
NON-DETERMINISTICEXPONENTIAL TIME HASTWO-PROVERINTERACTIVE PROTOCOLSL�aszl�o Babai, Lance Fortnowand Carsten LundAbstract. We determine the exact power of two-prover interactiveproof systems introduced by Ben-Or, Goldwasser, Kilian, and Wigder-son (1988). In this system, two all-powerful noncommunicating proversconvince a randomizing polynomial time veri�er in polynomial time thatthe input x belongs to the language L. It was previously suspected (andproved in a relativized sense) that coNP -complete languages do not ad-mit such proof systems. In sharp contrast, we show that the class oflanguages having two-prover interactive proof systems is nondetermin-istic exponential time.After the recent results that all languages in PSPACE have singleprover interactive proofs (Lund, Fortnow, Karlo�, Nisan, and Shamir),this represents a further step demonstrating the unexpectedly immensepower of randomization and interaction in e�cient provability. Indeed,it follows that multiple provers with coins are strictly stronger thanwithout, since NEXP 6= NP . In particular, for the �rst time, provablypolynomial time intractable languages turn out to admit \e�cient proofsystems" since NEXP 6= P .We show that to prove membership in languages in EXP , the honestprovers need the power of EXP only. A consequence, linking more stan-dard concepts of structural complexity, states that if EXP has polyno-mial size circuits then EXP =MA, strengthening a result of A. Meyerthat EXP = �P2 under the same condition.The �rst part of the proof of the main result extends recent tech-niques of polynomial extrapolation of truth values used in the singleprover case. The second part is a veri�cation scheme for multilinearityof function in several variables held by an oracle and can be viewed as anindependent result on program veri�cation. Its proof rests on combina-torial techniques employing a simple isoperimetric inequality for certain



2 Babai, Fortnow & Lundgraphs.Subject classi�cations. 68Q15, 68Q601. IntroductionThe concept of NP was introduced in the early 70's as a model of languageswith e�cient proof of membership (Cook [16], Levin [27]). As an extension ofthis concept, two variants of single prover interactive proofs were introducedin 1985 by Babai [4] and Goldwasser, Micali, Racko� [23]. The power of thisextension has not been recognized until very recently, when combined workof Lund, Fortnow, Karlo�, Nisan [29], and Shamir [35] has shown that everylanguage in PSPACE has an interactive proof. This actually means IP =PSPACE because the inclusion IP � PSPACE has been known for long(see Papadimitriou [31]).This paper looks at the class MIP of languages that have multiple-proverinteractive proof systems. Ben-Or, Goldwasser, Kilian and Wigderson [11] cre-ated the model of multiple provers consisting of provers that cannot communi-cate and no prover can listen to conversations between the veri�er and otherprovers. BGKW showed in this model that all languages in NP have perfectzero-knowledge multi-prover proof systems, a statement not true for one proverunless the polynomial-time hierarchy collapses (Fortnow [19]). They also showthat only two provers are necessary for any language in MIP . Recently, build-ing on the work of Lund-Fortnow-Karlo�-Nisan and Shamir, Cai [15] has shownthat PSPACE has one-round interactive proofs with two provers.Surprisingly, the proof that PSPACE contains IP does not carry throughfor multiple-prover proof systems. The best upper bound known, due to Fort-now, Rompel, and Sipser [21], is non-deterministic exponential time: Guess thestrategies of the provers and check for all possible coin tosses of the veri�er.This paper shows this upper bound is tight.Theorem 1.1. (Main Theorem) MIP = NEXP . In other words, the setof languages with two-prover interactive proof systems is exactly the set oflanguages computable in non-deterministic exponential time.BGKW [11] in fact shows that all languages that have multi-prover proofsystems have perfect zero-knowledge multi-prover proof systems with no cryp-tographic assumptions. Combining this with our result shows that all ofNEXP has perfect zero-knowledge multi-prover proof systems.



Two-Prover Interactive Protocols 3Remark 1.2. In this paper, the term exponential always means 2p(n) for somepolynomial p(n). In particular, EXP = Sk�1 TIME(2nk). The nondetermin-istic version NEXP is de�ned analogously.Theorem 1.1 is in sharp contrast to what has previously been expected.Indeed, Fortnow, Rompel and Sipser have shown that relative to some oracle,even the class coNP does not have multi-prover interactive proof systems.We should also point out that it follows from our result that multiple proverswith coins are provably strictly stronger than without, since NEXP 6= NP(Seiferas, Fischer, Meyer [34]). In particular, for the �rst time, provably poly-nomial time intractable languages turn out to admit \e�cient proof systems"since NEXP 6= P . (No analogous claims can be made about single proverinteractive proof systems, as long as the question P 6= PSPACE remainsunresolved.)Unfortunately if we take BPP to be the class of \tractable" languages, weare no longer able to make the intractability claim since it is not known whetheror not BPP = NEXP . Indeed, there exists an oracle that makes these twoclasses collapse (Heller [25]), thus eliminating the hopes for an easy separation.Theorem 1.1 and the result that IP = PSPACE have the same 
avor ofreplacing universal quanti�cation by probabilistic quanti�cation. PSPACE isexactly the class of languages accepted by a game between two players, onewho makes existential moves and the other makes universal moves. Petersonand Reif [32] show that NEXP can be described by a game with three players,two existential players unable to communicate and one universal player whocommunicates with the other two. Simon [36] and Orponen [30] describe a gamebetween an existential oracle and a universal player and show the equivalence toNEXP . Remarkably, in all of these cases, the universal player can be replacedby a probabilistic polynomial time player without reducing the strength of themodels. For PSPACE, this follows from [35]; for NEXP , the equivalence isestablished by our main result.In the course of the proof of the main theorem, we show how to test whethera function in several variables over Z, given as an oracle, is multilinear overa large interval. This test has independent interest for program testing andcorrection, in the context of Blum-Kannan [12], Blum-Luby-Rubinfeld [13],and Lipton [28] (see Section 6).The reduction to the test involves ideas of the PSPACE = IP proof (arith-metic extrapolation of truth values). The proof of correctness of the multilinear-ity test rests on combinatorial techniques. A more e�cient multilinearity test,with important consequences, has been found recently by Mario Szegedy [38].



4 Babai, Fortnow & Lund2. Multi-prover Protocols and Probabilistic OracleMachinesIn this section we give some basic background on multiprover interactive proofsystems. The de�nitions and results �rst appeared in Ben-Or{Goldwasser{Kilian{Wigderson [11] and Fortnow{Rompel{Sipser [21]. For completeness, weinclude an outline of the proofs.Let P1; P2; : : : ; Pk be in�nitely powerful machines and V be a probabilisticpolynomial-time machine, all of which share the same read-only input tape.The veri�er V shares communication tapes with each Pi, but di�erent proversPi and Pj have no tapes they can both access besides the input tape. We allowk to be as large as a polynomial in the size of the input; any larger and V couldnot access all the provers.Formally, similarly to the prover of a single prover interactive proof system[23], each Pi is a function that outputs a message determined by the input andthe conversation it has seen so far. We put no restrictions on the complexityof this function other than that the lengths of the messages produced by thisfunction must be bounded by a polynomial in the size of the input.With the exception of Section 5, n = jxj will denote the length of the inputthroughout the paper.P1; : : : ; Pk and V form a multi-prover interactive protocol for a language Lif: 1. If x 2 L then Pr(P1; : : : ; Pk make V accept x) > 1 � 2�n.2. If x 62 L then for all provers P 01; : : : ; P 0k, Pr(P 01; : : : ; P 0k make V acceptx) < 2�nMIP is the class of all languages which have multi-prover interactive protocols.If k = 1 we obtain the class IP of languages accepted by standard interactiveproof systems.For easier reading, we introduce some terminology. The functions P1; : : : ; Pkwill be called the honest provers; any other collection of provers is dishonest.Although not required by the formal de�nition, we may assume that the honestprovers don't attempt to get x accepted when in fact x 62 L. (They print aspecial symbol upon which V automatically rejects.) We shall also use the term\the provers win" to indicate that V accepts. We allow dishonest provers tohave a good chance of winning but only if x 2 L. On the other hand, dishonestprovers may lose with large probability even if x 2 L.



