
On the Power of Multi-Prover Interactive ProtocolsLance Fortnow�John RompelyMichael Sipserz||||||{Laboratory for Computer ScienceMassachusetts Institute of TechnologyCambridge, MA 021391 IntroductionInteractive proof systems, as described in [23] and [3], are a model in which a probabilistic polynomialtime veri�er may interactively ask questions of a prover with unbounded computational power in orderto decide the truth of a proposition. This is a generalization of the NP type proof system in which theveri�er may only listen and not speak or toss coins.In this paper we consider a further generalization of the proof system model, due to Ben-Or,Goldwasser, Kilian and Wigderson [6], where instead of a single prover there may be many. Thisapparently gives the model additional power. The intuition for this may be seen by considering thecase of two criminal suspects who are under interrogation to see if they are guilty of together robbinga bank. Of course they (the provers) are trying to convince Scotland Yard (the veri�er) of theirinnocence. Assuming that they are in fact innocent, it is clear that their ability to convince the policeof this is enhanced if they are questioned in separate rooms and can corroborate each other's storieswithout communicating. We shall see later in this paper that this sort of corroboration is the key tothe additional power of multiple provers.Interactive proof systems have seen a number of important applications to cryptography [23, 22],algebraic complexity [3], program testing [7, 8] and distributed computation [16, 23]. For example, achain of results concerning interactive proof systems [22, 3, 24, 9] conclude that if the graph isomorphismproblem is NP-complete then the polynomial time hierarchy collapses. Multiple-prover interactive proofsystems have also seen several important applications including the analysis of program testing [7, 4]and the complexity of approximation algorithms [14, 2, 1].Brief summary of results: First we give a simple characterization of the power of the multi-provermodel in terms of probabilistic oracle Turing machines. Then we show that every language acceptedby multiple prover interactive proof systems can be computed in nondeterministic exponential time.Babai, Fortnow and Lund [4] have since shown this bound is tight. We then show results like the oneproved by Babai, Fortnow and Lund can not relativize by exhibiting an oracle relative to which thereexist co-NP problems that do not have multiple prover interactive proof systems. We show, however,�supported by an O�ce of Naval Research fellowship.Current Address: Computer Science Dept., University of Chicago, 1100 E. 58th St., Chicago, IL 60637ysupported by National Science Foundation Fellowship and the third author's grants.Current Address: D.E. Shaw & Co., 251 Park Avenue South, New York, NY 10010zsupported by NSF Grant DCR-8602062 and Air Force Grant AFOSR-86-0078.1

that the existence of an oracle relative to which there exist languages with multiple prover interactiveproof systems but can not be computed in polynomial space would imply an unrelativized separationof NP and poly-log space. Finally, we show a simple example that illustrates that multiple proverinteractive proof systems do not behave independently in parallel as previously believed.2 De�nitions and Other ResultsLet P1; P2; : : :Pk be in�nitely powerful machines and V be a probabilistic polynomial-time machine, allof which share the same read-only input tape. The veri�er V shares communication tapes with eachPi, but di�erent provers Pi and Pj have no tapes they can both access besides the input tape. Weallow k to be as large as a polynomial in the size of the input; any larger and V could not access allthe provers.Formally, each Pi is a function from the input and the conversation it has seen so far to a message.We put no restrictions on the complexity of this function other than that the lengths of the messagesproduced by this function must be bounded by a polynomial in the size of the input. We will assumethroughout this paper that the inputs are drawn from the set of strings over the alphabet � = f0; 1g.P1; : : : ; Pk and V form a multi-prover interactive protocol for a language L if:1. If x 2 L then Pr(P1; : : : ; Pk and V on x accept) > 1� 2�n.2. If x 62 L then for all provers P 01; : : : ; P 0k, Pr(P 01; : : : ; P 0k and V on x accept) < 2�nMIP is the class of all languages which have multi-prover interactive protocols. If k is one we get theclass IP of languages accepted