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Abstract

We develop a framework for trading in compound securities: financial instruments
that pay off contingent on the outcomes of arbitrary statements in propositional
logic. Buying or selling securities—which can be thought of as betting on or against
a particular future outcome—allows agents both to hedge risk and to profit (in
expectation) on subjective predictions. A compound securities market allows agents
to place bets on arbitrary boolean combinations of events, enabling them to more
closely achieve their optimal risk exposure, and enabling the market as a whole to
more closely achieve the social optimum. The tradeoff for allowing such expressivity
is in the complexity of the agents’ and auctioneer’s optimization problems.

We develop and motivate the concept of a compound securities market, present-
ing the framework through a series of formal definitions and examples. We then
analyze in detail the auctioneer’s matching problem. We show that, with n events,
the matching problem is worst-case intractable: specifically, the problem is co-NP-
complete in the divisible case and Σp

2-complete in the indivisible case. We show
that the latter hardness result holds even under severe language restrictions on
bids. With log n events, the problem is tractable (polynomial) in the divisible case
and worst-case intractable (NP-complete) in the indivisible case. We briefly discuss
matching algorithms and tractable special cases.
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1 Introduction

Securities markets effectively allow traders to place bets on the outcomes of
uncertain future propositions. Examples include stock markets like NASDAQ,
options markets like CBOE [1], futures markets like CME [2], other derivatives
markets, insurance markets, political stock markets [3,4], sports betting mar-
kets [5–7], horse racing markets [8], idea futures markets [9], decision markets
[10] and even market games [11–13]. The economic value of securities markets
is two-fold. First, they allow traders to hedge risk, or to insure against unde-
sirable outcomes. For example, the owner of a stock might buy a put option
(the right to sell the stock at a particular price) in order to insure against a
stock downturn. Or the owner of a house may purchase an insurance contract
to hedge against unforeseen damage to the house. Second, securities markets
allow traders to speculate, or to obtain a subjective expected profit when mar-
ket prices do not reflect their assessment of the likelihood of future outcomes.
For example, a trader might buy a call option if he believes that the likelihood
is high that the price of the underlying stock will go up, regardless of risk ex-
posure to changes in the stock price. Because traders stand to earn a profit
if they can make effective probability assessments, often prices in financial
markets yield very accurate aggregate forecasts of future events [14–17].

Real securities markets have complex payoff structures with various triggers.
However, these can all be modeled as collections of more basic or atomic
Arrow-Debreu securities [18–20]. One unit of one Arrow-Debreu security pays
off one dollar if and only if (iff) a corresponding binary event occurs; it pays
nothing if the event does not occur. So, for example, one unit of a security
denoted 〈Acme100〉 might pay $1 iff Acme’s stock is above $100 on January
4, 2004. An Acme stock option as it would be defined on a financial exchange
can be though of as a portfolio of infinitely many such atomic securities, or
can be approximated to any degree with a finite number of atomic securities.

In this paper, we develop and analyze a framework for trading in compound
securities markets with payoffs contingent on arbitrary logical combinations of
events, including conditionals. For example, given binary events A, B, and C,
one trader might bid to buy three units of a security denoted 〈A ∧ (B̄ ∨ C)〉

1 Research done while at the NEC Research Institute, Princeton, New Jersey.
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that pays off $1 iff the compound event A ∧ (B̄ ∨ C) occurs for thirty cents
each. Another trader may bid to sell six units of a security 〈A|C〉 that pays
off $1 iff A occurs for fifty-five cents each, conditional on event C occurring,
meaning that the transaction is revoked if C does not occur (i.e., no payoff is
given and the price of the security is refunded) [21]. Bids may also be divisible,
meaning that bidders are willing to accept less than the requested quantity, or
indivisible, meaning that bids must be fulfilled either completely or not at all.
Given a set of such bids, the auctioneer faces a complex matching problem to
decide which bids are accepted for how many units at what price. Typically,
the auctioneer seeks to take on no risk of its own, only matching up agreeable
trades among the bidders, but we also consider alternative formulations where
the auctioneer acts as a market maker willing to accept some risk.

We examine the computational complexity of the auctioneer’s matching prob-
lem. Let the length of the description of all the available securities be O(n).
With n events, the matching problem is co-NP-complete in the divisible case
and Σp

2-complete in the indivisible case. This Σp
2-complete hardness holds even

when the bidding language is significantly restricted. These complexity results
mean that, although identifying a match may not always be computationally
difficult, in the worst case finding a match will take computing time that is
exponential in n, assuming (as most computer scientists do) that P 6= NP.
With log n events, the problem is polynomial in the divisible case—meaning
that the problem is computationally feasible. With log n events and indivisible
bids, the problem is NP-complete, again implying worst-case intractability.

Section 2 presents some necessary background information, motivation, and
related work, including a review of the meaning of—and the distinctions
between—the various computational complexity classes cited above. Section 3
formally describes our framework for compound securities, and defines the
auctioneer’s matching problem. Section 4 briefly discusses natural algorithms
for solving the matching problem. Section 5 proves our central computational
complexity results. Section 6 discusses the possibility of tractable special cases.
Section 7 concludes with a summary and some ideas of future directions.

2 Preliminaries

2.1 Background and notation

Imagine a world where there are only two future uncertain events of any
consequence: (1) the event that one’s house is struck by lightning by December
31, 2003, denoted struck, and (2) the event that Acme’s stock price goes above
$100 by January 4, 2004, denoted acme100. In this simple world there are
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four possible future states—all possible combinations of the binary events’
outcomes:

struck ∧ acme100 ,

struck ∧ acme100 ,

struck ∧ acme100 ,

struck ∧ acme100 .

Hedging risk can be thought of as an action of moving money between various
possible future states. For example, insuring one’s house transfers money from
future states where struck is not true to states where it is. Selling a security
denoted 〈acme100〉—that pays off $1 iff the event acme100 occurs—transfers
money from future states where Acme’s price is above $100 on January 4
to states where it’s not. Speculating is also an act of transferring money be-
tween future states, though usually associated with maximizing expected re-
turn rather than reducing risk. For example, betting on a football team moves
money from the “team loses” state to the “team wins” state. In practice,
agents engage in a mixture of hedging and speculating, and there is no clear
dividing line between the two [22].

All possible future outcomes form a state space Ω, consisting of mutually
exclusive and exhaustive states ω ∈ Ω. Often a more natural way to think of
possible future outcomes is as an event space A of linearly independent events
A ∈ A that may overlap arbitrarily. So in our toy example struck ∧ acme100
is one of the four disjoint states, while struck is one of the two events. Note
that a set of n linearly independent events defines a state space Ω of size
2n consisting of all possible combinations of event outcomes. Conversely, any
state space Ω can be factored into dlog |Ω|e events.

Suppose that A exhaustively covers all meaningful future outcomes (i.e., cov-
ers all eventualities that agents may wish to hedge against and/or speculate
upon). Then the existence of 2n linearly independent securities—called a com-
plete market—allows agents to distribute their wealth arbitrarily across future
states. 2 An agent may create any hedge or speculation it desires. Under clas-
sical conditions, agents trading in a complete market form an equilibrium
where risk is allocated Pareto optimally. If the market is incomplete, meaning
it consists of fewer than 2n linearly independent securities, then in general
agents cannot construct arbitrary hedges and equilibrium allocations may be
nonoptimal [18,19,23,20].

In real-world settings, the number of meaningful events n is large and thus
the number of securities required for completeness is intractable. No truly

2 By linearly independent securities, we mean that the vectors of payoffs in all
future states of these securities are linearly independent.
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complete market exists or will ever exist. One motivation behind compound
securities markets is to provide a mechanism that supports the most transfer of
risk using the least number of transactions possible. Compound securities allow
a high degree of expressivity in constructing bids. The tradeoff for increased
expressivity is increased computational complexity, from both the bidder’s and
auctioneer’s point of view.