Two-Prover Interactive Protocols 5Remark 2.1. It is implicit in this de�nition that the Veri�er's coins are pri-vate; the Provers receive only information computed by the Veri�er based onprevious messages and the coin 
ips.Remark 2.2. It would seem natural to suggest that the timing of the messagescould convey information. This is expressly excluded in the de�nition (theprovers are functions of all the information printed on their tapes), but thisrestriction can be overcome by requiring the protocol to be oblivious in the sensethat for every i, the sender, the recipient, and the time of the ith message isdetermined in advance by the length of the input and regardless of the outcomeof the communication. This modi�cation would not change the class MIP .Let M be a probabilistic polynomial time Turing machine with access to anoracle O. We de�ne the languages L that can be described by these machinesas follows:We say that L is accepted by a probabilistic oracle machine M i�1. For every x 2 L there is an oracle O such that MO accepts x withprobability > 1� 1p(jxj) for all polynomials p and x su�ciently large.2. For every x 62 L and for all oraclesO,MO accepts with probability< 1p(jxj)for all polynomials p and x su�ciently large.One way to think about this model is that the oracle convinces M (byway of overwhelming statistical evidence) to accept. This di�ers from thestandard interactive protocol model in that the oracle must be set ahead oftime (it is a �xed function) while in an interactive protocol the prover can beadaptive (he can make his future answers depend on previous questions). Thisseemingly slight di�erence accounts for the apparently huge increase in power,from IP = PSPACE to MIP = NEXP . The oracle can be thought of as avery long proof of a theorem, which the Veri�er can rapidly check. This aspectof this concept will be developed and re�ned in [7].Theorem 2.3. (Fortnow-Rompel-Sipser [21]) L is accepted by a probabilisticoracle machine if and only if L is accepted by a multi-prover interactive proto-col.A further important result states that two provers always su�ce.Theorem 2.4. (Ben-Or{Goldwasser{Kilian{Wigderson [11]) If a language Lis accepted by a multi-prover interactive protocol then L is accepted by a two-prover interactive protocol.



6 Babai, Fortnow & LundWe combine the proofs of these two theorems.Proof.1. First we show how to simulate a probabilistic oracle machine by twoprovers.Let M be a probabilistic oracle machine that runs in time nc. Have theveri�er of the two-prover protocol ask all the oracle questions of Prover1, then pick one of the questions asked at random and verify the answerwith Prover 2. The probability that cheating provers are not caughtthis way is at most (1 � n�c). Repeat this process nc+1 times to reduceerror probability below (1 � n�c)nc+1 < e�n. (We should stress thatwe are not assuming that the Provers' responses in a later round wouldnot depend on the messages exchanged in previous rounds. In fact, theresult remains valid even if between the rounds, the Provers are allowedto communicate with each other. It is the conditional probability oftheir success in any particular round, conditioned on arbitrary history ofprevious communication, that is less than (1� n�c).)2. Suppose now that L is accepted by a multi-prover interactive protocol.Then de�ne M as follows: Have M simulate V with M rememberingall messages. When V sends the jth message to the ith prover, M asksthe oracle the question (i; j; `; �i1; : : : ; �ij) properly encoded and uses theresponse as the `th bit of the jth response from prover i where �i1; : : : ; �ijis everything prover i has seen at that point.(a) If x 2 L then the oracle O could convince M to accept by justencoding each prover's answer to each question.(b) If an oracleO could convinceM to accept a string x then the proverscould convince the veri�er to accept by just using that O to createtheir responses.(The full details of this proof can be found in [20].) 23. Arithmetization: a Variant of the LFKN ProtocolThe purpose of the �rst half of this section is largely didactical. We describea variant of the LFKN protocol using ideas from Babai{Fortnow [6] (cf. alsoShamir [35]). The reader needs to thoroughly understand this protocol beforemoving on to the proof of the Main Theorem. At the end of this section wederive a lemma which will be used directly in the proof of the Main Theorem.



Two-Prover Interactive Protocols 73.1. Arithmetization. We describe an interactive protocol for coNP . Wehave to show how the Prover convinces the Veri�er that a given Boolean formulais not satis�able.A Boolean function in m variables is a function f0; 1gm ! f0; 1g.We say that a polynomial f(x1; : : : ; xm) (over some �eld) is an arithmeti-zation of the Boolean function B(u1; : : : ; um) if on all (0; 1)-substitutions, the(Boolean) value of B and the (arithmetic) value of f agree.A Boolean formula is a well-formed expression built from the constants0; 1 and variable symbols using the operations ^;_;:. A Boolean formularepresents a Boolean function in the obvious sense.An arithmetic formula is a well-formed expression built from the constants0; 1 and variable symbols using the operations +;�;�. An arithmetic formularepresents a polynomial function in the obvious sense over any commutativering with identity.Proposition 3.1. Given a Boolean formula B, one can construct in lineartime an arithmetic formula f which will represent an arithmetization of B overany �eld (and indeed over any ring with identity).Proof. We eliminate the _'s in B, replacing them by :'s and ^'s. We thenreplace Boolean variable symbols by arithmetic variable symbols, ^'s by �'sand subexpressions of the form :g by (1� g). 2Remark 3.2. We note that the arithmetization we obtained of a Booleanformula of length d is a polynomial of degree less than d.Let now B be the Boolean formula which the prover claims is not satis�-able. Let f be the arithmetization of B constructed above. We view f as apolynomial over Z (an integral domain). The prover has to convince the veri�erthat f vanishes on all (0; 1)-substitutions. The fact that each member of thisexponentially large collection of quantities vanishes, can be expressed conciselyas follows: 1Xx1=0 1Xx2=0 : : : 1Xxm=0 f(x1; : : : ; xm)2 = 0 (3:1)Recall that the polynomial f is given to the Veri�er in the form of an explicitarithmetic expression.



8 Babai, Fortnow & Lund3.2. The LFKN variant. We describe how the Prover convinces the Veri�erof the validity of the slightly more general equality1Xx1=0 1Xx2=0 : : : 1Xxm=0 h(x1; : : : ; xm) = a (3:2)where a is a given number and h is a polynomial of degree � d in each variable,given as an explicit arithmetic expression. The protocol works over an arbitrary�eld (or integral domain with identity) of order � 2dm.Proposition 3.3. The set of pairs (h; a), where h is an arithmetic formulaand a is a number such that equation (3.2) holds, belongs to IP .Let I be a su�ciently large subset of the �eld: jIj � 2dm. (We extend the�eld of de�nition if necessary.) For i = 0; 1; : : : ;m we shall consider the partialsums hi(x1; : : : ; xi) := 1Xxi+1=0 : : : 1Xxm=0h(x1; : : : ; xm): (3:3)Clearly, hm = h, and hi�1 = hi(xi = 0) + hi(xi = 1) (3:4)(using self-explanatory notation for substitution).The protocol to verify (3.2) proceeds in rounds. There are m rounds.At the end of round i, the Veri�er picks a random number ri 2 I; andcomputes a \stated value" bi. We set b0 = a. The Prover will maintain that foreach i, including i = 0, bi = hi(r1; : : : ; ri): (3:5)So by the beginning of round i � 1, the numbers r1; : : : ; ri�1 have been pickedand the \stated values" b0 = a, b1; : : : ; bi�1 have been computed.Now the Prover is requested to state the coe�cients of the univariate poly-nomial gi(x) = hi(r1; : : : ; ri�1; x): (3:6)Let egi denote the polynomial stated by the Prover. The Veri�er performs aConsistency Test; with equation (3.4) in mind, he checks the conditionbi�1 = egi(0) + egi(1): (3:7)If this test fails, the Veri�er rejects; else he generates the next random numberri 2 I and declares bi := egi(ri) to be the next \stated value". After the mth



Two-Prover Interactive Protocols 9round we have the stated value bm and the random numbers r1; : : : ; rm; andthe veri�er performs the Final Testbm = h(r1; : : : ; rm): (3:8)The Veri�er accepts if all the m Consistency Tests as well as the Final Testhave been passed.The proof of correctness exploits the basic idea that if the Prover wantsto cheat, he is likely to be forced to cheat on polynomials with fewer andfewer variables; eventually reaching a constant, the correctness of which theVeri�er can check by a single substitution into the explicit polynomial behindthe summations.Proof of correctness of the protocol. Assume �rst that (3.2)holds. Then the honest Prover will always answer correctly (egi = gi) and win.Assume now that at some point, the Prover cheats: egi�1 6= gi�1. Herewe allow i = 1; we de�ne the constant polynomial eg0 := b0 = a. Then withprobability � 1 � m=jIj, bi�1 = egi�1(ri�1) 6= gi�1(ri�1) since two di�erentunivariate polynomials of degree � d cannot agree at more than d places.Assuming now that the Prover passes the next Consistency Test (3.7) it followsthat he must cheat in the next round: egi 6= gi.If now (3.2) does not hold, then the constant a = b0 = eg0 di�ers fromg0 = h0, hence the Prover automatically cheats in round 0. It follows that withprobability � 1�dm=jIj, he will be forced to cheat in each round. But cheatingin the last round is discovered by the Final Test. 23.3. Oracle polynomials and oracle protocols. We now wish to dropthe condition in Proposition 3.3 that the polynomial h is given by an explicitarithmetic formula. Instead we want the Veri�er to access the values of h froman oracle.To formalize this, we have to introduce the concept of an interactive oracle-protocol. This is the same as a two-prover interactive protocol except the secondprover is restricted to be a function, i.e., its responses must be nonadaptive.In this case we call the second prover the oracle and we view the protocol asingle prover protocol, where the Veri�er has random access to the Oracle, andthe Prover wishes to convince the Veri�er in polynomial time that the Oraclehas a certain property.Since slight changes in the oracle will not be noticed by the Veri�er, globalproperties of h cannot be veri�ed this way, but under certain conditions well-behaved approximations of h can be ascertained to have certain global prop-erties. \Well-behaved" will mean low degree polynomials; the key idea being