by one-prover interactive proof systems [23].Note that we require an exponentially small probability of error. We could reduce a constant error toa probability of error of less than 2�p(n) for any polynomial p(n) by running the protocols several timesserially. Unlike the result of Babai and Moran [5] for the one-prover model, it is unknown whether wecan decrease the probability of error in multi-prover proof systems by running the protocols in parallel(see section 6).A round of an multi-prover interactive protocol consists of messages from the veri�er to some or allof the provers followed by messages from these provers to the veri�er. In general, interactive protocolscan have a polynomial number of rounds. We let �ij designate a message from prover i to the veri�erin round j and �ij designate a message from the veri�er to prover i in round j.Ben-Or, Goldwasser, Kilian and Wigderson [6] originally developed multi-prover interactive proofsystems primarily for cryptographic purposes. They show every language accepted by a two proverinteractive proof system has a perfect zero-knowledge two prover proof system, where even NP does nothave perfect zero-knowledge single prover proof systems unless the polynomial-time hierarchy collapses[17]. They also show two prover systems can simulate any multi-prover system. Along the lines ofFurer, Goldreich, Mansour, Sipser and Zachos [21], they show any two prover system has an equivalentsystem that accepts with probability one for strings in the language. Complete proofs of these resultsappeared in [25].Subsequent to the results described in this paper, the complexity of interactive proof systems havebeen shown to be much more powerful then previously believed. Lund, Fortnow, Karlo� and Nisan[27] have shown the existence of an interactive proof system for every language in the polynomialtime hierarchy. Using the techniques of Lund, Fortnow, Karlo� and Nisan, Shamir [29] has shownthat every language computable in polynomial space has an interactive proof system. Building on theresult of Lund, Fortnow, Karlo� and Nisan and Theorem 3.1, Babai, Fortnow and Lund [4] have shownthat every language accepted in nondeterministic exponential time has a two-prover interactive proofsystem. 2

A series of results due to Cai, Condon, Lipton, Lapidot, Shamir, Feige and Lov�asz [12, 10, 11, 13,26, 15] have modi�ed the protocol of Babai, Fortnow and Lund [4] to show that every language inNEXP has a two-prover, one-round proof systems with an exponentially small error, strengthening the(unproven) claims made in an earlier version of this paper [19]. The general question of parallelizingprotocols remains open (see [15]).Feige, Goldwasser, Lov�asz, Safra and Szegedy [14] use the Babai-Fortnow-Lund [4] result to provesome grave consequences of clique approximation. Arora and Safra [2] improved these results and Arora,Lund, Motwani, Sudan and Szegedy [1] applied these techniques to the MAX SNP-hard problems [28].3 Probabilistic Oracle MachinesSuppose a prover in an interactive proof system must set all his possible responses before the protocolwith the veri�er takes place. We can think of the prover as an oracle attempting to convince aprobabilistic machine whether to accept a certain input string. The oracle must be fully speci�edbefore the protocol begins.Let M be a probabilistic polynomial-time Turing machine with access to an oracle O. A languageL is accepted by an oracle machine M i�1. For every x 2 L there is an oracle O such that MO accepts x with probability > 1� 2�n2. For every x 62 L and for all oracles O0, MO0 accepts with probability < 2�nThis model di�ers from the one-prover interactive protocol model in that the oracle must be setahead of time while in an interactive protocol the prover may let his future answers depend on previousones.Theorem 3.1 L is accepted by an probabilistic oracle machine if and only if L is accepted by a multi-prover interactive protocol.Proof((=)Suppose L is accepted by a multi-prover interactive proof system V . Without loss of generality, we canassume that all messages from the provers to the veri�er consist of only a single bit. Then de�ne Mas follows: M simulates V with M remembering all messages. When V sends a message to a prover,M asks the oracle the question (x; i; j; �i1; : : : ; �ij) suitably encoded and uses the response as the |thmessage from prover i on input x where �i1; : : : ; �ij are the �rst j messages sent from the veri�er toprover i. M then accepts x if and only if V does.1. Let P1; : : : ; Pk be provers which cause V to accept each x 2 L with probability at least 1� 2�n.If we let O be the oracle which encodes in the above manner the messages of P1; : : : ; Pk, thenMO will accept each x 2 L with the same probability as V .2. Suppose there were an input x 62 L and an oracle O0 such that MO0 accepts x with probabilitymore than 2�n. Then we could construct provers P 01; : : : ; P 0k which cause V to accept x withthe same probability by just using O0 to create their messages. Since, by de�nition, no suchP 01; : : : ; P 0k exist, neither does O0.