2.2 Computational complexity

Computer scientists have developed a procedure for characterizing how diffi-
cult or time-consuming a particular problem will be to solve on a computer.
Problems are organized according to their computational complexity, or rela-
tive difficulty. Complexity is not described in seconds or any other unit of time,
since that would vary greatly depending on the particulars of the computer
hardware architecture used. Complexity is instead described as a growth func-
tion that increases as the size of the input, or the number of bits required to
describe the problem, increases. If the size of a problem is n, then a complex-
ity that is linear in n, denoted O(n), is considered computationally feasible.
Generally, any complexity that is polynomial in n is considered feasible, while
a complexity that is exponential in n is considered intractable. If the prob-
lem’s complexity grows exponentially in n, then the time required to solve the
problem will become prohibitive even for fairly small-sized problems, almost
regardless of the hardware used.

Computational complexity is a worst case notion: saying that a problem falls
into a computationally intractable class means only that, for some instances
of the problem, solutions will require an inordinate amount of time. The char-
acterization says nothing about the set of all instances of the problem, or even
about the average case. It may well be that most instances of the problem
are easy to solve, though some will be extremely hard. Also, the complexity
of solving a problem exactly may differ from the complexity of solving the
problem to within some degree of approximation.

The two main complexity classes are denoted P and NP. Problems that lie
in the class P are solvable in polynomial time and are considered to be com-
putationally feasible. Problems that lie in the class NP include all of the
polynomial-solvable problems in P, as well as a huge number of other common
problems for which no known polynomial-time algorithm is known, and for
which most believe require exponential time in the worst case. 3 Although no
one has proven that P 6= NP, most computer scientists believe that the two

3 NP stands for non-deterministic polynomial time, for reasons that are beyond the
scope of this paper. NP does not mean non-polynomial: in fact all problems in P
are also in NP.
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classes are not the same, and that many more problems lie in NP than in P.
A problem is said to be NP-hard if it is provable as hard or harder than every
other problem in NP. A problem is said to be NP-complete if it is both NP-
hard and is itself a member of NP. Since it is widely believed that there exist
problems in NP that require exponential time in the worst case, 4 any problem
that can be designated as NP-hard or NP-complete can be considered, for all
intents and purposes, to require exponential time to solve in the worst case.

In this paper, we make use of two other less common complexity classes. A
binary decision problem, whose solution is either YES or NO, is said to be co-
NP-complete if the complementary problem, with precisely reversed solutions
(YES=NO and NO=YES), is NP-complete. A co-NP-complete problem is NP-
hard, and for all practical purposes can be considered equally as hard as its
complementary NP-complete problem. The complexity class Σp

2 includes all
problems in NP as well as many other problems that are thought to be even
harder. A problem is considered Σp

2-complete if it is a member of Σp
2 and is

provably at least as hard as all other problems in Σp
2.

Problems are proven to be NP-complete in two steps: (1) showing that the
problem is a member of the class NP, and (2) providing a polynomial-time re-
duction from a problem that is already known to be NP-complete to the new
problem. Armed with the reduction, anyone who develops a fast algorithm for
the new problem will immediately have a fast algorithm (within a polynomial
factor) for the known NP-complete problem; therefore, the new problem is at
least as hard as the known problem in terms of computational complexity.
Proving that a problem is Σp

2-complete is analogous, with the reduction work-
ing from a known Σp

2-complete problem. We employ this reduction technique
below in Section 5 to derive our main complexity results.

Although Σp
2-complete problems are theoretically and provably harder than

NP-complete problems (assuming P 6= NP), in practice the distinction is usu-
ally not that great. The practical difference between P and NP is greater by far
than the difference between NP and Σp

2. For example, algorithms for Bayesian
inference—a problem that is even harder than Σp

2-complete 5 —are commer-
cially available and work reasonably well in a variety of real applications. Still,
the complexity results for Bayesian inference, as well as for the matching prob-
lem described in this paper, insure that, for some problem instances, all the
computing power in world operating over the lifetime of the universe will not
be enough to solve the problem.

4 Indeed, after several decades of trying, no one has ever found any algorithm to
solve any of the thousands of NP-hard problems in less than exponential time.
5 Specifically, Bayesian inference is #P-complete [24].
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2.3 Related work

The quest to reduce the number of financial instruments required to support an
optimal allocation of risk dates to Arrow’s original work [18]. The requirement
stated above of “only” 2n linearly-independent securities is itself a reduction
from the most straightforward formulation. In an economy with k standard
goods, the most straightforward complete market contains k · 2n securities,
each paying off in one good under one state realization. Arrow [18] showed
that a market where securities and goods are essentially separated, with 2n

securities paying off in a single numeraire good plus k spot markets in the
standard goods, is also complete. For our purposes, we need consider only the
securities market.

Varian [25] shows that a complete market can be constructed using fewer than
2n securities, replacing the missing securities with options. Still, the number
of linearly independent financial instruments—securities plus options—must
be 2n to guarantee completeness.

Though the requirement of 2n financial instruments cannot be relaxed if one
wants to guarantee completeness in all circumstances, Pennock and Wellman
[26] explore conditions under which a smaller securities market may be opera-
tionally complete, meaning that its equilibrium is Pareto optimal with respect
to the agents involved, even if the market contains less than 2n securities. The
authors show that in some cases the market can be structured and “com-
pacted” in analogy to Bayesian network representations of joint probability
distributions [27]. They show that, if all agents’ risk-neutral independencies
agree with the independencies encoded in the market structure, then the mar-
ket is operationally complete. For collections of agents all with constant ab-
solute risk aversion, agreement on Markov independencies is sufficient.

Bossaerts, Fine, and Ledyard [28] develop a mechanism they call combined-
value trading (CVT) that allows traders to order an arbitrary portfolio of
securities in one bid, rather than breaking up the order into a sequence of bids
on individual securities. If the portfolio order is accepted, all of the implied
trades on individual securities are executed simultaneously, thus eliminating
so-called execution risk that prices will change in the middle of a planned se-
quence of orders. The authors conduct laboratory experiments showing that,
even in thin markets where ordinary sequential trading breaks down, CVT
supports efficient pricing and allocation. Note that CVT differs significantly
from compound securities trading. CVT allows instantaneous trading of any
linear combination of securities, while compound securities allow more expres-
sive securities that can encode nonlinear boolean combinations of events. For
example, CVT may allow an agent to order securities 〈A〉 and 〈B〉 in a bundle
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that pays off as a linear combination of A and B, 6 but CVT won’t allow the
construction of a compound security 〈A ∧B〉 that pays off $1 iff both A and
B occur, or a compound security 〈A|B〉.

Related to CVT are combinatorial auctions [29,30] and exchanges [31], mecha-
nisms that have recently received quite a bit of attention in the economics and
computer science literatures. Combinatorial auctions allow bidders to place
distinct values on all possible bundles of goods rather than just on individual
goods. In this way bidders can express substitutability and complementarity
relationships among goods that cannot be expressed in standard parallel or
sequential auctions. Compound securities differ from combinatorial auctions
in concept and complexity. Compound securities allow bidders to construct
an arbitrary bet on any of the 22n

possible compound events expressible as
logical functions of the n base events, conditional on any other of the 22n

compound events. Agents optimize based on their own subjective probabili-
ties and risk attitude (and in general, their beliefs about other agents’ beliefs
and utilities, ad infinitum). The central auctioneer problem is identifying ar-
bitrage opportunities: that is, to match bets together without taking on any
risk. Combinatorial auctions, on the other hand, allow bids on any of the 2n

bundles of n goods. Typically, uncertainty—and thus risk—is not considered.
The central auctioneer problem is to maximize social welfare. Also note that
the problems lie in different complexity classes. While clearing a combinatorial
auction is polynomial in the divisible case and NP-complete in the indivisible
case, matching in a compound securities market is NP-complete in the divisi-
ble case and Σp

2-complete in the indivisible case. In fact, even the problem of
deciding whether two bids on compound securities match, even in the divisible
case, is NP-complete (see Section 5.2).