10 Babai, Fortnow & Lundthat such polynomials form an error-correcting code (cf. Remarks 3.6, 3.7).The notion of approximation is de�ned as follows.Definition 3.4. Let f; g be functions over a �nite set X. For � 2 [0; 1] we saythat f �-approximates g if the number of places x 2 X such that f(x) 6= g(x)is less than �jXj.Lemma 3.5. Let d;m; k � 0, a �eld F and a subset I � F, jIj = kdm be theinput. Suppose the Oracle accepts queries of the form (r1; : : : ; rm) (ri 2 I), andresponds with an element h(r1; : : : ; rm) 2 F of polynomial length. There existsan interactive oracle-protocol such that(i) if h is a polynomial of degree � d in each variable and (3.2) holds thenthere exists a Prover which the Veri�er surely accepts;(ii) if h is �-approximated on Im by some polynomial f which has degree � din each variable (� � 1=4) and if there exists a Prover which has greaterthan �+1=k chance of being accepted then (3.2) holds with f in place ofh.Remark 3.6. The Lemma says that the validity of (3.2) can be veri�ed inpolynomial time with large con�dence assuming h has low degree; and even ifh itself is \forged" from some low degree polynomial f by changing the valuesof f at a �xed positive fraction of the inputs, it can be veri�ed that (3.2) holdsfor the correct f . This error-correcting property of the protocol is related tothe next remark.Remark 3.7. A well-known lemma of Jacob Schwartz asserts that a nonzeropolynomial of total degree � d vanishes at no more than a d=jIj fraction ofIm (m is the number of variables) [37] (cf. [9, Lemma 2.35]). (The proof is asimple induction on m.) It follows that given h, its low degree correction (ifexists) is unique. Indeed, assume both f1 and f2 are �-approximations of h,and let f = f1 � f2. Then f is a low degree polynomial (degree � d in eachvariable) which vanishes on all but a 2� fraction of the inputs from Im. BySchwartz's Lemma, f is identically zero unless 2� � 1�dm=jIj. So if k � 2 and� � 1=4 then the correction of h is unique. (This is a multi-variable version ofthe principle of the Reed-Solomon codes.)Proof of Lemma 3.5. We perform the LFKN-type protocol as describedin Section 3.2. The only di�erence is that in the Final Test, the Veri�er makesa query to the Oracle rather than evaluating h(r1; : : : ; rm) himself.



Two-Prover Interactive Protocols 11We prove that the protocol has the properties stated in the Lemma. Prop-erty (i) is straight forward: just as in the proof of Proposition 3.3, the honestProver will always win.In order to prove Property (ii), let f be the unique polynomial of degree� d in each variable which �-approximates h. Assume that (3.2) does not holdfor f in place of h.Let us pretend for a moment that the Oracle holds f rather than h. Then,according to the analysis in the proof of Proposition 3.3, the Consistency Testswill force the Prover to cheat in each round, including the last one, with prob-ability � 1 � dm=jIj = 1 � 1=k. At this point the only possible rescue for theProver is that f and h may di�er on the random substitution (r1; : : : ; rm). Butthe probability of this is at most �, hence with probability � 1� (�+1=k), theProver will be caught. 2An apparent weakness of this result is that we have to assume that h is alow degree polynomial, or at least a good approximation of such a polynomial.One of the main technical results of this paper is that this circumstance can bechecked by the randomizing Veri�er (see Section 5). Apart from this problem,the main task in proving the Main Theorem (Theorem 1.1) is to reduce it tothe simultaneous vanishing of a low degree polynomial, held by an oracle, overall (0,1)-substitutions.3.4. Implementing oracle-protocols with two provers. Oracle-protocols,as de�ned in Section 3.3, represent a compromise between the extremes of two-prover protocols and probabilistic oracle machines, shown to be equivalent inSection 2. Not surprisingly, oracle protocols are equal to both in power. Thisis clear from the aforegoing. Indeed, on the one hand, an oracle protocol cansimulate a probabilistic oracle machine simply by adding a dummy prover. Onthe other hand, the Oracle part of an oracle protocol can be simulated by twoprovers as dicussed in the proof of Theorem 2.4 resulting in 3 provers whichcan then be reduced to two by the results stated in Section 2.In fact, the latter simulation can further be simpli�ed as follows.Suppose the language L is accepted by an oracle-protocol and x is an input.To simulate the oracle protocol with two provers, we execute the entire protocolwith Prover 1 including the queries to the Oracle. We then choose a randomquestion we have asked Prover 1 about the Oracle and ask this question toProver 2. If the answers di�er then we reject.As in the proof of Theorem 2.4, we observe that this protocol guarantees atleast an n�O(1) chance for cheating provers (i.e., x 62 L) to be caught. Repeatingthe process a polynomial number of times time results in an exponentially small



12 Babai, Fortnow & Lundprobability that cheating provers could get away.4. Proof of the Main TheoremThis section as well as the next one are devoted to proving Theorem 1.1. Inview of the fact MIP � NEXP ([21], see the comment before the statementof Theorem 1.1) we have to prove NEXP �MIP .4.1. Preliminary remarks. Look at the tableau describing the computationof a non-deterministic exponential time Turing machineM on input x. Convertthis to a 3-CNF like in the proof of the Cook-Levin theorem (NP -completenessof 3-satis�ability; [16], [27], cf. [1, p. 385]) There will be an exponential numberof variables and an exponential number of clauses. However, the clauses areeasily de�nable, in fact there exists a polynomial-time computable functionfx(i) that describes the variables of clause i. Thus L(M) = fxj there is anassignment of variables A such that for all i, A satis�es clause fx(i)g.Suppose we could quantify over all functions. Then we could sayM acceptsx i� there exists a function A taking variables to \true" or \false" such that forall i, A satis�es fx(i). Note that it is important that A is completely speci�edbefore i is chosen. Also notice that given A as an oracle, we can check whetherA satis�es fx(i) in polynomial time.In fact, as outlined in Section 2, we can create predetermined, though un-trustworthy, functions (oracles) using multiple-prover protocols. So we can usemulti-provers to create A. (An easy implementation of this in our context,along the lines of the proof of Theorem 2.3, will be given in Section 3.4.)The next thing to do is to ask if A satis�es fx(i) for all i. However wecannot immediately do such universal quanti�cation with multi-provers. Theobvious \statistical approach", replacing the \for all i" with \for most i" willclearly fail.We might try handling the universal quanti�cation with the techniquesof Lund-Fortnow-Karlo�-Nisan [29], Babai-Fortnow [6], and Shamir [35], butthese results do not relativize and A may not have the proper algebraic prop-erties necessary for this proof.We need a further reduction of the problem, involving a deeper arithmeti-zation of the fact that fx(i) is polynomial time computable.4.2. A NEXP -complete language. For the purposes of Section 4, we adoptsome notational conventions. We shall use lower case letters x; b; f; t; z; w (pos-sibly subscripted) for strings of variables of polynomially bounded length; the



Two-Prover Interactive Protocols 13corresponding individual variables will be denoted �i; �i; 'i; �i; �i; !i. A typicalvariable in the string bj will be �ji. These variables will be either Boolean orbelong to the �eld Q. We view the Boolean domain f0; 1g as a subset of Q.Definition 4.1. Let r; s be nonnegative integers; let z and bi (i = 1; 2; 3) bestrings of variables, where jzj = r and jbij = s. For brevity, let b = b1b2b3and w = zb (juxtaposition indicates concatenation). Let t = �1�2�3 be a stringof 3 variables. Let B(w; t) be a Boolean formula in r + 3s + 3 variables. Wesay that a Boolean function A in s variables is a 3-satisfying oracle for B ifB(w;A(b1); A(b2); A(b3)) is true for each of the 2r+3s Boolean substitutions intothe string w of r+3s variables. We say that B is oracle-3-satis�able, if such afunctionA exists. The oracle-3-satis�ability problem takes a Boolean formulaBas input together with the integers r; s and accepts it if it is oracle-3-satis�able.Proposition 4.2. Oracle-3-satis�ability is NEXP-complete.Proof. Clearly, this language belongs to NEXP . Let now L 2 NEXP andx an input of length n for the membership problem in L. We construct inpolynomial time an instance (B; r; s) of oracle-3-satis�ability which is acceptedif and only if x 2 L.The �rst part of this construction is essentially due to J. Simon [36]; sim-ilar proofs appear in Peterson{Reif [32] and Orponen [30], describing NEXPanalogues of the Cook{Levin theorem (NP -completeness of 3-SAT).Let M be the NEXP Turing machine accepting L. Look at the tableaudescribing the computation of M on input x. Convert this to a 3-CNF �x likein the proof of the Cook{Levin theorem. There will be an exponential numberNv of variables and an exponential number Nc of clauses. For sake of simplicityassume without loss of generality that Nv = 2s where s = nc for some constantc. We label the variables by binary strings of length 2s: X(b); b 2 f0; 1gs.There are 23s+3 possible clauses with 3 signed variables each (a signed variableis a variable or its negation). A typical clause has this form:C(b; f;X) = ('1 �X(b1)) _ ('2 �X(b2)) _ ('3 �X(b3)); (4:9)where the 3-bit string f = '1'2'3 encodes the signs of the variables, and the3s-bit string b = b1b2b3 encodes the variables themselves. (' = 1 stands fornegation and ' = 0 for the absence of it; � denotes addition mod 2.)The clauses themselves are polynomial time recognizable, i.e., there is apolynomial time computable predicate p such that C(b; f;X) is a clause of �xif and only if p(x; b; f) holds. We infer that x 2 L if and only if there exists



