
On the Power of Two-Local Random ReductionsLance Fortnow�Mario SzegedyyUniversity of ChicagoComputer Science Department1100 E. 58th StreetChicago, IL 60637AbstractWe show that any language that has a two-locally-random reduction in which the targetfunctions are boolean is in NP/poly\co-NP/poly. This extends and simpli�es a result by Yao.1 IntroductionSuppose Frank wanted to access a database. Frank had access privileges to this database but forsecurity reasons Frank could not reveal his question to this database. What can Frank learn underthis requirement? What if Frank had access to several copies of the same database?Abadi, Feigenbaum and Kilian [1] looked at the following game based on this scenario: Supposea probabilistic polynomial-time player has access to a trustworthy oracle. This player wishes touse this oracle to determine the value of some complex function of some input but does not wishto reveal any information about the input besides its length. Abadi, Feigenbaum and Kilian [1]showed that any language reducible to an oracle in this fashion lies in NP/poly\co-NP/poly.Beaver and Feigenbaum [2] looked at the power of having the polynomial-time player queryseveral separated oracles, i.e. oracles that can not communicate among themselves or listen to theconversation between a di�erent oracle and the player. Beaver and Feigenbaum show the surprisingresult that, given n+1 di�erent oracles, any function has such a locally-random reduction. Beaver,Feigenbaum, Kilian and Rogaway [3] improved this result to show that n=(c logn) oracles su�cefor any positive constant c.Virtually nothing was known about the complexity of two-locally-random reduction. Perhapsone could use two separate and trustworthy oracles to determine the value of any function withoutrevealing more than the input length. Extending an idea of Yao [6], we give a partial negative result:Any language with a two-locally-random reduction with boolean oracles is in NP/poly\co-NP/poly.2 The Main TheoremFirst we formally de�ne local-random reductions:�Supported in part by NSF Grant CCR-9009936.yAT& T Bell Laboratories, 600 Mountain Avenue, P.O. Box 636, Murray Hill, NJ 079741



De�nition 1 A function f has a k-locally-random reduction if there exist polynomial-time func-tions � and � and a polynomial q(n) such that for input x and every r of length q(jxj), there existsarbitrary oracle functions g1; : : : ; gk(n) such thatf(x) = �(x; r; g1(�(1; x; r)); : : : ; gk(n)(�(k(n); x; r)))and for each i, �(i; x; r) and �(i; y; r) are distributed identically when jxj = jyj and r is chosenuniformly at random over all strings of length q(jxj).We say a language has a k-locally-random reduction if its characteristic function has.The outputs of the � functions are the questions asked to the oracles, the r is the random coinsof the querier, the g functions are the oracle responses and the � function is the computation doneafter the response. If k is a constant, we will often use �i(x; r) for �(i; x; r).Locally-random reductions are a restriction of instance hiding schemes where the oracles can
ip coins and more importantly interact with the polynomial-time player including having futureanswers depend on previous questions. See Beaver and Feigenbaum [2] for further details.We can also look at random-self reductions as a restriction of local-random reductions by re-quiring g1 = : : : = gk = f . For more precise de�nitions and theorems about random-self reductionssee [1, 5, 4].We can now state the main theorem:Theorem 2 If L has a two-local random reduction with oracles g1 and g2 where g1 and g2 outputa single bit then L is in NP/poly\co-NP/poly.Our proof was inspired by a weaker result by Yao [6]: Any language with a two-local-randomreduction with oracles that output only a single bit each is in PSPACE/poly. Besides obtainingstronger consequences our proof is also reasonably simpler than Yao's original proof.Yap [7] shows that if NP�co-NP/poly then the polynomial-time hierarchy collapses to the thirdlevel. From this fact we immediately getCorollary 3 If SAT (or any other NP-hard language) has a two-local-random-reduction where theoracles only output single bit responses then the polynomial-time hierarchy collapses to the thirdlevel.3 Proof of Main TheoremTo prove Theorem 2, we need only show L is in NP/poly because by De�nition 1 a language has ak-local-random reduction if and only if its complement also has one.For every �xed n the characteristic function of the words of L having length n is a booleanfunction fn = f .Suppose f has a two-local-random reduction as required by the theorem. Consider the multisetsM1 = f�1(0; r) j r 2 f0; 1gq(n)g, M2 = f�2(0; r) j r 2 f0; 1gq(n)g (where 0 denotes the n bit stringof zeros). The distributional equivalence of �1 and �2 imply that for every input x of f themultisets f�1(x; r) j r 2 f0; 1gq(n)g and f�2(x; r) j r 2 f0; 1gq(n)g can be identi�ed with M1 and M2respectively. The elements of these multisets will be called points.2