There is a sense in which it is possible to translate our matching problem for
compound securities into an analogous problem for clearing two-sided com-
binatorial exchanges [31] of exponential size. Specifically, if we regard payoff
in a particular state as a good, then compound securities can be viewed as
bundles of (fractional quantities of) such goods. The material balance con-
straint facing the combinatorial auctioneer corresponds to a restriction that
the compound-security auctioneer be disallowed from assuming any risk. Note
that this translation is not at all useful for addressing the compound-security
matching problem, as the resulting combinatorial exchange has an exponential
number of goods.

Hanson [32] develops a market mechanism called a market scoring rule that
is especially well suited for allowing bets on a combinatorial number of out-
comes. The mechanism maintains a joint probability distribution over all 2n

6 Specifically, one unit of each pays off $2 iff both A and B occur, $1 iff A or B
occurs (but not both), and $0 otherwise.
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states, either explicitly or implicitly using a Bayesian network or other com-
pact representation. At any time any trader who believes the probabilities are
wrong can change any part of the distribution by accepting a lottery ticket
that pays off according to a scoring rule (e.g., the logarithmic scoring rule)
[33], as long as that trader also agrees to pay off the most recent person to
change the distribution. The market interface can be made to look to traders
like a continuous double auction with a market maker who is always willing to
accept a bid on any boolean proposition at some price. In the limit of a single
trader, the mechanism behaves like a scoring rule, suitable for polling a single
agent for its probability distribution. In the limit of many traders, it produces
a combined estimate. Since the market essentially always has a complete set
of posted prices for all possible outcomes, the mechanism avoids the problem
of thin markets, or illiquidity, that necessarily plagues any market containing
an exponential number of alternative investments. The mechanism requires
a patron to pay off the final person to change the distribution, though the
patron’s payment is bounded. Though Hanson offers some initial suggestions,
several open problems remain, including efficient methods for representing and
updating the joint distribution and recording traders positions and portfolios,
without resorting to exponential time and space algorithms.

Fagin, Halpern, and Megiddo [34] give a sound and complete axiomatization
for deciding whether sets of probabilistic inequalities are consistent. Bids for
compound securities can be thought of as expressions of probabilistic inequal-
ities: for example, a bid to buy 〈A ∧B〉 at price 0.3 is a statement that the
probability of A ∧ B is greater than 0.3. If a set of single-unit bids corre-
spond to a set of inconsistent probabilistic inequalities, then there is a match.
However, because they are interested in a much different framework, Fagin
et al. do not consider several complicating factors specific to the securities
market framework: namely, handling multi-unit or fractional bid quantities,
identifying matches, choosing among multiple matches, and optimizing based
on probabilities and risk attitudes. We address these issues below.

3 Framework for trading in compound securities

3.1 High-level description

Common knowledge among agents is the set of events A. There are no pre-
defined securities. Instead, agents offer to buy or sell securities of their own
design that pay off contingent on logical combinations of events and event
negations. Combination operators may include conjunctions, disjunctions, and
conditionals.
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For all practical purposes, it is impossible for agents to trade in enough securi-
ties (2n) to form a complete market, so agents must devise their best tradeoff
between the number and complexity of their bids, and the extent to which
their risks are hedged and desirable bets are placed. In its most general form,
the problem is game-theoretic in nature, since what an agent should offer de-
pends on what it believes other agents will accept. At the other end of the
spectrum, a simplified version of the problem is to optimize bids only on cur-
rently available securities at current prices. In between these two formulations
are other possible interesting optimization problems, including approximation
techniques.

The auctioneer faces a nontrivial problem of matching buy and sell orders
to maximize surplus (the cash and securities left over after accepted bids are
fulfilled). For example, offers to sell 〈A1A2〉 at $0.2 and 〈A1Ā2〉 at $0.1 can
match with an offer to buy 〈A1〉 at $0.4, with surplus $0.1. Or an offer to sell
〈A1〉 at $0.3 can match with an offer to buy 〈A1A2〉 at $0.4, with surplus $0.1
in cash and 〈A1Ā2〉 in securities. In general, a single security might qualify for
multiple matches, but only one can be transacted. So the auctioneer must find
the optimal (or approximately optimal) set of matches that maximizes surplus,
which could be measured in a number of ways. In another formulation, the
auctioneer functions as a market maker willing to take on a certain amount
of risk.

Informally, our motivation is to provide a mechanism that allows a very high
degree of expressivity in placing hedges and bets, and is also capable of ap-
proximating the optimal (complete-market) allocation of risk, trading off the
number and complexity of securities and transactions needed.

3.2 Formal description

3.2.1 Securities

We use φ and ψ to denote arbitrary boolean formulas, or logical combinations
of events in A. We denote securities 〈φ|ψ〉. Securities pay off $1 if and only if
(iff) φ and ψ are true, pay off $0 iff φ is false and ψ is true, and are canceled
(i.e., any price paid is refunded) iff ψ is false. We define T ≡ Ω to be the event
“true” and F ≡ ∅ to be the event “false”. We abbreviate 〈φ|T 〉 as 〈φ〉.

3.2.2 Orders

Agents place orders, denoted o, of the form “q units of 〈φ|ψ〉 at price p per
unit”, where q > 0 implies a buy order and q < 0 implies a sell order. We as-
sume agents submitting buy (sell) orders will accept any price p∗ ≤ p (p∗ ≥ p).
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We distinguish between divisible and indivisible orders. Agents submitting di-
visible orders will accept any quantity αq where 0 < α ≤ 1. Agents submitting
indivisible orders will accept only exactly q units, or none at all. We believe
that, given the nature of what is being traded (state-contingent dollars), most
agents will be content to trade using divisible orders.

Every order o can be translated into a payoff vector Υ across all states ω ∈ Ω.
The payoff Υ〈ω〉 in state ω is q · 1ω∈ψ(1ω∈φ − p), where 1ω∈E is the indicator
function equaling 1 iff ω ∈ E and zero otherwise. Recall that the 2n states
correspond to the 2n possible combinations of event outcomes. We index mul-
tiple orders with subscripts (e.g., oi and Υi). Let the set of all orders be O
and the set of all corresponding payoff vectors be P .

Example 1 (Translating orders into payoff vectors) Suppose that |A| = 3.
Consider an order to buy two units of 〈A2 ∨ A3|A1〉 at price $0.8. The corre-
sponding payoff vector is:

Υ= 〈Υ〈A1A2A3〉,Υ〈A1A2Ā3〉,Υ〈A1Ā2A3〉, . . . ,Υ〈Ā1Ā2Ā3〉〉
= 2 · 〈0.2, 0.2, 0.2,−0.8, 0, 0, 0, 0〉

2

3.2.3 The matching problem

The auctioneer’s task, called the matching problem, is to determine which
orders to accept among all orders o ∈ O. Let αi be the fraction of order oi
accepted by the auctioneer (in the indivisible case, αi must be either 0 or 1;
in the divisible case, αi can range from 0 to 1). If αi = 0, then order oi is
considered rejected and no transactions take place concerning this order. For
accepted orders (αi > 0), the auctioneer receives the money lost by bidders
and pays out the money won by bidders, so the auctioneer’s payoff vector is:

Υauc =
∑

Υi∈P
−αiΥi.