14 Babai, Fortnow & Lunda Boolean function A : f0; 1gs ! f0; 1g (a satisfying instance) such that forevery b 2 f0; 1g3s and t 2 f0; 1g3,D(b; f;A) =: C(b; f;A) _ :p(x; b; f) (4:10)holds. (Those clauses which belong to �x according to p must be satis�ed whenthe variables X(bi) are replaced by the Boolean values A(bi).)Observe that C(b; f;A) is obtained from the explicit Boolean formulaB1(f; t) := ('1 � �1) _ ('2 � �2) _ ('3 � �3) (4:11)by substituting A(bi) for �i.We now wish to replace :p(x; b; f) by a Boolean formula. To this end weregard p(x; b; f) as computable in NP , and apply Cook{Levin to obtain anequivalent 3-SAT instance B2. The 3-CNF formula B2, computable in polyno-mial time from x, involves the variable strings b; f and u, the latter being the\witness" (of polynomial length). Having �xed the values of b; f , we observethat B2 is satis�able if and only if p(x; b; f) = 1.Let �nally B(u; b; f; t) := B1(f; t) _ :B2(u; b; f): (4:12)This is the Boolean function we have sought. (To consolidate with the notationof De�nition 4.1 let z = uf and let r denote the length of z.) When does afunction A : f0; 1gs ! f0; 1g 3-satisfy B? For every b = b1b2b3, the substitu-tions �i = A(bi) must satisfy B for all possible values of z. But this is preciselywhat we have shown to be equivalent to x 2 L. 24.3. Arithmetization of NEXP . We use the same variable symbols asintroduced at the beginning of Section 4.2. For the de�nition of arithmetization,we refer to Section 3.1.Lemma 4.3. Given an instance (B; r; s) of oracle-3-satis�ability (where B =B(w; t) is a Boolean formula in r + 3s + 3 variables), one can compute inpolynomial time an arithmetic expression for a polynomial g with integer co-e�cients over the same set of r + 3s+ 3 variable symbols such that a functionA : f0; 1gs ! Q constitutes a 3-satisfying oracle for B if and only ifXw2f0;1gr+3s g(w;A(b1); A(b2); A(b3)) = 0: (4:13)



Two-Prover Interactive Protocols 15Proof. First we use Proposition 3.1 to obtain an arithmetic expression for apolynomial f representing an arithmetization of B. Next, setg(w; t) := (f(w; t))2 + (�1(�1 � 1))2: (4:14)Since now the left hand side of (4.13) is a sum of squares, that sum will vanishif and only if all terms vanish.The vanishing of the last term of the right hand side of (4.14), i.e., therelation A(b1)(A(b1)�1) = 0, corresponds to the guarantee that all values of Aare from f0; 1g. Assuming now that this is the case, the vanishing of the �rstterm on the right hand side of (4.14) is by de�nition equivalent to the relationB(w;A(b1); A(b2); A(b3)) = 0. 24.4. Multilinearity. Let A : f0; 1gs ! Q be a function stored by the Oracle,and let h(w) := g(w;A(b1); A(b2); A(b3)). Our task is to verify (4.13). In orderto be able to use an LFKN-type protocol as described in Section 3, we have toturn A into a polynomial of low degree. There is a very simple way to do so.A polynomial is multilinear if it is linear in every variable.Proposition 4.4. Let A : f0; 1gs ! Q be a function. Then A has a uniquemultilinear extension eA : Qs ! Q. If A takes integer values then so does eAover Zs.Proof. De�ne eA by eA(x) =: Xb2f0;1gs sYi=1A(b)`�i(�i); (4:15)where x = (�1; : : : ; �s); b is the bit-string �1 : : : �s; and `0(�) = 1� �, `1(�) = �.Clearly, eA possesses the required properties.To prove the uniqueness, assume f : Qs ! Q is multilinear and its restric-tion to f0; 1gs is zero. For x 2 Qs, let k(x) denote the number of coordinatesdi�erent from 0,1. We prove by induction on k(x) that f(x) = 0. Indeed thisis true by assumption for k(x) = 0. Now for some k(x) > 0 suppose e.g. that�1 62 f0; 1g. Replacing �1 by either 0 or 1 we obtain places where f vanishesby the induction hypothesis; but then, by the linearity in �1, it vanishes at xas well. 2Remark 4.5. The proof works over any integral domain with identity.



16 Babai, Fortnow & LundNow we are ready to apply the oracle version of the LFKN protocol fromLemma 3.5. What we need is that the Oracle store not just A, the oracle 3-satisfying B, but the multilinear extension of A to a suitable domain Is. The setI � Z has to be large enough for the LFKN protocol to work. Multilinearityof A will guarantee that the function h(w) = g(w; eA(b1); eA(b2); eA(b3)) is apolynomial of low degree and the LFKN protocol veri�es (4.13).The di�culty with this approach is that a dishonest Oracle may cheat bystoring a function that is not multilinear.This question will be addressed by a separate protocol in Section 5. Thatprotocol will ask simple randomized questions to the Oracle. If the functionA : Is ! Q stored by the Oracle is multilinear, the protocol will always accept.On the other hand, if the protocol has � 1=2 chance of accepting, then thefunction stored by the Oracle is at least an �-approximation of a multilinearfunction Is ! Q (cf. de�nition 3.4).We state the result here. We say that a function Is ! Q is �-approximatelymultilinear if it is an �-approximation of a multilinear function. For typographicconvenience, we use exp2(u) to denote 2u.Theorem 4.6. Let d � 1 and k � 1 be �xed constants. Let N be an integer,sd+3 < N � 2sk for some s. Let I denote the set of integers f0; : : : ; N � 1g. LetA(�1; : : : ; �s) be an arbitrary function from Is to Q. Then for any constant k0there exists a probabilistic polynomial-time Turing machineM such that givenaccess to A as an oracle:1. If A is multilinear, integral valued, and does not take values greater thanexp2(sk0) then MA always accepts.2. If A is not s�d-approximately multilinear then with high probability MArejects.The proof of this result will be the subject of Section 5. The followingobservation justi�es the upper bound posed on the values of A in statement#1 in the Theorem.Proposition 4.7. If I = f0; : : : ; N � 1g and A : Is ! Q is the multilinearextension of a Boolean function then for any x 2 Is, the absolute value of A(x)is bounded by jA(x)j < (2N)s: (4:16)Proof. Immediate from equation (4.15). 2



Two-Prover Interactive Protocols 17Remark 4.8. Theorem 4.6 has applications to program testing and correcting.We shall elaborate on this in Sections 6.3 and 6.4.Remark 4.9. The same test works if we replace multilinearityby the conditionthat the polynomial be of low degree. Let k1; : : : ; kn be positive integers < nc.Assume we wish to test if the function A : In ! Z is a polynomial havingdegree � ki in variable xi for every i. Theorem 4.6 extends to this situation,with only trivial modi�cations in the proof.4.5. The Protocol. Let L 2 NEXP . We have to design a MIP protocolto verify x 2 L. As described in Section 3.3, what we actually construct is aninteractive oracle-protocol. Section 3.4 describes a simple implementation ofsuch a protocol with two provers.We shall thus have a single Prover and an Oracle. According to Propo-sition 4.2 the Veri�er constructs an instance (B; r; s) of oracle 3-satis�abilitywhich is accepted if and only if x 2 L. Next, following Lemma 4.3 the Veri�erconstructs an arithmetic expression for a polynomial g in r + 3s + 3 variableswith integer coe�cients such that x 2 L if and only if there exists a Booleanfunction A : f0; 1gs ! f0; 1g such that equation (4.13) holds.We select reliability parameters � � 1=4 and k � 4 such that 1=�+k � nO(1)(n = jxj). We set I = f0; : : : ; N � 1g, where N = kdm where d is the degree ofg and m = r + 3s. (Clearly, all these parameters are bounded by nO(1).)We ask the Oracle to store a function A : Is ! Z which is supposed to bea multilinear extension of a 3-satisfying oracle for (B; r; s).Phase One of the protocol is the multilinearity test. This phase does notrequire the Prover; the Veri�er will ask a polynomial number of randomizedquestions to the Oracle according to Theorem 4.6. If this phase ends in rejec-tion, the Veri�er rejects the claim x 2 L and the protocol terminates.Phase Two is invoked if the multilinearity test ends with acceptance. Thisphase is intended to verify (4.13). This is accomplished via the LFKN-typeinteractive oracle-protocol stated in Lemma 3.5, applied to the function h(w) =g(w;A(b1); A(b2); A(b3)). The Final Test, i.e., the last step of that protocolrequires the evaluation of h(w) at a single random w 2 Im where m = r +3s. The Veri�er accomplishes this by making three queries to the Oracle:A(b1); A(b2); A(b3). (In Phase Two, these are the only queries to the Oracle.)Note that these three places have been chosen at random from Is by the Veri�er.According to the outcome of Phase Two, the Veri�er accepts or rejects the claimx 2 L.



