-Merlin games: a randomized proof system, and a hierarchyof complexity classes. J. of Computer and System Sciences, 36(2):254{276, 1988.[C] S. Cook. The complexity of theorem-proving procedures. In Proc. of the 3rd ACM Symp. onthe Theory of Computing, pages 151{158, 1971.[CCL] J. Cai, A. Condon, and R. J. Lipton. PSPACE is provable by two provers in one round. InProc. of the 6th Conference on Structure in Complexity Theory, pages 110{115, 1991.[CGH] B. Chor, O. Goldreich, and J. H�astad. The random oracle hypothesis is false. Manuscript,Technion, Haifa, Israel, 1990.[F] P. Feldman. The optimum prover lives in PSPACE. Manuscript, M.I.T., 1986.[FGMSZ] M. Furer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On completeness and soundnessin interactive proof systems. In S. Micali, editor, Randomness and Computation, volume 5 ofAdvances in Computing Research, pages 429{442. JAI Press, 1989.[FL] L. Fortnow and C. Lund. Interactive proof systems and alternating time-space complexity. InProc. 8th Symp. on Theoretical Aspects of Comp. Sci. LNCS 480:263{274, 1991. To appearin Theoretical Computer Science.[FRS] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive protocols. InProc. of the 3rd Conference on Structure in Complexity Theory, pages 156{161, 1988.9

[FS] L. Fortnow and M. Sipser. Are there interactive protocols for co-NP languages? InformationProcessing Letters, 28:249{251, 1988.[GMR] S. Goldwasser, S. Micali, and C. Racko�. The knowledge complexity of interactive proof-systems. SIAM J. on Computing, 18(1):186{208, 1989.[GMW] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity anda methodology of cryptographic protocol design. In Proc. of the 27th IEEE Symp. on Foun-dations of Computer Science, pages 174{187, 1986.[GS] S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof systems.In S. Micali, editor, Randomness and Computation, volume 5 of Advances in ComputingResearch, pages 73{90. JAI Press, 1989.[IY] R. Impagliazzo and M. Yung. Direct minimum-knowledge computation. In Proc. Crypto 87,pages 40{51. LNCS 293, 1987.[KL] R. Karp and R. Lipton. Some connections between nonuniform and uniform complexityclasses. In Proc. of the 12th ACM Symp. on the Theory of Computing, pages 302{309, 1980.[L] R. Lipton. New directions in testing. In J. Feigenbaum and M. Merritt, editors, DistributedComputing and Cryptography, volume 2 of DIMACS Series in Discrete Mathematics andTheoretical Computer Science, pages 191{202. American Mathematical Society, 1991.[NZ] I. Niven and H. S. Zuckerman. An introduction to the theory of numbers. John Wiley andSons, New York, 4th edition, pages 224{225, 1980.[Pr] V. Pratt. Every prime has a succinct certi�cate. SIAM J. Comp, 4:214{220, 1975.[S] A. Shamir. IP=PSPACE. In Proc. of the 31st IEEE Symp. on Foundations of ComputerScience, pages 11{15, 1990.[Sh] A. Shen. IP=PSPACE: simpli�ed proof. Manuscript, Institute of Problems of InformationTransmission, Moscow, USSR, 1990.[Si] J. Simon. On some central problems in computational complexity. PhD thesis, Cornell Uni-versity, Computer Science, 1975. Tech Report TR 75-224.[SS] R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM J. of Computing,6:84{85, 1977. See also erratum 7:118, 1978.[T] S. Toda. On the computational power of PP and �P. In Proc. of the 30th IEEE Symp. onFoundations of Computer Science, pages 514{519, 1989.[V] L. Valiant. The complexity of computing the permanent.Theoretical Computer Science, 8:189{201, 1979. 10