We also call the auctioneer’s payoff vector the surplus vector, since it is the
(possibly state-contingent) money left over after all accepted orders are filled.

Assume that the auctioneer wants to choose a set of orders so that it is guar-
anteed not to lose any money in any future state, but that the auctioneer does
not necessarily insist on obtaining a positive benefit from the transaction (i.e.,
the auctioneer is content to break even).
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Definition 1 (Matching problem, indivisible case) Given a set of orders O,
does there exist αi ∈ {0, 1} with at least one αi = 1 such that

∀ω,Υ〈ω〉
auc ≥ 0?

In other words, does there exist a nonempty subset of orders that the auctioneer
can accept without risk? 2

If ∀ω,Υ〈ω〉
auc = c where c is nonnegative, then the surplus leftover after process-

ing this match is c dollars. Let m = minω[Υ
〈ω〉
auc]. In general, processing a match

leaves m dollars in cash and Υ〈ω〉
auc −m in state-contingent dollars, which can

then be translated into securities.

Example 2 (Indivisible order matching) Suppose |A| = 2. Consider an order
to buy one unit of 〈A1A2〉 at price 0.4 and an order to sell one unit of 〈A1〉
at price 0.3. The corresponding payoff vectors are:

Υ1 = 〈Υ〈A1A2〉
1 ,Υ

〈A1Ā2〉
1 ,Υ

〈Ā1A2〉
1 ,Υ

〈Ā1Ā2〉
1 〉

= 〈 0.6, −0.4, −0.4, −0.4〉

Υ2 = 〈 −0.7, −0.7, 0.3, 0.3〉

The auctioneer’s payoff vector (the negative of the component-wise sum of the
above two vectors) is:

Υauc = −Υ1 −Υ2 = 〈0.1, 1.1, 0.1, 0.1〉.

Since all components are nonnegative, the two orders match. The auctioneer
can process both orders, leaving a surplus of $0.1 in cash and one unit of
〈A1Ā2〉 in securities. 2

Now consider the divisible case, where order can be partially filled.

Definition 2 (Matching problem, divisible case) Given a set of orders O, does
there exist αi ∈ [0, 1] with at least one αi > 0 such that

∀ω,Υ〈ω〉
auc ≥ 0,

2

Example 3 (Divisible order matching) Suppose |A| = 2. Consider an order to
sell one unit of 〈A1〉 at price $0.5, an order to buy one unit of 〈A1A2|A1 ∨ A2〉
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at price $0.5, and an order to buy one unit of 〈A1|Ā2〉 at price $0.4. The
corresponding payoff vectors are:

Υ1 = 〈Υ〈A1A2〉
1 ,Υ

〈A1Ā2〉
1 ,Υ

〈Ā1A2〉
1 ,Υ

〈Ā1Ā2〉
1 〉

= 〈 −0.5, −0.5, 0.5, 0.5〉

Υ2 = 〈 0.5, −0.5, −0.5, 0〉

Υ3 = 〈 0, 0.6, 0, −0.4〉

It is clear by inspection that no non-empty subset of whole orders constitutes
a match: in all cases where αi ∈ {0, 1} (other than all αi = 0), at least one
state sums to a positive amount (negative for the auctioneer). However, if
α1 = α2 = 3/5 and α3 = 1, then the auctioneer’s payoff vector is:

Υauc = −3

5
Υ1 −

3

5
Υ2 −Υ3 = 〈0, 0, 0, 0.1〉,

constituting a match. The auctioneer can process 3/5 of the first and second
orders, and all of the third order, leaving a surplus of 0.1 units of 〈Ā1Ā2〉. In
this example, a divisible match exists even though an indivisible match is not
possible; we examine the distinction in detail in Section 5, where we separate
the two matching problems into distinct complexity classes. 2

The matching problems defined above are decision problems: the task is only
to show the existence or nonexistence of a match. However, there may be
multiple matches from which the auctioneer can choose. Sometimes the choices
are equivalent from the auctioneer’s perspective; alternatively, an objective
function can be used to find an optimal match according to that objective.

Example 4 (Auctioneer alternatives I) Suppose |A| = 2. Consider an order
to sell one unit of 〈A1〉 at price $0.7, an order to sell one unit of 〈A2〉 at price
$0.7, an order to buy one unit of 〈A1A2〉 at price $0.4, an order to buy one
unit of 〈A1Ā2〉 at price $0.4, and an order to buy one unit of 〈Ā1A2〉 at price
$0.4. The corresponding payoff vectors are:

Υ1 = 〈−0.3,−0.3, 0.7, 0.7〉

Υ2 = 〈−0.3, 0.7,−0.3, 0.7〉

Υ3 = 〈 0.6,−0.4,−0.4,−0.4〉

Υ4 = 〈−0.4, 0.6,−0.4,−0.4〉

Υ5 = 〈−0.4,−0.4, 0.6,−0.4〉
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Consider the indivisible case. The auctioneer could choose to accept bids 1,
3, and 4 together, or the auctioneer could choose to accept bids 2, 3, and
5 together. Both constitute matches, and in fact both yield identical payoffs
(Υauc = 〈0.1, 0.1, 0.1, 0.1〉, or $0.1 in cash) for the auctioneer. 2

Example 5 (Auctioneer alternatives II) Suppose |A| = 2. Consider an order
to sell two units of 〈A1〉 at price $0.6, an order to buy one unit of 〈A1A2〉
at price $0.3, and an order to buy one unit of 〈A1Ā2〉 at price $0.5. The
corresponding payoff vectors are:

Υ1 = 〈−0.4,−0.4, 0.6, 0.6〉

Υ2 = 〈 0.7,−0.3,−0.3,−0.3〉

Υ3 = 〈−0.5, 0.5,−0.5,−0.5〉

Consider the divisible case. The auctioneer could choose to accept one unit each
of all three bids, yielding a payoff to the auctioneer of $0.2 in cash (Υauc =
〈0.2, 0.2, 0.2, 0.2〉). Alternatively, the auctioneer could choose to accept 4/3
units of bid 1, and one unit each of bids 2 and 3, yielding a payoff to the
auctioneer of 1/3 units of security 〈A1〉. Both choices constitute matches (in
fact, accepting any number of units of bid 1 between 1 and 4/3 can be part of
a match), though depending on the auctioneer’s objective, one choice might be
preferred over another. For example, if the auctioneer believes that A1 is very
likely to occur, it may prefer to accept 4/3 units of bid 1. 2

There are many possible criteria for the auctioneer to decide among matches,
all of which seem reasonable in some circumstances. One natural quantity to
maximize is the volume of trade among bidders; another is the auctioneer’s
utility, either with or without the arbitrage constraint.

Definition 3 (Trade maximization problem) Given a set of indivisible (divis-
ible) orders O, choose αi ∈ {0, 1} (αi ∈ [0, 1]) to maximize∑

i

αiqi,

under the constraint that

∀ω,Υ〈ω〉
auc ≥ 0.

2

Another reasonable variation is to maximize the total percent of orders filled,
or

∑
i αi, under the same (risk-free) constraint that ∀ω,Υ〈ω〉

auc ≥ 0.
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Definition 4 (Auctioneer risk-free utility-maximization problem) Let the auc-
tioneer’s subjective probability for each state ω be Pr(ω), and let the auction-
eer’s utility for y dollars be u(y). Given a set of indivisible (divisible) orders
O, choose αi ∈ {0, 1} (αi ∈ [0, 1]) to maximize

∑
ω∈Ω

Pr(ω)u(Υ〈ω〉
auc),

under the constraint that

∀ω,Υ〈ω〉
auc ≥ 0.