18 Babai, Fortnow & LundProof of correctness. If x 2 L, then the honest Prover{Oracle pairwill clearly always win.Suppose now that a Prover{Oracle pair has greater than � + 1=k chance ofwinning. We claim that then x 2 L.First of all, the Oracle A has to be at least �=3-approximately multilinear;otherwise it would be rejected in Phase One with high probability. Let A0 bea multilinear function which �=3-approximates A.Let h(w) = g(w;A(b1); A(b2); A(b3)) and h0(w) = g(w;A0(b1); A0(b2); A0(b3)).Clearly, h is �-approximated by h0 over Im, and h0 has degree � d in each of itsm variables. Therefore, according to Lemma 3.5, if the Prover has greater than� + 1=k chance of winning, then (4.13) holds with A0 in the place of A. Thismeans that A0 is a 3-satisfying oracle for (B; r; s), thus proving that x 2 L. 2This concludes the proof of the Main Theorem modulo the multilinearitytest which follows in Section 5.4.6. The Power of the Provers. We state a by-product of the above proofregarding the required power of the provers. Let C be either a class of languagesor a class of functions. We say that a language L has (single or multiple prover)interactive proof systems with provers of complexity C if� For any x 2 L, the honest provers Pi are restricted to answering questionsof membership in some language Li 2 C, and are able to convince theveri�er about membership of x in L;� Even all-powerful provers do not have a chance of convincing the veri�erof membership of x in L if in fact x 62 L.If C is a class of functions, we de�ne provers of complexity C analogously:the honest provers are restricted to evaluating some function f 2 C: It is clearthat a prover of power C is equivalent to one of power P C. In particular, proversof power PP are equivalent to provers of power #P since P PP = P#P .The result of Feldman [18] combinedwith Shamir's [35] implies that PSPACEhas single prover interactive proof systems with a prover of complexityPSPACE.The result of Lund et al. [29] implies that P#P has single prover interactiveproof systems with a prover of complexity #P . A similar property of EXPfollows from our proof.Corollary 4.10. For any L 2 EXP , there is a multiple-prover interactiveproof system with provers of complexity EXP .



Two-Prover Interactive Protocols 19Proof. Notice that the tableau of the computation performed by a determin-istic exponential-time machineM on a speci�c input x is unique and any bit ofthat tableau can be computed in deterministic exponential time by simulatingthe computation ofM(x). In the proof of Proposition 4.2 we reduce x 2 L to aninstance of oracle-3-satis�ability where a satisfying instance can be computedin deterministic exponential time. >From this the result is immediate. 2Remark 4.11. Although we know that all languages provable in a multi-prover proof system must lie in NEXP we do not know whether NEXPprovers are su�cient to prove any NEXP language to a veri�er. It would beimportant that all provers have access to the same tableau of an accepting com-putation; but there could be several since the NEXP machine may have manyaccepting paths. The best upper bound we know on the power of the proversfor NEXP is EXPNP , pointed out by G�abor Tardos. Indeed, it is easy tosee that an EXPNP -machine is capable of computing a lexicographically �rsttableau for any NEXP language. (The computation proceeds by sequentiallyasking every bit of the lexicographically �rst accepting tableau in the form ofan exponentially long (padded) question to the NP orcale.)Also of interest is the power of provers needed to prove a coNP -completelanguage like DNF tautology. Lund et al. [29] show that #P provers are su�-cient. We know of no better bound.5. Veri�cation of Multilinear Functions andPolynomials of Low DegreeFirst we need some de�nitions and notation.As before, we use I to denote the interval f0; 1; : : : ; N�1g for some suitablelarge integer N .We shall consider the nth cartesian power of a �nite set X (usually X = I).A subset U � Xn will be called a k-dimensional subspace of Xn if there existn � k di�erent coordinates i1; : : : ; in�k and n � k values of these coordinates�i1; : : : ; �in�k 2 X such thatU = f(�1; : : : ; �n) : xij = �ij for j = 1; 2; :::; n� kgA line is a 1-dimensional subspace. The points of a line in the kth directionhave all but the kth coordinate in common. We shall denote by L the set oflines and by Li the set of lines in the ith direction. A hyperplane is a subspaceof dimension n � 1. We shall use these terms for the case X = I. Note that



20 Babai, Fortnow & Lundwhat we call subspaces correspond to the subspaces aligned with the coordinatesystem in the a�ne space. (E.g., in this terminology, In has nN hyperplanes.)Definition 5.1. Let f : In ! Q be a function. We call f multilinear if itsrestriction to any line (in the above sense) of In is linear.Definition 5.2. Let f : In ! Q. For � 2 [0; 1] we say that f is �-approximate-ly multilinear if there exists a multilinear g such that g �-approximates f . Ifn = 1, we obtain the concept of �-approximately linear functions.Definition 5.3. Given a function A : In ! Q, we call a line ` in In correct, ifthe restriction Aj` is a linear function. We say that ` is �-wrong or just wrongif Aj` is not �-approximately linear.5.1. The Test. If we ever catch a point where the value of A is not integralor too large (> exp2 nk), we reject and halt. Henceforth we assume this neveroccurs. From this one can infer with high con�dence that(*) for most x 2 In, A(x) is integral and not greater than K = exp2(nk+1).Although we don't need this later on, we mention that it follows from (*)that, if A(x) is multilinear, then it never gets too large (greater than nnK) onIn. Furthermore, n!A(x) is integral. { These conclusions hold even if we replace\most" by \a positive fraction of" in (*).First we describe a subtest that tests if a line is wrong:Test0(line `) Select m1+2 random points of `. If A restricted to these pointsagrees with a linear function then accept else reject.Proposition 5.4. (a) If ` is correct, then Test0 surely accepts `.(b) If ` is wrong, Test0 will reject it with probability greater than 1 �exp(��m1).Proof. Take two of the points; interpolate their A-values to a linear functionh(x) on `. If for more than a � fraction of x 2 l we have that A(x) 6= h(x) thenthe probability that the test detects no such point is at most(1� �)m1 < exp(��m1):Now the whole test is the following:



Two-Prover Interactive Protocols 21Test Select m2 random lines from Li for each i. If Test0 accepts each of theselines then accept else reject.Proposition 5.5. (a) If A is multilinear, then Test accepts.(b) If for some i more than an � fraction of the lines in Li is wrong, thenthe probability that Test rejects is greater than1� (exp(��m2) + exp(��m1)):Proof. The probability that no wrong line is selected is (1��)m2 < exp(��m2).The probability that a wrong line, when selected, remains undetected, is lessthan exp(��m1). It is easy to see that the sum of these two quantities is anupper bound on the failure probability of the Test. 2We paraphrase statement (b) above.Proposition 5.6. Given a function A : In ! Q, assume that A passes theTest with m2 = t=�;m1 = t=�. Then we infer with con�dence � 1 � 2e�t that(8i) the proportion of wrong lines among Li is < �: (��)The rest of this section is devoted to proving that the above conclusion(��) implies that A is �0-approximately multilinear for some small �0. See The-orem 5.13 (end of this section) for the formal statement of this result.5.2. The Self-Improvement Lemma. We need a combinatorial isoperimet-ric inequality.Definition 5.7. Let X be a �nite set. For S � Xn de�ne the closure of S as�S = [ni=1��1i (�i(S))where �i : Xn ! Xn�1 is the projection in the ith dimension.Lemma 5.8. (Expansion Lemma) Let S � Xn. If jSj � jXjn=2 then j �Sj �jSj(1 + 1=2n).This lemma was proved by D. Aldous [2, Lemma 3.1]. It is also implicit inwork by Babai and Erd}os [5, Lemma].The key step in the induction argument that will yield Theorem 5.13 is theveri�cation that if a function passes the Test and it is multilinear on a fairportion of the space then it is actually multilinear almost everywhere. Here isthe formal statement:



22 Babai, Fortnow & LundLemma 5.10. (Self-improvement lemma) Given a function A : In ! Q,assume that (8i) the proportion of wrong lines among Li is < �and 9g : g is multilinear and g �-approximates A,where � � 1=2. Theng �0-approximates A, where �0 = 3n2(�+ � + 1=N):Proof. We will partition the points of In into four sets. For S � In, we set�(S) = jSj=Nn.B: B = fx 2 InjA(x) 6= g(x)g. Call them bad points.W : Union of wrong lines. Call the points in W wrong. Observe that theassumption gives �(W ) < n�.M : Points x 62 W which belong to lines ` where Aj` is �-approximated bysome linear function h, but h(x) 6= A(x). Call these points misplaced.Since for each line only a �-fraction is misplaced and since each point lieson n lines we obtain that �(M) < n�.I: Points x on lines ` such that Aj` is �-approximated by a linear functionh, where h 6= gj`, but A(x) = g(x) = h(x). Since at most one such pointbelongs to each line, �(I) � n=N .Now de�ne S := B n (W [M). We claim that �S � B [M [ I. To see this take� 2 S and let � be a point on a line ` through �. Assume that � 62 B [M .First observe that since � is not a wrong point there is a linear function hwhich �-approximates A restricted to `. Since neither � nor � were misplacedand � was bad and � is not bad, we have that A(�) belongs to two di�erentlinear function g restricted to ` and h. Hence � 2 I.So if �(S) � 1=2 then from the Expansion Lemma we obtain that(1 + 12n )�(S) � �( �S) < �(S) + n(�+ �) + n=N;hence �(S) < 2n2(�+ � + 1=N). This concludes the proof since�(B) < �(S) + n(�+ �) < 3n2(�+ � + 1=N): 2



Two-Prover Interactive Protocols 235.3. The Pasting Lemma. The multilinear function which closely approxi-mates A will be constructed for certain subspaces by induction on their dimen-sion. What we show below is that if A is approximately linear on most linesand approximately multilinear on a fair portion of the hyperplanes, then it isapproximately multilinear on the entire space. The \self-improvement lemma"prevents the devaluation, through repeated application in the induction argu-ment, of the term \approximately" in this result.Lemma 5.11. (Pasting Lemma) Given a function A : In ! Q, assume that�; � > 0, �+ � � 1200n , N � 40n,(8i) the proportion of wrong lines among Li is < �and 9g : g(x; y) is multilinear in y 2 In�1 such that the set� = f� j g(�; y) �-approximatesA(�; y)ghas fair density �(�) � ', where ' = 110n and � = 110.Then A is �-approximately multilinear, where � = � + � + 4� � 1=2.And by the self-improvement lemma A is �0-approximately multilinear, where�0 = 3n2(�+ � + 1=N).Proof. First observe that the �rst part of the assumption implies that thereexist functions f1(y) and f2(y) : In�1 ! Q such that xf1(y) + f2(y) (� + �)-approximates A(x; y). De�ne 	 = f�j�f1(y) + f2(y) does not �-approximateA(�; y) as a function of yg. Then �(	) � �+�� = 10(� + �). So j� n 	j �N � 110n � 10(�+ �)� � 2. Let �1; �2 2 � n 	, �1 6= �2. Then for i = 1; 2 thereexist multilinear functions gi(y) that 2�-approximate �if1(y)+f2(y). Hence ona set of measure 1� 4� we have thatf1(y) = g1(y)� g2(y)�1 � �2and f2(y) = �2g1(y)� �1g2(y)�2 � �1Now denote the multilinear functions on the right hand side by ef1(y); ef2(y).Then the multilinear function x ef1(y) + ef2(y) �-approximates A(x; y). 25.4. The Tree Coloring Lemma. The next lemma provides the overallstructure of the induction. It demonstrates, as we shall see in the next subsec-tion, that the Pasting lemma is strong enough to carry approximate multilin-earity all way from most lines to the entire space.



24 Babai, Fortnow & LundLet T be a depth n levelwise uniform tree (vertices on the same level havethe same number of children). We will color the tree by two colors red andwhite. The input is a coloring of the leaves. Then we color the tree bottom upaccording to the following rule.Fix the parameters �0 and ' with 0 � �0; ' � 1: Color a vertex red if eachof the following two conditions are met (and otherwise white):� \Almost all leaves" in the subtree rooted at Tv are red: only a fractionless than �0 is white.� A "fair number" of children of v are red: the proportion of red childrenis at least '.Lemma 5.12. (Tree coloring lemma) Let �k = (1 � ')k�0. Let v be avertex on level k. (The leaves are on level 0.) Assume that all but an �kfraction of the leaves in Tv are red. Then v is red.Proof. By induction on k.k = 1 By assumption the proportion of red children of v is 1��1 = 1�(1�')�0 �' and the proportion of white leaves of Tv is less than (1 � ')�0 � �0 sov is red.k � 2 Take a random child u of v. Now Eu(�( white leaves in Tu)) < �k. HencePru(�( white leaves in Tu) > �k�1) < �k�k�1 = 1 � '. But this probabilityis by the inductive hypothesis greater than Pru[u is white]. SoPru[u is red ] � 'Hence the proportion of red children of v is greater than ' and also theproportion of red leaves in Tv is greater than 1� �k � 1� �0. Hence v isred.Theorem 5.13. Given A : In ! Q, assume that(8i) the proportion of wrong lines among Li is < �:Then A is �0-approximately multilinear, where �0 = 3n2(�+ � + 1=N);assuming the parameters have been so chosen that N � 40n2, � � 1400n2 and� � 1800n3 .



Two-Prover Interactive Protocols 25Proof. We �rst construct a tree T of depth n� 1. The nodes of the tree willcorrespond to subspaces of In. (We consider aligned a�ne subspaces; see theconventions stated at the beginning of this section.) The root corresponds toIn; and the children of a node correspond to its hyperplanes. Observe that theleaves correspond to lines. We color all the leaves corresponding to a wrongline white, all the others red. Now we color the rest of T according to thecoloring rule with �0 = 2� and ' = 110n. Note that � < �n = (1 � ')n�0: Fromthe coloring lemma we obtain that the root is red. Now we only have to makethe following observation. We shall say that a subspace U is �-approximatelymultilinear if the restriction AjU has this property.Lemma 5.14. If v 2 T is red then the subspace Uv corresponding to v is�-approximately multilinear, where � = 1=10.Proof. By induction on the level k of v.k = 1 is okay since � < �.k � 1 We know that since v is red, it has a fraction of � ' red children.By the inductive hypothesis the subspaces corresponding to them are �-approximately multilinear. There must thus be a direction such that afraction of � ' of hyperplanes of Uv in that direction is �-approximatelymultilinear.Since v is red we also know that the proportion of wrong lines in Uv is< �0.This implies that the proportion of wrong lines in Uv in any direction is <n�0: Therefore, by the Pasting lemma Uv is ��-approximately multilinear,where �� = 3n2(n�0 + � + 1=N). This concludes the proof of the lemmasince the choice of parameters implies that �� � �.So now A is ��-approximately multilinear. By the Self-improvement lemmait follows that A is �0-approximately multilinear, completing the proof of The-orem 5.13. 2Now the proof of Theorem 4.6 is immediate. Let our probabilistic Turingmachine perform the Test, setting the parameters so that �0 � n�c. If A ismultilinear, integral valued, and takes no too large values, then the machinewill clearly accept. On the other hand, Proposition 5.6 guarantees that incase the machine accepts, condition (**) (Proposition 5.6) can be inferred withhigh con�dence. By Theorem 5.13, this implies that A is n�c-approximatelymultilinear. 2



26 Babai, Fortnow & LundRemark 5.15. As we mentioned in Remark 4.9, this test for multilinearity canbe extended to polynomials having small degree in each variable, where \small"means bounded by a polynomial of the length of the input. Let k1; : : : ; kn bepositive integers < nc. Assume we wish to test if the function A : In ! Z is apolynomial having degree � ki in variable xi for every i. Theorem 5.13 extendsto this situation, with the following modi�cation of the parameters. We shouldset �0 = 3n2(� + � + k=N) where k = maxi ki; furthermore � = 15(k+1), N �20(k+1)2n2, � � 1200n2(k+1) and � � 1400n3(k+1) . With the obvious modi�cations,the same proof applies.Remark 5.16. Recently, Mario Szegedy [38] succeeded in devising a moree�cient protocol for multilinearity (and low degree) testing; at the same timethe proof of correctness of his protocol is also simpler.6. Program Testing, Veri�cation and Self-ReducibilityThe results of this paper have many connections to program testing, ver-i�cation and self-correcting code. We make the connections precise in thissection.6.1. Robustness. In this section we will describe a useful property, PSPACE-robustness, of languages. We show that every PSPACE-robust language isTuring-equivalent to a family of multilinear functions (one n-variable functionfor every n).Definition 6.1. A language L is PSPACE-robust if PL = PSPACEL:Examples of PSPACE-robust languages include the PSPACE-complete andEXP -complete languages.Lemma 6.2. Every PSPACE-robust language has a Turing-equivalent familyof multilinear functions over the integers.Proof. Let L be a PSPACE-robust language. Let gn(x1; : : : ; xn) be themultilinear extension of the characteristic function of Ln = L \ f0; 1gn (seeProposition 4.4). Clearly L 2 P g, where g = fgn : n � 0g. We will describean alternating polynomial-time Turing machine with access to L computingg. First guess the value z = gn(x1; : : : ; xn). Then existentially guess the lin-ear function h1(y) = g(y; x2; : : : ; xn) and verify that h1(x1) = z. Then uni-versally choose t1 2 f0; 1g and existentially guess the linear function h2(y) =