(=))Suppose L is accepted by a probabilistic oracle machine M in nk steps. We will de�ne a veri�er, V ,to simulate M using 4nk+1 provers. First the veri�er ips two sets of coins r1 and r2. The veri�er3

uses r1 to choose a random ordering of the 4nk+1 provers. The veri�er then simulates M using r2 andwhenever M asks an oracle question, V asks the question to each of the next n provers in the chosenordering. If the provers are unanimous in their answer, V uses that answer in its simulation of M ;if not, V rejects immediately. If the provers successfully answer all oracle queries, then the veri�eraccepts if and only if M does. There can be at most nk questions so V will use at most nk+1 provers.There will be at least 3nk+1 unused provers.1. Let O be an oracle such that MO accepts each x 2 L with probability at least 1 � 2�n. If welet P1; : : : ; P4nk+1 all answer (identically) according to O, then they will cause V to accept eachx 2 L with the same probability as MO.2. Consider x 62 L; consider any provers P 01; : : : ; P 04nk+1. Let oracle O0 answer queries as the majorityof P 01; : : : ; P 04nk+1 would. If there is no majority then O0 answers arbitrarily. We know that O0,like every oracle, cannot cause MO0 to accept x with probability greater than 2�n. We need toalso show that the provers P 01; : : : ; P 0nk+1 cannot do much better in the above de�ned protocol.There are two cases to consider for V accepting x: either all oracle queries in the simulationanswered consistently with O0 or some oracle query answered di�erently than O0 would. Bythe de�nition of acceptance for probabilistic oracle machines, we know that the probability ofaccepting given that the �rst case occurs is bounded by 2�n, where this probability is over therandom coins of M .Now consider the second case. For V to accept using an oracle answer inconsistent with O0, itmust be the case that, for some i, the {th set of n provers all give an answer inconsistent with O0on the {th query. Let Si be the event that i is least with this property given that V accepts. Fixr2 and all the �rst i� 1 sets of provers. There are 4nk+1 � n(i � 1) > 3nk+1 remaining provers.Of these provers at most 2nk+1 can give an answers inconsistent with O0 on the {th query. Thusthe probability that Si occurs is bounded by�2nk+1n ��3nk+1n � � (2=3)n :The probability that Si will occur for some i is at most nk times this.We will use the following identity for any two events B and C:Pr(B ^ C) = Pr(BjC) Pr(C) � Pr(BjC) (1)Let A be the event that V accepts. Let F be the event that the �rst case occurs. Let S be theevent that the second case occurs. By (1), we have:Pr(A) = Pr(A ^ F) + Pr(A ^ S) � Pr(AjF) + Pr(SjA) � 2�n + nk(2=3)n < (nk + 1)(2=3)n:We can reduce the error in the usual way by running this protocol in series several times. 2Theorem 3.1 gives a natural model equivalent to multiple provers and useful for proving theoremsabout them. In fact the proof that multiple provers can simulate nondeterministic exponential time [4]requires this theorem. We can also make connections to program checking.Blum and Kannan [7] de�ne function-restricted IP as the set of languages accepted by a probabilisticoracle machine with the additional restriction on the �rst requirement:1. For every x 2 L, ML accepts x with probability > 1� 2�n4