Note 4 We are dealing with multisets instead of sets to insure that �i(x; r1) and �i(x; r2) map todistinct points of Mi.We suppose that M1 and M2 are disjoint and introduce the following convention:When talking about the value of g on a given point, we mean the value of g1 if the point is inM1 and the value of g2 if the point is in M2.Let j be an element of f1; 2g. We say that the values x; r; gj(�j(x; r)) sets f(x) if the value of�(x; r; gj(�j(x; r)); w) does not depend on w.In the case x; r; gj(�j(x; r)) does not set f(x), we can obtain the value of w = g3�j(�3�j(x; r))from x; r; gj(�j(x; r)); f(x).De�nition 5 For some x and r let y = �j(x; r), y0 = �3�j(x; r). We say that gj(y) forces g3�j(y0)through x and r if x; r; gj(�j(x; r)) does not set f(x).Forcing can be iterated. A sequence of length n points y0; : : : ; ym is a forcing path with respectto a subset of length-n inputs S if for every i, 0 � i < m1. i is even and there exists x 2 S and r 2 f0; 1gq(jxj) such that yi = �1(x; r) and yi+1 = �2(x; r)and g1(yi) forces g2(yi+1) through x and r.2. i is odd and there exists x 2 S and r 2 f0; 1gq(jxj) such that yi = �2(x; r) and yi+1 = �1(x; r)and g2(yi) forces g1(yi+1) through x and r.The description of the forcing path consists of the points y0; : : : ; ym and the corresponding x's andr's used to force g1 and g2 along the path.If the value of f is known for a subset of inputs, then the values of g along any forcing pathwith respect to this subset are forced by the value of the �rst point. These values can be computedin polynomial time if given the description.From now on any forcing path will start at �1(0; 0).The idea of the NP/poly algorithm is that the value of g at the point �1(0; 0) and the value off on a small, but appropriate set of inputs will force enough values of g to compute f . Recall thatwith the help of � we can compute f(x) in polynomial time for an arbitrary choice of r from thevalues g1(�1(x; r)) and g2(�2(x; r)).For some x the nondeterministic guess will include an r with the property that both g1(�1(x; r))and g2(�2(x; r)) are forced (or in some cases only one of them) and the description of the corre-sponding forcing paths.The case in which we need only one of the above values is when f is set by x, r and this value.In this case it is enough to give the forcing path to the corresponding point.The polynomial advice of our NP/poly machine will contain:1. The value g1(�1(0; 0)),2. a polynomial length sequence of inputs x0; : : : ; xm,3. the sequence of values of f at these points: f(x1); : : : ; f(xm).It remains to show that a small subset of inputs with the desired properties exists.3



Lemma 6 For every function f that has a 2-local-random reduction to boolean g1 and g2 usingrandom strings of length q(n), there is a set of length n inputs x1; : : : ; xm (m � q(n)+1) such thatfor every x there is an r with one of the following properties:1. �1(x; r) and �2(x; r) are both on a forcing path (with respect to x1; : : : ; xm) of length m.2. There is a j 2 f1; 2g such that �j(x; r) is on a forcing path (with respect to x1; : : : ; xm) oflength at most m and x; r; gj(�j(x; r)) sets f(x).Proof of the lemma:We construct an exponentially expanding set system S0 � S1 � � � � � Sm � M1 [M2 and a setof inputs x1; : : : ; xm (m � l + 1) recursively such that Si can be reached by a forcing path withrespect to x1; : : : ; xi of length at most i.Moreover for every x there is an r such that one of the following cases holds:1. both �1(x; r) and �2(x; r) are in Sm.2. there is a j 2 f1; 2g that �j(x; r) 2 Sm and x; r; gj(�j(x; r)) sets the value of f .S0 = f�1(0; 0)g. Suppose that S1; : : : ; Si are already constructed, but Si does not satisfy theproperties required for Sm, i.e. there is an x that none of the conditions 1 and 2 hold for x.Choose such an x for xi+1.For every pair �1(xi+1; r); �2(xi+1; r) that coincides with one of the points of Si (such a paircan never coincide with two points of Si because otherwise condition 1 would hold for xi+1), thevalue of the point of the pair that is outside Si is forced by xi+1, r and the value of g on the pointthat belongs to Si.Let the set Si+1 include exactly the points of the pairs that have one common point with Si.The values of g at these points are forced in i+ 1 step by x0; : : : ; xi+1.Observe that the size of Si+1 is exactly twice the size of Si. This follows from the fact that foreach point of Si there is exactly one coinciding pair and that the second elements of the pairs areall distinct (see Note 4). The upper bound on m is now implied by jM1j = jM2j = 2q(n).4 Final CommentsThere is still a large gap in our knowledge of local-random reductions. Here are some open questions:� What is the power of two-local-random reductions when the query to one depends on theanswer given by the other?� What is the power of two-local-random reductions when the oracles can output any numberof bits?� What is the minimum k(n) such that any function has a k(n)-local-random-reduction.4
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