Two-Prover Interactive Protocols 27g(t1; y; x3; : : : ; xn). Keep repeating this process until we have speci�ed t1; : : : ; tnand then verify that t1 : : : tn 2 L. Since a PSPACE machine can simulate analternating polynomial-time Turing machine, if L is PSPACE-robust then gis Turing-reducible to L. 2In particular, we have multilinear PSPACE-complete functions, EXP -complete functions, etc. This lemma, inspired by Beaver-Feigenbaum [10] andspelled out simultaneously by the authors of this paper and of [10], has signif-icant consequences, as we shall see below.There are natural classes of languages satisfying the conclusion of Lemma6.2which are not known to be PSPACE-robust; P#P -complete languages beingthe prime example, since they are equivalent to the permanent, a multilinearfunction (Valiant [41]).6.2. Instance Checking. In Blum-Kannan [12], \function-restricted IP" isde�ned as follows:The set of all decision problems � for which there is an interactive proofsystem for YES-instances of � satisfying the conditions that the honest provermust compute the function � and any prover (whether honest or not) must bea function from the set of instances to fYES, NOg.By Theorem 2.3 due to Fortnow-Rompel-Sipser we see that function-restric-ted IP is equivalent to multi-prover interactive proof systems where the honestprovers can only answer questions about the language they are being asked toprove.Blum-Kannan also de�ne a program checker CPL for a language L and aninstance x 2 f0; 1g� as a probabilistic polynomial-time oracle Turing Machinethat given a program P claiming to compute L, and an input x:1. If P correctly computes L for all inputs then with high probability CPLwill output \correct".2. If P(x) 6= L(x), with high probability CPL (x) will output \P does notcompute L".Blum-Kannan show that a language has a program checker if and only if thelanguage and its complement each have a function-restricted interactive proofsystem.The recent results by Lund-Fortnow-Karlo�-Nisan [29] and Shamir [35] showall P#P -complete and PSPACE-complete languages have function restrictedinteractive proofs and (since both classes are closed under complements) pro-gram checkers. This implies a program checker for any #P -complete functionsuch as the permanent of a matrix.



28 Babai, Fortnow & LundThe following follows from Corollary 4.10:Corollary 6.3. Every EXP -complete language has a function-restricted in-teractive proof system and thus a program checker.Thus not every language in function-restricted IP has a single prover inter-active proof unless PSPACE=EXP . This essentially gives a negative answerto the open question of Blum-Kannan [12] as to whether IP contains function-restricted IP .Still open is the question as to whether NP -complete languages have pro-gram checkers. This is directly related to the question of whether coNP lan-guages have protocols with NP provers (see Section 4.6).6.3. Self-Testing and Self-Correcting Programs. Our test of multilinearfunctions (Section 5) also has applications to program testing as described byBlum-Luby-Rubinfeld [13] and Lipton [28].We will use the following de�nition of self-testing/correcting programs slight-ly di�erent from but in the spirit of the Blum-Luby-Rubinfeld de�nition. Wemake the connection between the two models clear in Section 6.4.An input set I is a sequence of subsets I1; I2; : : : of f0; 1g� such that forsome k and for all n, if x 2 In then n1=k � jxj � nk. We let I represent the set[n�1In.We say a pair of probabilistic polynomial time programs (T;C) is a self-testing/correcting pair for a function f over an input set I if given a programP that purports to compute f the following hold for every n:1. The tester T (P; 1n) will output either \Pass" or \Fail".2. If P correctly computes f on all inputs of I then T (P; 1n) will say \Pass"with probability at least 2=3.3. For every x 2 In, if Pr(T (P; 1n) says \Pass") > 1=3 then Pr(C(P; x) =f(x)) > 2=3.The errors can be made exponentially small by repeated trials and majorityvote. A language has a self-testing/correcting pair if its characteristic functiondoes.An alternative de�nition would require the tester to always say \Pass" fora correct program. In every case that we know, the tester has this property.However, we allow the more general de�nition for a better comparison with theBlum-Luby-Rubinfeld model (see Section 6.4).



Two-Prover Interactive Protocols 29Theorem 6.4. Every PSPACE-complete and EXP-complete language has aself-testing/correcting pair over I = fInjIn = f0; 1gng.We will prove Theorem 6.4 for EXP-complete languages. The proof forPSPACE-complete languages is analogous. In fact this proof holds for anylanguage L that is PSPACE-robust and has a multiple prover interactive proofsystem where the provers only answer questions about membership in L.Lemma 6.5. Let gn be the multilinear extension of an EXP -complete lan-guage L over the �eld of pn elements where pn is the least prime greater thann. The function g = fgn : n � 0g has a self-testing/correcting pair over the setI = fInjIn = Fnpng.Proof. Since g is EXP -hard and each bit of gn(x1; : : : ; xn) is computable inEXP (Lemma 6.2), by Corollary 4.10 there exists a multiple prover interactiveproof system for verifying a speci�c bit of gn(x1; : : : ; xn) where the provers needonly answer questions about g.Let P be a program that purports to compute g. The tester programT (P; 1n) will choose n3 randomly chosen (y1; : : : ; yn) 2 Fnpn. T will then verifythat each bit of the P(y1; : : : ; yn) is the same as g(y1; : : : ; yn) with a multiproverinteractive proof system using P as the provers. The tester T will output \Pass"if every bit checks correctly. If T outputs \Pass" with probability at least 1/3then with extremely high con�dence P(y1; : : : ; yn) = gn(y1; : : : ; yn) on all but1=n2 of the possible (y1; : : : ; yn) 2 Fnpn.We now use ideas of Beaver-Feigenbaum [10] and Lipton [28] to create thecorrecting function C. Suppose we wish to compute gn(x1; : : : ; xn). Chooseelements r1; : : : ; rn 2 Fnpn at random and let ri = (x1 + ir1; : : : ; xn + irn) for1 � i � n+1. Let g0(y) = gn(x1+yr1; : : : ; xn+yrn) for all y. With probabilitygreater than 1� pnn2 (By \Bertrand's Postulate", pn < 2n), P(ri) = gn(ri) = g0(i)since each ri is uniformly random. However, g0(y) is a polynomial of degreeat most n and we have n + 1 points of this polynomial, g0(1); : : : ; g0(n + 1).Interpolate this polynomial and compute g0(0) = gn(x1; : : : ; xn). If we repeatthis process n times then with extremely high probability a majority of theanswers from this process will be the proper value of gn.Proof of Theorem 6.4. Suppose we had a program Q that purports tocomputeL. By Lemma 6.2 there exists a polynomial time function f(y1; : : : ; yn; i)such that the ith bit of gn(y1; : : : ; yn) is one if and only if f(y1; : : : ; yn; i) 2 L.We create a new program P that simulates this process asking questions to Qinstead of L. If Q properly computes L then P properly computes gn.



30 Babai, Fortnow & LundLet Tg and Cg be the testing/self-correcting pair for g. We will create atesting/self-correcting pair TL; CL for L. The tester TL(Q; 1n) will just simulateTg(P; 1n) using the P described above. The checker CL(Q; x) will just outputCg(P; (x1; : : : ; xn)) where x = x1 : : : xn. 26.4. Comparison with the Blum-Luby-Rubinfeld Model. Blum, Lubyand Rubinfeld [13] give the following series of de�nitions for self-testing/correct-ing pairs:Let D = fDnjn � 0g be an ensemble of probability distributions such thatDn is a distribution on In. Let P be a program that purports to compute g.Let error(g;P;Dn) be the probability that P(x) 6= g(x) when x is chosen fromDn.Let 0 � �1 < �2 � 1. An (�1; �2)-self-testing program for g with respect toD is a probabilistic polynomial-time program T such that1. If error(g;P;Dn) � �1 then T (P; 1n) outputs \Pass" with probability atleast 2=3.2. If error(g;P;Dn) � �2 then T (P; 1n) outputs \Pass" with probability atmost 1=3.Let 0 � � < 1. An �-self-correcting program for f with respect to Dis a probabilistic polynomial-time program C such that for all x 2 In, iferror(g;P;Dn) � � then C(P; x) = g(x) with probability at least 2=3.A self-testing/correcting pair for g over an input set I is a pair of programs(T;C) such that for some �; �1; �2 with 0 � �1 < �2 � � < 1 and some ensemble ofprobability distributions D over I such that T is a (�1; �2)-self-testing programfor g with respect to D and C is an �-self-corretion for g with respect to D.Note that if g has a self-testing/correcting pair (T;C) over an input set Iin the Blum-Luby-Rubinfeld model then g has a self-testing/correcting pair inour model using the same T and C.Lemma 6.6. If L is PSPACE-robust and has a function-restricted interac-tive proof system then there exists a family g of multilinear functions Turing-equivalent to L that has a self-testing/correcting pair in the Blum-Luby-Rubin-feld model.Proof. Use the function g de�ned in Lemma 6.5. The same tester andcorrector T and C used in the proof of Lemma 6.5 also work here. Let Dn bethe uniform distribution over Fnpn. The tester T is a (0; 1 � 1=n2)-self-testingprogram for g over D. The corrector C is a 1 � 1=n2-self-correcting programfor g over D. 2