In other words, the \honest oracle" must just compute the language but the \dishonest" oracle maystill compute any function.Blum and Kannan also de�ne an instance checker CPL for a language L and an instance x 2 f0; 1g�as a probabilistic polynomial-time oracle Turing Machine that given a program P claiming to computeL, and an input x:1. If P correctly computes L for all inputs then with high probability CPL will output \correct".2. If P(x) 6= L(x), with high probability CPL (x) will output \P does not compute L".Blum and Kannan show that a language L has an instance checker if both L and L have function-restricted interactive proof systems.The proof of Theorem 3.1 yields the following corollary:Corollary 3.2 A language L has a function restricted interactive proof system if and only if there existsa multiple prover interactive proof system for L where the honest provers need only answer questionsabout L.Arora and Safra [2] de�ne a hierarchy of complexity classes PCP (for probabilistically checkableproofs), corresponding to the number of random and query bits required to verify a proof of membershipin the language, as follows:A veri�er M is a probabilistic polynomial-time Turing machine with random access to a string �representing a membership proof; M can query any bit of �. Call M an (r(n); q(n))-restricted veri�erif, on an input of size n, it is allowed to use at most r(n) random bits for its computation, and queryat most q(n) bits of the proof.A language L is in PCP(r(n); q(n)) if there exists an (r(n); q(n))-restricted veri�er M such that forevery input x:1. If x 2 L, there is a proof �x which causes M to accept for every random string, i.e.,withprobability 1.2. If x 62 L, then for all proofs �, the probability over random strings of length r(n) that M usingproof � accepts is bounded by 1=2.Notice that the role of � is identical to the role of the oracle O in our de�nition of probabilisticoracle machines. Thus combining Theorem 3.1 with the fact that any multiple-prover interactive proofsystem has an equivalent system that accepts with probability one for strings in the language [6, 21]we have the following corollary:Corollary 3.3 MIP = [k>0PCP(nk; nk).Thus Babai, Fortnow and Lund [4] show that NEXP = [k>0PCP(nk; nk). Arora, Lund, Motwani,Sudan and Szegedy [1] show that NP = [c>0PCP(c log(n); c).4 Nondeterministic Exponential Time Su�cesIn this section, we show an upper bound on the complexity of multiple prover interactive proof systems.Theorem 4.1 If there exists a multiple prover interactive proof system accepting a language L then Lcan be computed in nondeterministic exponential time.5

By nondeterministic exponential time, we mean [k>0NTIME[2nk].Proof By Theorem 3.1, we can assume there exists a probabilistic oracle machine M accepting Lwith M using time nk on inputs of length n for some k > 0. We create a nondeterministic exponentialtime machine to accept L as follows: On input x of length n, guess the value of the oracle O on allquestions of length at most nk. Note M(x) can only ask oracle questions of length no longer than nk.There are exactly 2nk+1 � 1 such questions. For r a string of length nk, let f(x;O; r) = 1 if M oninput x accepts using random coin tosses r and getting the oracle answers from O and f(x;O; r) = 0otherwise. Compute S = Xr2f0;1gnk f(x;O; r):Accept if S > 2nk=2.By the de�nition of probabilistic oracle machines, for x 2 L there exists a setting of the oraclesuch that S � (1 � 2�n)2nk. If x 62 L then for any setting of the oracle, S � 2�n2nk . This proves thecorrectness of the computation above. 2Babai, Fortnow and Lund [4] have shown that any language computable in nondeterministic ex-ponential time has a multiple prover interactive proof system. Thus we have an equivalence of theclass of languages provable by multiple prover proof systems and those computable in nondeterministicexponential time.Note Theorem 4.1 does not show that any language L with a multiple prover proof system canbe proven with provers of nondeterministic exponential time complexity. The provers must actually�nd the nondeterministic guesses that would make the nondeterministic exponential time machineaccept. This would require the second level of the exponential time hierarchy to determine, say, thelexicographically �rst such series of nondeterministic guesses. We do not know whether they can beimproved to have nondeterministic exponential time complexity. Babai, Fortnow and Lund [4] showany language in deterministic exponential time requires only deterministic exponential time provers.5 Relativized Limits on Multiple ProversThe result of Babai, Fortnow and Lund [4] that shows all languages computable in nondeterministicexponential time have multiple prover interactive proof systems does not relativize, i.e.,their proof doesnot imply that given any oracle A, nondeterministic exponential time with access to oracle A has amultiple prover interactive proof with the provers and veri�ers also having access to oracle A. We showthat any proof of this result can not relativize:Theorem 5.1 There exists an oracle A and a language L 2 co-NPA such that L 62 MIPA.Theorem 5.1 