2

Definition 5 (Auctioneer standard utility-maximization problem) Let the auc-
tioneer’s subjective probability for each state ω be Pr(ω), and let the auction-
eer’s utility for y dollars be u(y). Given a set of indivisible (divisible) orders
O, choose αi ∈ {0, 1} (αi ∈ [0, 1]) to maximize

∑
ω∈Ω

Pr(ω)u
(
Υ〈ω〉

auc

)
.

2

This last objective function drops the risk-free (arbitrage) constraint. In this
case, the auctioneer is a market maker with beliefs about the likelihood of
outcomes, and the auctioneer may actually lose money is some outcomes.

Still other variations and other optimization criteria seem reasonable, includ-
ing social welfare, etc. It also seems reasonable to suppose that the surplus
be shared among bidders and the auctioneer, rather than retained solely by
the auctioneer. This is analogous to choosing a common transaction price in
a double auction (e.g., the midpoint between the bid and ask prices), rather
than the buyer paying the bid price and the seller receiving the ask price, with
the difference going to the auctioneer. The problem becomes more complicated
when dividing surplus securities, in part because they are valued differently
by different agents. Formulating reasonable sharing rules and examining the
resulting incentive properties seems a rich and promising avenue for further
investigation.
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4 Matching algorithms

The straightforward algorithm for solving the divisible matching problem is
linear programming; we set up an appropriate linear program in Section 5.1.
The straightforward algorithm for solving the indivisible matching problem
is integer programming. With n events, to set up the appropriate linear or
integer programs, simply writing out the payoff vectors in the straightforward
way requires O(2n) space.

There is some hope that specialized algorithms that exploit structure among
bids can perform better in terms of average-case time and space complexity.
For example, in some cases matches can be identified using logical reduction
techniques, without writing down the full payoff vectors. So a match between
the following bids:

• sell 1 of 〈A1A2〉 at $0.2
• sell 1 of 〈A1Ā2〉 at $0.1
• buy 1 of 〈A1〉 at $0.4

can be identified by reducing the first two bids to an equivalent offer to sell
〈A1〉 at $0.3 that clearly matches with the third bid. Formalizing a logical-
reduction algorithm for matching, or other algorithms that can exploit special
structure among the bids, is a promising avenue for future work.

5 The computational complexity of matching

In this section we examine the computational complexity of the auctioneer’s
matching problem. Here n refers to the problem’s input size that includes
descriptions of all of the buy and sell orders. We also assume that n bounds
the number of base securities.

We consider four cases based on two parameters:

(1) Whether to allow divisible or indivisible orders.
(2) The number of securities. We consider two possibilities:

(a) O(log n) base securities yielding a polynomial number of states.
(b) An unlimited number of base securities yielding an exponential num-

ber of states.

We show the following results.

Theorem 1 The matching problem is
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(1) computable in polynomial-time for O(log n) base securities with divisible
orders.

(2) co-NP-complete for unlimited securities with divisible orders.
(3) NP-complete for O(log n) base securities with indivisible orders.
(4) Σp

2-complete for unlimited securities with indivisible orders.

5.1 Small number of securities with divisible orders

We can build a linear program based on Definition 2. We have variables αi.
For each i, we have

0 ≤ αi ≤ 1

and for each state ω in Ω we have the constraint

Υ〈ω〉
auc =

∑
i

−αiΥ〈ω〉
i ≥ 0.

Given these constraints we maximize∑
i

αi.

A set of orders has a matching exactly when
∑
i αi > 0.

With O(log n) base securities, we have |Ω| = O(n), so we can solve this linear
program in polynomial time.

One could also maximize some linear combination of the −Υ
〈ω〉
i s to maximize

the surplus. Note however that this approach may not find matchings that
have precisely zero surplus.

5.2 Large number of securities with divisible orders

With unlimited base securities, the linear program given in Section 5.1 has
an exponential number of constraint equations. Each constraint is short to
describe and easily computable given ω.

Let m ≤ n be the total number of buy and sell orders. By the theory of linear
programming, an upper bound on the objective function can be forced by a
collection of m+1 constraints. So if no matching exists there must exist m+1
constraints that force all the αi to zero. In nondeterministic polynomial-time
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we can guess these constraints and solve the reduced linear program. This
shows that matching is in co-NP.

To show co-NP-completeness we reduce the NP-complete problem of Boolean
formula satisfiability to the nonexistence of a matching. Fix a formula φ. Let
the base securities be the variables of φ and consider the single security 〈φ〉
with a buy order of 0.5. If the formula φ is satisfiable then there is some state
with payoff 0.5 (auctioneer payoff −0.5) and no fractional unit of the security
〈φ〉 is a matching. If the formula φ is not satisfiable then every state has an
auctioneer’s payoff of 0.5 and a single unit of the security 〈φ〉 is a matching.

One could argue that if the formula φ is not satisfiable then no rational buyer
would want to buy 〈φ〉 for a cost of 0.5. We can get around this problem by
adding auxiliary base securities, A and B, and defining two securities

〈τ〉= (φ ∧ A) ∨ (A ∧B)

〈τ ′〉= (φ ∧ A) ∨ (A ∧B)

with separate buy orders of 0.5 on each.

If φ were satisfiable then in the state corresponding to the satisfying assign-
ment and both A and B to be true, 〈τ〉 and 〈τ ′〉 both have an auctioneer’s
payoff of −0.5 so no divisible matching can exist.

If φ were not satisfiable then one unit of each would be a matching since in
every state at least one of 〈τ〉 or 〈τ ′〉 are false.

5.3 Small number of securities with indivisible orders

This case is easily seen to be in NP: Just nondeterministically guess a nonempty
subset S of orders and check for each state ω in Ω that

Υ〈ω〉
auc =

∑
i∈S

−Υ
〈ω〉
i ≥ 0.

Since |Ω| = O(n) and |S| is bounded by a polynomial in n, the verification
can be done in polynomial time.

To show that matching is NP-complete we reduce the NP-complete problem
EXACT COVER BY 3-SETS (X3C) to a matching of securities.

The input to X3C consists of a set X and a collection C of 3-element subsets
of X. The input (X,C) is in X3C if C contains an exact cover of X, i.e., there
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is a subcollection C ′ of C such that every element of X occurs in exactly one
member of C ′. Karp [35] showed that X3C is NP-complete.

Informally we will reduce X3C to matching by a set of states for the elements
of X and a security 〈φi〉 for each 3-element subset ci in C. We set up a market
such that a match can only be achieved by a set of securities that correspond
to an exact cover. To achieve this we also need to add some extra states and
securities to balance out the possibilities.

Suppose we have an instance (X,C) with the vector X = {x1, . . . , x3q} and
C = {c1, . . . , c`}.

We set Ω = {e1, . . . , e3q, r, s} to be the underlying state space. Since |Ω| =
O(n), we could in principle define a set of O(log n) base events whose power
set spans Ω; however, we don’t explicitly define the base events here. We
define O(n) compound securities—again, the O(log n) set of generating base
securities is implicit—labeled 〈φ1〉, . . . , 〈φ`〉, 〈ψ1〉, . . . , 〈ψq〉 and 〈τ〉, as follows:

• Security 〈φi〉 is true in state r, and is true in state ek if xk is not in ci.
• Security 〈ψj〉 is true only in state s.
• Security 〈τ〉 is true in each state ek but not r or s.

