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Abstract

We show that any language that has a two-locally-random reduction in which the target
functions are boolean is in NP/polyNco-NP/poly. This extends and simplifies a result by Yao.

1 Introduction

Suppose Frank wanted to access a database. Frank had access privileges to this database but for
security reasons Frank could not reveal his question to this database. What can Frank learn under
this requirement? What if Frank had access to several copies of the same database?

Abadi, Feigenbaum and Kilian [1] looked at the following game based on this scenario: Suppose
a probabilistic polynomial-time player has access to a trustworthy oracle. This player wishes to
use this oracle to determine the value of some complex function of some input but does not wish
to reveal any information about the input besides its length. Abadi, Feigenbaum and Kilian [1]
showed that any language reducible to an oracle in this fashion lies in NP /polynco-NP /poly.

Beaver and Feigenbaum [2] looked at the power of having the polynomial-time player query
several separated oracles, i.e. oracles that can not communicate among themselves or listen to the
conversation between a different oracle and the player. Beaver and Feigenbaum show the surprising
result that, given n 4+ 1 different oracles, any function has such a locally-random reduction. Beaver,
Feigenbaum, Kilian and Rogaway [3] improved this result to show that n/(clogn) oracles suffice
for any positive constant c.

Virtually nothing was known about the complexity of two-locally-random reduction. Perhaps
one could use two separate and trustworthy oracles to determine the value of any function without
revealing more than the input length. Extending an idea of Yao [6], we give a partial negative result:
Any language with a two-locally-random reduction with boolean oracles is in NP /polynco-NP /poly.

2 The Main Theorem

First we formally define local-random reductions:
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Definition 1 A function f has a k-locally-random reduction if there exist polynomial-time func-
tions o and ¢ and a polynomial g(n) such that for input & and every r of length q(|x|), there exists
arbitrary oracle functions g1, ..., gr(n) such that

f(@) = ¢(z,r, g1(o(1,2,7)),.. -vgk(n)(g(k(n)v ,7)))

and for each i, o(i,x,r) and o(i,y,r) are distributed identically when |z| = |y| and r is chosen
uniformly at random over all strings of length ¢(|z|).
We say a language has a k-locally-random reduction if its characteristic function has.

The outputs of the o functions are the questions asked to the oracles, the r is the random coins
of the querier, the ¢ functions are the oracle responses and the ¢ function is the computation done
after the response. If k is a constant, we will often use o;(z,r) for o(i,z, ).

Locally-random reductions are a restriction of instance hiding schemes where the oracles can
flip coins and more importantly interact with the polynomial-time player including having future
answers depend on previous questions. See Beaver and Feigenbaum [2] for further details.

We can also look at random-self reductions as a restriction of local-random reductions by re-
quiring g1 = ... = gx = f. For more precise definitions and theorems about random-self reductions
see [1, 5, 4].

We can now state the main theorem:

Theorem 2 If L has a two-local random reduction with oracles g1 and g2 where g1 and g5 output
a single bit then L is in NP/polynco-NP /poly.

Our proof was inspired by a weaker result by Yao [6]: Any language with a two-local-random
reduction with oracles that output only a single bit each is in PSPACE/poly. Besides obtaining
stronger consequences our proof is also reasonably simpler than Yao’s original proof.

Yap [7] shows that if NPCco-NP /poly then the polynomial-time hierarchy collapses to the third
level. From this fact we immediately get

Corollary 3 If SAT (or any other NP-hard language) has a two-local-random-reduction where the
oracles only output single bit responses then the polynomial-time hierarchy collapses to the third
level.

3 Proof of Main Theorem

To prove Theorem 2, we need only show L is in NP /poly because by Definition 1 a language has a
k-local-random reduction if and only if its complement also has one.

For every fixed n the characteristic function of the words of L having length n is a boolean
function f, = f.

Suppose f has a two-local-random reduction as required by the theorem. Consider the multisets
My = {o1(0,7) | r € {0,139}, My = {55(0,7) | 7 € {0,1}70"} (where O denotes the n bit string
of zeros). The distributional equivalence of oy and oy imply that for every input z of f the
multisets {oy(z,7) | 7 € {0,1}70)} and {oa(z,7) | r € {0,112V} can be identified with M; and M,
respectively. The elements of these multisets will be called points.



Note 4 We are dealing with multisets instead of sets to insure that o;(x,r1) and o;(z,rz) map to
distinct points of M;.

We suppose that My and M, are disjoint and introduce the following convention:

When talking about the value of g on a given point, we mean the value of gy if the point is in
My and the value of gy if the point is in Ms.