Two-Prover Interactive Protocols 31Corollary 6.7. There exist PSPACE-complete and EXP-complete functionsthat have self-testing/correcting pairs in the Blum-Luby-Rubinfeld model.It's not clear whether all PSPACE-complete or EXP-complete languageshave self-testing/correcting pairs under the Blum-Luby-Rubinfeld model.We can also do program veri�cation in the spirit of Lipton (Blum-Luby-Rubinfeld without an assumption of a tester T ) as follows: Suppose a programP claims to compute a multilinear function. We can test that there is somemultilinear function f using Theorem 4.6 such that P = f on most inputs andthen if P = f on most inputs we can create a correcting function C such thatC = f on all inputs with high probability. The proof is virtually identical tothe proof of Lemma 6.5. We can also replace \multilinear" by \small-degreepolynomial" as de�ned in Remark 4.9.6.5. Circuit Reductions: Uniform vs. Nonuniform Complexity. Karpand Lipton [26] have considered the e�ect of nonuniform simulation of largecomplexity classes by small circuits on uniform complexity classes. They creditA. Meyer for one of following results (C = EXP ):Theorem 6.8. (Meyer, Karp, Lipton) Let C be one of the following com-plexity classes: EXP , PSPACE, P#P . If C has polynomial size circuits (i.e.,C � P=poly) then C = �P2 .Recent results on the power of interactive proofs (including our main result)lead to a strengthening of the conclusion in each case, replacing �P2 by itssubclass MA. For C = P#P , this is a result of LFKN [29].The following result generalizes a corollary in Lund-Fortnow-Karlo�-Nisan[29]. For the de�nition of the complexity of provers see Section 4.6.Corollary 6.9. If a language L has a multiple-prover interactive proof sys-tem with provers of complexity C (see Section 4.6) and if C has polynomial-sizecircuits then L 2MA.Here MA denotes the Merlin-Arthur class: Non-deterministic move �rst,followed by a random move. Arguably this represents the class of \publishableproofs" (not requiring direct interaction between prover and veri�er). Babai[4] has shown MA � �P2 \�P2 . We note that Santha [33] constructed an oracleunder which MA is properly contained in AM , itself still a subclass of �P2 .Proof. Merlin produces the circuits for L1; : : : ; Lk that describe the responsesfor provers P1; : : : ; Pk respectively and Arthur simulates the veri�er for L usingthe circuits to compute the provers' responses. 2



32 Babai, Fortnow & LundIn particular, if L has a function-restricted interactive proof and L haspolynomial-size circuits then L 2MA.Corollary 6.10. If all of EXP has polynomial-size circuits then EXP =�P2 = �P2 = MA. The same statement holds for PSPACE and P#P in theplace of EXP .It seems remarkable that this result, which refers to standard concepts ofstructural complexity theory, has been proved via the theory of multi-proverinteractive proof systems.7. Concluding Remarks7.1. Integers vs. Finite Fields. We have formulated our protocols over theintegers. Adapting them to �nite �elds requires some extra thought. The mainadvantage of such an adaptation is that we should not need to compute withlarge numbers.The multilinearity test works over any �eld. However, the \sum of squares"trick employed in Lemma 4.3 requires real numbers. Below we indicate how toeliminate this di�culty.First we state a version of Lemma 4.3 which over �elds (or integral domainswith identity) of any characteristic.Lemma 7.1. Let p be a given prime number or zero, and F = Z=(p) (eitherthe �eld of order p or Z). Given an instance (B; r; s) of oracle-3-satis�ability(where B = B(w; t) is a Boolean formula in r + 3s + 3 variables), one cancompute in polynomial time an arithmetic expression for a polynomial f withcoe�cients in F over the same set of r + 3s + 3 variable symbols such that afunction A : f0; 1gs ! F constitutes a 3-satisfying oracle for B if and only if(8w 2 f0; 1gr+3s) f(w;A(b1); A(b2); A(b3)) = 0: (7.17)(8b 2 f0; 1gs) A(b)(A(b)� 1)) = 0: (7.18)Proof. As in the proof of Lemma 4.3, we take f to be the arithmetic expres-sion for a polynomial representing B (Proposition 3.1). The rest of the prooffollows the lines of the proof of Lemma 4.3. 2The question now is, how the Prover convinces the Veri�er that each of theseexponentially many quantities vanishes. Let g be a low degree polynomial ofm variables over F for which we want to verify that g is identically zero over



Two-Prover Interactive Protocols 33the Boolean cube f0; 1gm. We assume that values of g over some domain I ofappropriately large size are held by an oracle. (If F is too small, we have to usea subset I of some extension �eld of F.) We describe two veri�cation schemes.For the �rst scheme, we have to assume that F has characteristic 2. Letus consider the sum Pw2U g(w) where U is a subset chosen at random fromcertain family of subsets. For instance, viewing f0; 1gm as a linear space overF2, the Veri�er can choose U to be a random subspace of dimension d where0 � d � m is selected at random. This way if g is not identically zero then theabove sum will have at least 1=(4(m + 1)) chance of being nonzero accordingto a lemma of Rabin (see [42]). Now the characteristic function of U can beexpressed as a polynomial of degree � m and the protocol of Lemma 3.5 canbe used. { Variations of this method use classes of hash-functions to specifythe subset U .Below we describe a di�erent procedure with a self-contained proof.We allow F to be an arbitrary �nite �eld. Let us extend F to a �eld F0 oforder greater than 2m+1. (Elements of F0 can be represented as tuples of ele-ments of F.) Now consider the univariate polynomial p(x) = Pw2f0;1gm g(w)xwwhere the binary string w = !0 : : : !m�1 written in the exponent refers to theintegerPm�1i=0 !i2i. Then the probability that a random � 2 F0 is a root of p is 1if g is identically zero and � 1=2 otherwise. Therefore the task of the Prover isto convince the Veri�er that for a random � provided by the Veri�er, p(�) = 0.Let now �i = �2i; then�w = m�1Yi=0 �!ii = m�1Yi=0 (1 + (�i � 1)!i): (7:19)The Veri�er, having computed the �i, holds the explicit multilinear polynomialof w on the right hand side of (7.19). Therefore the protocol of Lemma 3.5 canbe used to verify the equality p(�) = 0, assuming g is a good approximation ofa low degree polynomial (which in our case is guaranteed by the multilinearitytest for A).7.2. Recent Developments. The MIP protocol described in this paper hasrecently found curious applications and extensions.A clique approximation algorithm is an algorithm that computes the sizeof maximum cliques in a graph within a constant factor. Feige, Goldwasser,Lov�asz, and Safra [17] made the striking observation that our Main Theoremhas the following fairly immediate consequence: If there exists a polynomial{time clique approximation algorithm then EXP = NEXP: They also proved



34 Babai, Fortnow & Lundthat a slight modi�cation yields (under the same assumption) the stronger con-sequence that NP is in quasi-polynomial time, where quasi-polynomial meansexp((log n)O(1)).Digging considerably deeper into our protocols, Szegedy [38] achieved re-markable improvements, yielding in particular that a polynomial time clique ap-proximation algorithm implies that NP is inDTIME(nO(log logn)). This meansnearly polynomial time, where \nearly polynomial" is de�ned as n(log logn)O(1) .The ultimate goal would be to infer NP = P from the same hypothesis.In another direction, in joint work with L. Levin and M. Szegedy, we havefurther explored the implications of our protocols to the veri�cation of programinstances and mathematical proofs. In particular, we have introduced a conceptof transparent proofs [7]. Roughly speaking, a pair (T; P ) of strings, where T isa \theorem{candidate" and P is a \proof{candidate", is in transparent form, ifT is encoded in an error-correcting code, and the pair (T; P ) can be veri�ed bya probabilistic veri�er in polylog(N)-time, where N is the combined length of(T; P ), and the veri�er has random access to the string (T; P ). (The string Tmust be encoded because the veri�er does not have enough time to read T so itcould not observe slight changes in the statement of the theorem.) Improvingseveral aspects of the protocols of this paper, we are able to prove that every(deterministic) mathematical proof can be transformed in polynomial time intoa transparent proof. In particular, programs with (nondeterministic) polyno-mial time speci�cations can be viewed as provers of theorems (such as \theproduct of the matrices A and B is C; or \the graph X is Hamiltonian"). Ourresult says that, if the untrusted prover invests a polynomial amount of extrawork, the result can be checked in polylogarithmic time.7.3. Open Problems. Many open questions remain about multi-prover in-teractive proof systems including:� Does all of NEXP have bounded-round two-prover interactive proof sys-tems? Note that this strengthening of Cai's result would not necessarilyimply the collapse of the polynomial-time hierarchy. We remark thatif we allow a polynomial number of provers then a bounded number ofrounds does su�ce [21].� What complexity of provers do we need to prove coNP and NEXPlanguages (see Section 4.6)?� Finally, there seems occasion to cautiously express hope that the tech-niques discussed above might lead to a solution of some long standing
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