extends a result by Fortnow and Sipser [20] that shows the existence of an oraclerelative to which co-NP does not have single prover interactive proofs.Proof In this proof we will use the oracle machine model. It is easy to verify that the proof ofTheorem 3.1 holds under relativizations to all oracles. Note that our machines can ask questions abouttwo oracles, the \prover" oracle O and the \relativization" oracle A.We can enumerate all possible probabilistic polynomial-time machines in the standard manner,letting Mi be bounded in time by ni, where n is the size of the input.For any oracle A, let L(A) = f1n : A contains all strings of length ng:It is clear that L(A) 2 co-NPA for all oracles A. 6

In step i we make L(A) di�erent than any language accepted by oracle machine MAi using anyprover oracle O. Then L(A) can not have a multi-prover interactive protocol and we have proved ourtheorem.This idea is as follows: If 1n 2 L(MA) then MA(1n) must accept with probability at least 1� 2�n.If 1n 62 L(MA) then MA(1n) accepts with probability at most 2�n. We will pick a length n and a stringx of length n such that whether x 2 A will determine whether 1n 2 L(A) but whether x 2 A will onlya�ect the probability of whether MA(1n) accepts by less than 1=2. This will allow us to diagonalizeagainst MA.STEP i: Pick Ni large enough so 2Ni > 2(Ni)i and no oracle questions to A of length Ni have beenasked in any previous step. Let pi = (Ni)i.De�ne a machine M 0i that simulates MAi using a built-in table of the �nite locations where A hasalready been de�ned. When MAi queries a string from A, M 0i will either answer correctly if that stringhas been previously set otherwise M 0i will answer yes to that oracle question.If there are not any oracles O such that O and M 0i accept on input 1Ni with probability at least1 � 2�n then we put in the oracle A all strings of length Ni and every other previously unset stringthat MAi asks about for any oracle O. This completes step i. Note that MAi can only ask questions oflength less than pi so we will always be able to �nd Ni+1 in step i+ 1.Otherwise we have some oracle O such that O and M 0i will accept 1Ni with probability at least1 � 2�n. On any computation path (which is determined by MAi 's coin tosses), MAi can ask at mostpi oracle questions to A of length Ni. There are 2Ni questions of length Ni. A counting argumentshows that there is some oracle question x of length Ni that appears in no more than pi=2Ni ratio ofthe computation paths of MAi . By the way we chose Ni this means the oracle question x appears inless than one half of the computation paths of MAi . Put all strings of length Ni except for x in theoracle A. Also place in the oracle A every string queried of any other length by MAi on every possiblecommunication with every possible O. The oracle O will convince MAi to accept with probabilitygreater than 2�n since more than a half of the computation paths act the same as the correspondingpaths of M 0i .If there exists an oracle O that makes MAi accept 1Ni with probability greater than 1� 2�n thenL(A) does not contain 1Ni . Conversely, if no oracles exist that cause MAi to accept with probability atleast 2�n then L(A) does contain 1Ni . By the standard diagonalization argument L(A) does not equalthe language accepted by MAj for any j. 2This result implies the earlier result of Fortnow and Sipser [20] since the language L(A) does nothave one-prover interactive proof systems under the oracle A.The result of Babai, Fortnow and Lund [4] gives us strong evidence that there exist languages notcomputable in polynomial space that have multiple prover interactive proof systems since most theo-retical computer scientists believe polynomial space is not su�cient to accept all languages computablein nondeterministic exponential time. However, an oracle to separate MIP and PSPACE would implya major separation result:Theorem 5.2 If there exists an oracle A such that PSPACEA does not contain MIPA then there existlanguages in NP that can not be computed in poly-log space.Proof Assume that every language in NP can be accepted in poly-log space. Let A be any oracleand L be a language in MIPA accepted by a veri�er that runs in time nk. From the proof of Theorem 4.1we know that L is accepted by a nondeterministic exponential-time oracle machine M(x) that onlylooks at the oracle queries of A of length no larger than jxjk. De�ne M 0(y) wherey = (x; b�b0b1b00b01 � � �b11:::1|{z}jxjk)7

as the machine that simulates M(x) using bit bz as the answer to oracle query z. Since jyj =