We have buy orders on each 〈φi〉 and 〈ψj〉 security for 0.5− 1
8q

and a buy order

on 〈τ〉 for 0.5.

We claim that a matching exists if and only if (X,C) is in X3C.

If (X,C) is in X3C, let C ′ be the subcollection that covers each element of X
exactly once. Note that |C ′| = q.

We claim the collection consisting of 〈φi〉 for each ci in C ′, every 〈ψj〉 and 〈τ〉
has a matching.

In each state ek we have an auctioneer’s payoff of

(.5− 1

8q
) + (q − 1)(−.5− 1

8q
) + q(.5− 1

8q
)− .5

= .5− 2q
1

8q
= .25 ≥ 0.

In states r and s the auctioneer’s payoffs are

−q(.5 +
1

8q
) + q(.5− 1

8q
) + .5 = .5− 2q

1

8q
= .25 ≥ 0.
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Suppose now that (X,C) is not in X3C but there is a matching. Consider
the number q′ of the 〈φi〉 in that matching and q′′ the number of 〈ψj〉 in the
matching. Since a matching requires a nonempty subset of the orders and 〈τ〉
by itself is not a matching we have q′ + q′′ > 0.

We have three cases.

q′ > q: In state r, the auctioneer’s payoff is

−q′(.5 +
1

8q
)− q(−.5 +

1

8q
) + .5 ≤ −(q′ + q)

1

8q
< 0.

q′′ > q′: In state s, the auctioneer’s payoff is

−q′′(.5 +
1

8q
)− q′(−.5 +

1

8q
) + .5 ≤ −(q′′ + q′)

1

8q
< 0.

q′′ ≤ q′ ≤ q: Consider the set C ′ consisting of the ci where 〈φi〉 is in the
matching. There must be some state ek not in any of the ci or C ′ would be an
exact cover. The auctioneer’s payoff in ek is at most

−q′(.5 +
1

8q
)− q′′(−.5 +

1

8q
) ≤ −(q′′ + q′)

1

8q
< 0.

5.4 Large Number of Securities with Indivisible Orders

For the case of O(n) base securities and indivisible orders, we will show that
computing a matching is Σp

2-complete, remaining so even for quite restricted
types of securities, and hence is (likely) harder than any problem in NP or co-
NP. While it may seem that being NP-complete or co-NP-complete is “hard
enough”, there are certain practical consequences of being outside of NP and
co-NP. If the matching problem were in NP, one could use heuristics to search
for and verify a match if it exists; even if such heuristics fail in the worst case,
they may succeed for most examples in practice. Similarly, if the matching
problem were in co-NP, one might hope to at least heuristically rule out the
possibility of matching. But for problems outside of NP or co-NP, there is
no framework for verifying that a heuristically derived answer is correct. Less
formally, for NP (or co-NP)-complete problems, you have to be lucky; for
Σp

2-complete problems, you can’t even tell if you’ve been lucky.

We note that the existence of a matching is in Σp
2. The class Σp

2 is the second
level of the polynomial-time hierarchy. One can view NP problems like satisfia-
bility as an existential question, showing there exists a satisfying assignment.
Co-NP problems like tautology ask universal questions, do all assignments
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make the formula true? The class Σp
2 has an existential and a universal quan-

tifier, in that order. Showing a matching exists has this flavor: there exists a
subset of the securities such that for all future states the market maker does
not lose money.

Formally, a language L is in Σp
2 if there exists a polynomial p and a polynomial-

time computable set A such that x is in L if and only if there is a y with
|y| = p(|x|) such that for all z, with |z| = p(|x|), (x, y, z) is in A.

To show that the matching problem is in Σp
2, we use y to choose a subset of

the orders and z to represent a state ω, with (x, y, z) in A if the set of orders
has a total nonpositive auctioneer’s payoff in state ω.

We prove a stronger theorem which implies that matching is Σp
2-complete.

Let 〈φ1〉, . . . , 〈φn〉 be a set of securities. We discuss the problem from the
perspective of the auctioneer as a buyer deciding from among all bids which
to accept or buy. In relation to the auctioneer, and in this section only, we use
the words “buy” and “accept” interchangeably, and we refer to the auctioneer
as ”the buyer”. All payoffs and costs quoted in this section are from the
auctioneer’s point of view. Security 〈φi〉 pays off $1 (or more generally, $pi)
when φi is satisfied, assuming it is a sell offer that is accepted (opposite but
symmetric to the bidder’s payoff). The cost to the auctioneer for buying a
security is denoted ci (again, opposite but symmetric to the bidder’s costs).
The 0 − 1-matching problem asks whether the auctioneer can, by accepting
either 0 or 1 of each security, guarantee a worst-case payoff strictly larger
than the total cost. For convenience, in some places in this section we will
denote securities by S rather than 〈φ〉.

Theorem 2 The 0 − 1-matching problem is Σp
2-complete. Furthermore, the

problem remains Σp
2-complete under the following two special cases:

(1) For all i, φi is a conjunction of 3 base events (or their negations), pi = 1,
and ci = cj for all i and j.

(2) For all i, φi is a conjunction of at most 2 base securities (or their nega-
tions).

These hardness results hold even if there is a promise that no subset of the
securities guarantees a worst-case payoff identical to their cost.

To prove Theorem 2, we reduce from the “standard” Σp
2 problem that we call

T∃∀BF. Given a boolean formula f with variables x1, . . . , xn and y1, . . . , yn is
the following fully-quantified formula true

∃x1 . . . ∃xn∀y1 . . . ∀yn f(x1, . . . , xn, y1, . . . , yn)?
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The problem remains Σp
2-complete when

f(x1, . . . , xn, y1, . . . , yn)

is restricted to being a disjunction of conjunctions of at most 3 variables (or
their negations), e.g.,

f(x1, . . . , xn, y1, . . . , yn) =

(x1 ∧ x̄3 ∧ y2) ∨ (x2 ∧ y3 ∧ y7) ∨ · · · .

This form, without the bound on the conjunction size, is known as disjunctive
normal form (DNF); the restriction to conjunctions of 3 variables is 3-DNF.

We reduce T∃∀BF to finding a matching. For the simplest reduction, we con-
sider the matching problem where one has a set of Arrow-Debreu securities
whose payoff events are conjunctions of the base events or their negations.
The auctioneer has the option of accepting either 0 or 1 of each of the given
securities.

We first reduce to the case where the payoff events are conjunctions of ar-
bitrarily many base events (or their negations). By a standard trick we can
reduce the number of base events in each conjunction to 3, and with a slight
twist we can even ensure that all securities have the same price as well as
the same payoff. Finally, we show that the problem remains hard even if only
conjunctions of 2 variables are allowed, though with securities that deviate
slightly from Arrow-Debreu securities in that they may have varying, non
unit payoffs.

5.4.1 The basic reduction

Before describing the securities, we give some intuition. The T∃∀BFproblem
may be viewed as a game between a selector and an adversary. The selector
sets the xi variables, and then the adversary sets the yi variables so as to falsify
the formula f . We can view the 0 − 1-matching problem as one in which the
auctioneer is a buyer who buys securities corresponding to disjunctions of
the base events, and then the adversary sets the values of the base events to
minimize the payoff from the securities.

We construct our securities so that the optimal buying strategy is to buy n
“expensive” securities along with a set of “cheap” securities, of negligible cost
(for some cases we can modify the construction so that all securities have the
same cost). The total cost of the securities will be just under 1, and each
security pays off 1, so the adversary must ensure that none of the securities
pays off. Each expensive security forces the adversary to set some variable, xi
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to a particular value to prevent the security from paying off; this corresponds
to setting the xi variables in the original game. The cheap securities are such
that preventing every one of of these securities from paying off is equivalent
to falsifying f in the original game.