Let j be an element of {1,2}. We say that the values z,7,g;(0;(z,7)) sets f(z) if the value of
oz, r,gi(o;(x, 7)), w) does not depend on w.

In the case z,7,g;(0;(z,r)) does not set f(x), we can obtain the value of w = g3_;(o3_;(z, 7))
from z,r,g;(o;(z, 7)), f(2).

Definition 5 For some x and r lety = oj(x,r), ¥y = o3_;(z,r). We say that g;(y) forces gs_;(y’)
through x and r if x,r,g;(o;(x,r)) does not set f(x).

Forcing can be iterated. A sequence of length n points yo, ..., ¥, is a forcing path with respect
to a subset of length-n inputs S if for every ¢, 0 <1 < m

1. i is even and there exists # € § and r € {0, 1}20#) such that y; = oy(x,7) and y;1q = ooz, 1)
and ¢1(y;) forces ¢g2(yit1) through z and r.

2. iis odd and there exists 2 € S and r € {0,1}90%D such that y; = oo(x,r) and y;41 = o1(z, 1)
and g¢3(y;) forces ¢1(yit1) through x and r.

The description of the forcing path consists of the points yo, ..., 4, and the corresponding z’s and
r’s used to force g1 and gy along the path.

If the value of f is known for a subset of inputs, then the values of g along any forcing path
with respect to this subset are forced by the value of the first point. These values can be computed
in polynomial time if given the description.

From now on any forcing path will start at ¢1(0,0).

The idea of the NP /poly algorithm is that the value of g at the point ¢1(0,0) and the value of
f on a small, but appropriate set of inputs will force enough values of g to compute f. Recall that
with the help of ¢ we can compute f(z) in polynomial time for an arbitrary choice of r from the
values g1(o1(z, 7)) and ga(oa(z,7)).

For some 2 the nondeterministic guess will include an r with the property that both g1(o1(z, 7))
and gz(oz(z, 7)) are forced (or in some cases only one of them) and the description of the corre-
sponding forcing paths.

The case in which we need only one of the above values is when f is set by x, r and this value.
In this case it is enough to give the forcing path to the corresponding point.

The polynomial advice of our NP /poly machine will contain:

1. The value g1(01(0,0)),
2. a polynomial length sequence of inputs zq, ..., 2,

3. the sequence of values of f at these points: f(z1),..., f(zm).

It remains to show that a small subset of inputs with the desired properties exists.



Lemma 6 For every function f that has a 2-local-random reduction to boolean g1 and go using
random strings of length q(n), there is a set of length n inputs x1,...,2, (m < ¢(n)+1) such that
for every x there is an r with one of the following properties:

1. o1(z,r) and oy(x,r) are both on a forcing path (with respect to x1,...,x.,) of length m.

2. There is a j € {1,2} such that o;(z,r) is on a forcing path (with respect to x1,...,%y) of
length at most m and x,r,g;(c;(z,r)) sets f(x).

Proof of the lemma:

We construct an exponentially expanding set system So C 51 C --- C 5, € M1 U M5 and a set
of inputs z1,...,2, (m <14 1) recursively such that S; can be reached by a forcing path with
respect to x1,...,z; of length at most 4.

Moreover for every x there is an r such that one of the following cases holds:

1. both oy(z,r) and og(z,r) are in S,,.
2. there is a j € {1,2} that o;(z,r) € 5y, and z,r,g;(c;(z,r)) sets the value of f.

So = {01(0,0)}. Suppose that S,...,5; are already constructed, but S; does not satisfy the
properties required for 9,,, i.e. there is an & that none of the conditions 1 and 2 hold for z.

Choose such an « for z;41.

For every pair o1(2;41,7),02(@;41,7) that coincides with one of the points of 9; (such a pair
can never coincide with two points of 5; because otherwise condition 1 would hold for z;41), the
value of the point of the pair that is outside S; is forced by 2,41, r and the value of g on the point
that belongs to \5;.

Let the set 5311 include exactly the points of the pairs that have one common point with 5.
The values of g at these points are forced in ¢ + 1 step by zq, ..., Ziy1.

Observe that the size of 5311 is exactly twice the size of §;. This follows from the fact that for
each point of 5; there is exactly one coinciding pair and that the second elements of the pairs are
all distinct (see Note 4). The upper bound on m is now implied by |M;| = |My| = 2¢0%), |

4 Final Comments

There is still a large gap in our knowledge of local-random reductions. Here are some open questions:

e What is the power of two-local-random reductions when the query to one depends on the
answer given by the other?

e What is the power of two-local-random reductions when the oracles can output any number
of bits?

e What is the minimum k(n) such that any function has a k(n)-local-random-reduction.
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