(2jxjk),M 0 runs in nondeterministic polynomial time in the length of y. Thus L(M 0) 2 NP and thus byassumption there exists a polylog space machine N(y) that accepts L(M 0). We create a new machineN 0(x) using oracle A that works as follows: Simulate N(y) (without creating y) and whenever N asksabout bit bz use A(z). It's easy to see that L(N 0) = L and we can simulate N 0 in polynomial (in jxj)space with access to the oracle A. 26 Bounded Round ProtocolsIn an earlier version of this paper [19], we claimed two results about collapsing rounds in multi-proverproof systems: Every language provable by a single-prover interactive proof system has a two-proverprotocol using only one round and every language provable by a multi-prover proof system has a three-prover protocol using only two rounds. Unfortunately, we have since discovered an error in the \proof"of these statements. Our arguments required that we can somehow decrease the error probabilityof certain protocols by running them in parallel. We assumed that if the provers can be preventedfrom communicating among themselves through the protocol then parallel runs of the protocol workindependently like parallel runs of one prover interactive protocols [5]. Unfortunately, this assumptionis fallacious.As mentioned in section 2, results of Cai, Condon, Lipton, Lapidot, Shamir, Feige and Lov�asz[12, 10, 11, 13, 26, 15] show that we can create a two-prover one-round protocol with exponentiallysmall error equivalent to any multi-prover protocol. However, the proofs work by looking at specialproperties of the Babai-Fortnow-Lund [4] protocol instead of showing how to parallelize general multi-prover protocols.We show the parallelization assumption faulty in even a simple case with the following counterex-ample. This example �rst appeared in [18].Suppose we have the following two prover protocol:V : Pick two bits a and b uniformly and independently at random.V!P1: aV!P2: bP1!V : cP2!V : dV : Accept if (a _ c) 6= (b_ d).It is easy to show the best strategy for two provers causes the veri�er to accept with probability 1=2.Notice neither prover has any notion of what bit the veri�er has sent to the other prover.Now let us examine the two round version of the same protocol:V : Pick bits a1; a2 and b1; b2 uniformly and independently at random.V!P1: a1; a2V!P2: b1; b2P1!V : c1; c2 8

P2!V : d1; d2V : Accept if (a1 _ c1) 6= (b1 _ d1) and (a2 _ c2) 6= (b2 _ d2).If the parallel runs of the protocol behave independently we would expect the optimum strategy forthe provers causes the veri�er to accept with probability (1=2)2 = 1=4. However the following strategyfor the provers causes the veri�er to accept with probability 3=8:P1: If a1 = a2 = 0 respond c1 = c2 = 0 otherwise respond c1 = c2 = 1.P2: If b1 = b2 = 0 respond d1 = d2 = 0 otherwise respond d1 = d2 = 1.Note in n rounds the probability of acceptance of this protocol can not exceed (3=4)n since theveri�er will not accept if ai = bi = 1 for any i. We can not �nd any counterexample without thistype of exponential decrease. However we have not been able to prove any such decrease in a generalsetting.7 Further ResearchThere still remain many open questions including:� What e�ect does running protocols in parallel have? In particular, if a protocol is run in parallelfor m rounds, is the error necessarily exponentially small in m?� A public-coin interactive proof system can accept any language accepted by a interactive proofsystem [24]. What can we say about public-coin multi-prover interactive proof systems? How dowe even de�ne public-coin proof systems for multiple provers?� Do there exists multiple prover interactive proof systems for proving co-NP questions where theprovers need only answer NP questions? A positive result would imply an instance checker forNP-complete problems.AcknowledgmentWe would like to thank Yishay Mansour for his help with Theorem 5.2. We would also like to thankthe anonymous referees for their various helpful suggestions.References[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�cation and hardness ofapproximation problems. In Proceedings of the 33rd IEEE Symposium on Foundations of ComputerScience, pages 14{23. IEEE, New York, 1992.[2] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. In Proceed-ings of the 33rd IEEE Symposium on Foundations of Computer Science, pages 2{13. IEEE, NewYork, 1992.[3] L. Babai. Trading group theory for randomness. In Proceedings of the 17th ACM Symposium onthe Theory of Computing, pages 421{429. ACM, New York, 1985.9