Among the technical difficulties we face is how to prevent the buyer from
buying conflicting securities, e.g., one that forces xi = 0 and the other that
forces xi = 1, allowing for a trivial arbitrage. Secondly, for our analysis we
need to ensure that a trader cannot spend more to get more, say by spending
1.5 for a set of securities with the property that at least 2 securities pay off
under all possible events.

For each of the variables {xi}, {yi} in f , we add a corresponding base security
(with the same labels). For each existential variable xi we add additional base
securities, ni and zi. We also include a base security Q.

In our basic construction, each expensive security costs C and each cheap secu-
rity costs ε; all securities pay off 1. We require that Cn+ε(|cheap securities|) <
1 and C(n+ 1) > 1. That is, one can buy n expensive securities and all of the
cheap securities for less than 1, but one cannot buy n+ 1 expensive securities
for less than 1. We at times refer to a security by its payoff clause.

Remark: We may loosely think of ε as 0. However, this would allow one to
buy a security for nothing that pays (in the worst case) nothing. By making
ε > 0 , we can show it hard to distinguish portfolios that guarantee a positive
profit from those that risk a positive loss. Setting ε > 0 will also allow us to
show hardness results for the case where all securities have the same cost.

For 1 ≤ i ≤ n, we have two expensive securities with payoff clauses (x̄i ∧ Q)
and (n̄i∧Q) and two cheap securities with payoff clauses (xi∧ z̄i) and (ni∧ z̄i).

For each clause C ∈ f , we convert every negated variable x̄i into ni and add
the conjunction z1∧· · ·∧zn. Thus, for a clause C = (x2∧ x̄7∧ ȳ5) we construct
a cheap security with payoff clause

(z1 ∧ · · · ∧ zn ∧ x2 ∧ n7 ∧ ȳ5). (1)

Finally, we have a cheap security with payoff clause (Q̄).

We now argue that a matching exists iff

∃x1 . . . ∃xn∀y1 . . . ∀yn f(x1, . . . , xn, y1, . . . , yn).

We do this by successively constraining the buyer and the adversary, elim-
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inating behaviors that would cause the other player to win. The resulting
“reasonable” strategies correspond exactly to the game version of T∃∀BF.

First, observe that if the adversary sets all of the base securities to false (0),
then only the (Q̄) security will pay off. Thus, no buyer can buy more than n
expensive securities and guarantee a profit. The problem is thus whether one
can buy n expensive securities and all the cheap securities, so that at for any
setting of the base events at least one security will pay off.

Clearly, the adversary must make Q hold, or the (Q̄) security will pay off.
Next, we claim that for each i, 1 ≤ i ≤ n, the auctioneer must buy at least
one of the (x̄i∧Q) and (n̄i∧Q) securities. This follow from the fact that if the
adversary sets xi, ni and zi to be false, and every other base event to be true,
then only the (x̄i ∧ Q) and (n̄i ∧ Q) securities will pay off. As no auctioneer
can buy more than n expensive securities, it must therefore buy exactly one
of (x̄i ∧Q) or (n̄i ∧Q), for each i, 1 ≤ i ≤ n. For the rest of the analysis, we
assume that the auctioneer follows this constraint.

Suppose that the buyer buys (x̄i ∧Q). Then the adversary must set xi to be
true (since it must set Q to be true), or the security will pay off. It must
then set zi to be true or (xi ∧ z̄i) will pay off. Since the buyer doesn’t buy
(n̄i ∧ Q) (by the above constraint), and all the other securities pay the same
or less when ni is made false, we can assume without loss of generality that
the adversary sets ni to be false. Similarly, if the buyer buys (n̄i ∧ Q), then
the adversary must set ni and zi to be true, and we can assume without loss
of generality that the adversary sets xi to be false. Note that the adversary
must in all cases set each zi event to be true.

Summarizing the preceding argument, there is an exact correspondence be-
tween the rational strategies of the buyer and settings for the xi variables
forced on the adversary. Furthermore, the adversary is also constrained to set
the variables Q, z1, . . . , zn to be true, and without loss of generality may be
assumed to set ni = x̄i. Under these constraints, those securities not corre-
sponding to clauses in f are guaranteed to not pay off.

The adversary also decides the value of the y1, . . . , ym base events. Recall that
for each clause C ∈ f there is a corresponding security constructed as in (1).
Given that zi is true and ni = x̄i (without loss of generality), it follows from
the security’s construction that the setting of the yis causes the security to
pay off iff it satisfies C. This establishes the reduction from T∃∀BF to the
matching problem, when the securities are constrained to be a conjunction of
polynomially many base events or their negations.
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5.4.2 Reducing to 3-variable conjunctions

There are standard methods for reducing DNF formulae to 3-DNF formu-
lae, which are trivially modifiable to our securities framework; we include the
reduction for completeness. Given a security 〈C〉 whose payoff clause is

C = (v1 ∧ v2 ∧ · · · ∧ vk)

(variable negations are irrelevant to this discussion), cost c and payoff p, intro-
duce a new auxiliary variable, w, and replace the security with two securities,
〈C1〉 and 〈C1〉, with payoff clauses,

C1 = (v1 ∧ v2 ∧ w) and

C2 = (w̄ ∧ v3 ∧ · · · ∧ vk).

The securities both have payoff p, and their costs can be any positive values
that sum to c. Note that at most one of the securities can pay off at a time.
If only one security is bought, then the adversary can always set w so that it
won’t pay off; hence the auctioneer will buy either both or neither, for a total
cost of c (here we use the fact that one is only allowed to buy either 0 or 1
shares of each security). Then, it may be verified that, given the ability to set
w arbitrarily, the adversary can cause C to be unsatisfied iff it can cause both
C1 and C2 to be unsatisfied. Hence, owning one share each of 〈C1〉 and 〈C2〉 is
equivalent to owning one share of 〈C〉.

Note that C1 has three variables and C2 has k − 1 variables. By applying
the transformation successively, one obtains an equivalent set of securities, of
polynomial size, whose payoff clauses have at most 3 variables.

We note that in the basic construction, all of the clauses with more than 3
variables are associated with cheap securities (cost ε). Instead of subdivid-
ing costs, we can simply make all of the resulting securities have cost ε; the
constraints on C and ε must reflect the new, larger number of cheap securities.

One can ensure that all of the payoff clauses have exactly 3 variables, with
a similar construction. A security S with cost c, payoff p and defining clause
(x ∧ y) can be replaced by securities S1 and S2 with cost c/2, payoff p and
defining clauses (x∧y∧w) and (x∧y∧w̄), where w is a new auxiliary variable.
Essentially the same analysis as given above applies to this case. The case of
single-variable payoff clauses is handled by two applications of this technique.
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5.4.3 Reducing to equi-cost securities

By setting C and ε appropriately, one can ensure that in the basic reduction
every security costs a polynomially bounded integer multiple of ε; call this
ratio r. We now show how to reduce this case to the case where every security
costs ε. Recall that the expensive securities have payoff clauses (x̄i ∧ Q) or
(n̄i ∧Q). Assume that security S has payoff clause (x̄i ∧Q) (the other case is
handled identically). Replace S with security S ′, with payoff clause (x̄i ∧Q ∧
w1) (w1, . . . , wr−1 are auxiliary variables; fresh variables are chosen for each
clause), and also S1, . . . , Sr−1, with payoff clauses

(w̄1 ∧ w2), (w̄2 ∧ w3), . . . , (w̄r−2 ∧ wr−1), and(w̄r−1 ∧ w̄1).