[4] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover interactiveprotocols. Computational Complexity, 1(1):3{40, 1991.[5] L. Babai and S. Moran. Arthur-Merlin games: a randomized proof system, and a hierarchy ofcomplexity classes. Journal of Computer and System Sciences, 36(2):254{276, 1988.[6] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive proofs: How toremove intractability assumptions. In Proceedings of the 20th ACM Symposium on the Theory ofComputing, pages 113{131. ACM, New York, 1988.[7] M. Blum and S. Kannan. Designing programs that check their work. In Proceedings of the 21stACM Symposium on the Theory of Computing, pages 86{97. ACM, New York, 1989.[8] M. Blum, M. Luby, and R. Rubinfeld. Self-testing and self-correcting programs, with applicationsto numerical programs. In Proceedings of the 22nd ACM Symposium on the Theory of Computing,pages 73{83. ACM, New York, 1990.[9] R. Boppana, J. H�astad, and S. Zachos. Does co-NP have short interactive proofs? InformationProcessing Letters, 25(2):127{132, 1987.[10] J. Cai, A. Condon, and R. Lipton. On bounded round multi-prover interactive proof systems. InProceedings of the 5th IEEE Structure in Complexity Theory Conference, pages 45{54. IEEE, NewYork, 1990.[11] J. Cai, A. Condon, and R. Lipton. PSPACE is provable by two provers in one round. In Proceedingsof the 6th IEEE Structure in Complexity Theory Conference, pages 110{115. IEEE, New York,1991.[12] J. Cai, A. Condon, and R. Lipton. On games of incomplete information. Theoretical ComputerScience, 103(1):25{38, 1992.[13] U. Feige. On the success probability of the two provers in one round proof systems. In Proceedingsof the 6th IEEE Structure in Complexity Theory Conference, pages 116{123. IEEE, New York,1991.[14] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Approximating clique is almostNP-complete. In Proceedings of the 32nd IEEE Symposium on Foundations of Computer Science,pages 2{12. IEEE, New York, 1991.[15] U. Feige and L. Lov�asz. Two-prover one-round proof systems: Their power and their problems.In Proceedings of the 24th ACM Symposium on the Theory of Computing, pages 733{744. ACM,New York, 1992.[16] P. Feldman and S. Micali. From scratch to byzantine agreement in constant expected time. InProceedings of the 20th ACM Symposium on the Theory of Computing, pages 148{161. ACM, NewYork, 1988.[17] L. Fortnow. The complexity of perfect zero-knowledge. In S. Micali, editor, Randomness andComputation, volume 5 of Advances in Computing Research, pages 327{343. JAI Press, Greenwich,1989.[18] L. Fortnow. Complexity-theoretic aspects of interactive proof systems. PhD thesis, MassachusettsInstitute of Technology, May 1989. Tech Report MIT/LCS/TR-447.10

[19] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive protocols. InProceedings of the 3rd IEEE Structure in Complexity Theory Conference, pages 156{161. IEEE,New York, 1988.[20] L. Fortnow and M. Sipser. Are there interactive protocols for co-NP languages? InformationProcessing Letters, 28:249{251, 1988.[21] M. Furer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On completeness and soundnessin interactive proof systems. In S. Micali, editor, Randomness and Computation, volume 5 ofAdvances in Computing Research, pages 429{442. JAI Press, Greenwich, 1989.[22] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity or alllanguages in NP have zero-knowledge proof systems. Journal of the ACM, 38(3):691{729, 1991.[23] S. Goldwasser, S. Micali, and C. Racko�. The knowledge complexity of interactive proof-systems.SIAM Journal on Computing, 18(1):186{208, 1989.[24] S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof systems. InS. Micali, editor, Randomness and Computation, volume 5 of Advances in Computing Research,pages 73{90. JAI Press, Greenwich, 1989.[25] J. Kilian. Uses of Randomness in Algorithms and Protocols. ACM Distinguised Dissertation. MITPress, Cambridge, Massachusetts, 1990.[26] D. Lapidot and A. Shamir. Fully parallelized multi prover protocols for NEXP-time. In Proceedingsof the 32nd IEEE Symposium on Foundations of Computer Science, pages 13{18. IEEE, New York,1991.[27] C. Lund, L. Fortnow, H. Karlo�, and N. Nisan. Algebraic methods for interactive proof systems.Journal of the ACM, 39(4):859{868, 1992.[28] C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. Jour-nal of Computer and System Sciences, 43:425{440, 1991.[29] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869{877, 1992.
11