Clearly, buying none of the new securities is equivalent to not buying the
original security. We show that buying all of the new securities is equivalent
to buying the original security, and that buying a proper, nonempty subset of
the securities is irrational.

We first note that if the auctioneer buys securities S1, . . . , Sr−1, then the ad-
versary must set w1 to be true, or one of the securities will pay off. To see
this, note that if wi is set to false, then (w̄i ∧wi+1) will be true unless wi+1 is
set to false; thus, setting w1 to false forces the adversary to set wr−1 to false,
causing the final clause to be true. Having set w1 true, the adversary can set
w2, . . . , wr−1 to false, ensuring that none of the securities S1, . . . , Sr−1 pays
out. If wi is true, then (x̄i ∧ Q ∧ w1) is equivalent to (x̄i ∧ Q). So buying all
of the replacement securities for ε each is equivalent to buying the original
security for εr.

It remains to show that buying a proper, nonempty subset of the securities is
irrational. If one doesn’t buy S ′, then the adversary can set the w variables so
that none of S1, . . . , Sr−1 will pay off; any money spent on these securities is
wasted. If one doesn’t buy Sr−1, the adversary can set all w to false, in which
case none of the new clauses will pay off, regardless of the value of xi and Q.
Similarly, if one doesn’t buy Si, for 1 ≤ i ≤ r − 2, the adversary can set wi+1

to be true, all the other w variables to be false, and again there is no payoff,
regardless of the value of xi and Q. Thus, buying a proper subset of these
securities will not increase ones payoff.

We note that this reduction can be combined trivially with the reduction that
ensures that all of the defining clauses have 3 or fewer variables. With a slightly
messier argument, all of the defining clauses can be set up to have exactly 3
variables.
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5.4.4 Reducing to clauses of at most 2 variables

If we allow securities to have variable payoffs and prices, we can reduce to the
case where each security’s payoff clause is a conjunction of at most 2 variables
or their negations.

Given a security s with payoff clause (X ∧ Y ∧ Z), cost c and payoff 1, we
introduce fresh auxiliary variables, w1, w2 and w3 (new variables are used for
each clause) and replace S with the following securities:

• Securities S1, S2 and S3, each with cost c/3 and payoff 1, with respective
payoff clauses (X ∧ w1), (Y ∧ w2) and (Z ∧ w3).

• Securities S ′
1, . . . , S

′
6, each with cost 4 and payoff 24−ε2, with payoff clauses,

(w1 ∧ w2) (w1 ∧ w3) (w2 ∧ w3)

(w̄1 ∧ w̄2) (w̄1 ∧ w̄3) (w̄2 ∧ w̄3)

Here, ε2 is a tiny positive quantity, described later. By a simple case analysis,
we have the following.

Observations:

(1) For any i, there exists a setting of w1, w2 an w3 such that of the S ′

securities only S ′
i pays off.

(2) For any setting of w1, w2 and w3, at least one of the S ′ securities will pay
off.

(3) If w1, w2 and w3 are all false, all of the S ′ securities will pay off.
(4) Setting one of w1, w2 or w3 to be true, and the others to be 0, will cause

exactly one of the S ′ securities to pay off.

By Observation 1, there is no point in buying a nonempty proper subset of
the S ′ securities: The adversary can ensure that none of the bought securities
will pay off, and even if all the S securities pay off, it will not be sufficient to
recoup the cost of buying a single S ′ security. By Observation 2, if one buys
all the S ′ securities, one is guaranteed to almost make back ones investment
(except for ε2), in which case by Observations 3 and 4, the adversaries optimal
strategy is to make exactly one of w1, w2 or w3 true. We set C, ε and ε2 so that

Cn+ ε(|cheap securities|) + ε2(|clauses|) < 1.

Thus, the accumulated losses of ε2 can never spell the difference between
making a guaranteed profit and making no profit at all. Note also that by
making ε2 positive we prevent the existence of “break-even” buying strategies
in which the buyer only purchases S ′ securities.

27



Summarizing the previous argument, we may assume without loss of generality
that the buyer buys all of the S ′ securities (for all clauses), and that for each
clause the adversary sets exactly one of that clause’s auxiliary variables w1, w2

or w3 to be true. For the rest of the discussion, we assume that the players
follow these constraints.

We next claim that a rational buyer will either buy all of S1, S2 or S3, or
none of them. If the buyer doesn’t buy S1, then if the adversary makes w1

true and w2 and w3 false, neither S2 nor S3 will pay off, regardless of how the
adversary sets X, Y and Z. Hence, there is no point in buying either S2 or S3

if one doesn’t buy S1. Applying the same argument to S2 and S3 establishes
the claim.

Clearly, buying none of S1, S2 and S3 has, up to negligible ε2 factors, the same
price/payoff behavior as not buying S. We next argue that, subject to the
established constraints put on the players’ behaviors, buying all of S1, S2 and
S3 has the same price/payoff behavior (again ignoring ε2 factors) as buying S,
regardless of how the adversary sets X, Y and Z. First, in both cases, the cost
is c. If the adversary makes X, Y and Z true, then S pays off 1, and (assuming
that exactly one of w1, w2 and w3 is true), exactly one of S1, S2 or S3 will pay
off 1. If X is false, then S doesn’t pay off, and the adversary can set w1 true
(and w2 and w3 false), ensuring that none of S1, S2 and S3 pays off. The same
argument holds if Y or Z are false.

6 Tractable Cases

The logical question to ask in light of these complexity results is whether fur-
ther, more severe restrictions on the space of securities can enable tractable
matching algorithms. Although we have not systematically explored the pos-
sibilities, the potential for useful tractable cases certainly exists.

Suppose, for example, that bids are limited to unit quantities of securities of
the following two forms:

(1) Disjunctions of positive events: 〈A1 ∨ · · · ∨ Ak〉.
(2) Single negative events: 〈Āi〉.

Let p be the price offered for a disjunction 〈A1 ∨ · · · ∨ Ak〉, and qi the maximal
price offered for the respective negated disjuncts. This disjunction bid is part
of a match iff p+

∑
i qi ≥ k. Evaluating whether this condition is satisfied by

a subset of bids is quite straightforward.

Although this example is contrived, its application is not entirely implausible.
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For example, the disjunctions may correspond to insurance customers, who
want an insurance contract to cover all the potential causes of their asset
loss. The atomic securities are sold by insurers, each of whom specialize in a
different form of disaster cause.

7 Conclusions and future directions

We have analyzed the computational complexity of matching for securities
based on logical formulas. Many possible avenues for future work exist, in-
cluding

(1) Analyzing the agents’ optimization problem:
• How to choose quantities and bid/ask prices for a collection of securities

to maximizes one’s expected utility, both for linear and nonlinear utility
functions.

• How to choose securities; that is, deciding on what collection of boolean
formulas to offer to trade, subject to constraints or penalties on the
number or complexity of bids.

• How to make the above choices in a game theoretically sound way,
taking into account the choices of other traders, their reasoning about
other traders, etc.

(2) Although matching is likely intractable, are there good heuristics that
achieve matches in many cases or approximate a matching?

(3) Exploring sharing rules for dividing the surplus, and incentive properties
of the resulting mechanisms.

(4) Study the incremental problem of finding a matching between a single
new order and a set of old orders known to have no matches between
them. The objective function would be to satisfy as much of the new
order as possible, giving the advantage of any price differences to the
new order. (This is the standard double auction rule.)

(5) We may consider a market to be in computational equilibrium if no
computationally-bounded player can find a strategy that increases utility.
With few exceptions [36,37], little is known about computational equilib-
riums. A natural question is to determine whether a market can achieve
a computational equilibrium that is not a true equilibrium, and under
what circumstances this may occur.
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