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Abstract
We construct an oracleA such that

PA = �PA andNPA = EXPA:
This relativized world has several amazing properties:� The oracleA gives the first relativized world where one can

solve satisfiability on formulae with at most one assignment
yet P 6= NP.� The oracleA is the first where

PA = UPA 6= NPA = coNPA:� The construction gives a much simpler proof than that of
Fenner, Fortnow and Kurtz of a relativized world where all
theNP-complete sets are polynomial-time isomorphic. It is
the first such computable oracle.� Relative toA we have a collapse of�EXPA � ZPPA �
PA/poly.

We also create a different relativized world where there exists
a setL in NP that isNP-complete under reductions that make one
query toL but not complete under traditional many-one reductions.
This contrasts with the result of Buhrman, Spaan and Torenvliet
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1 Introduction
Valiant and Vazirani [VV86] show the surprising power of solving
satisfiability on formulae with at most one satisfying assignment or
equivalently detecting unique solutions toNP problems.

Theorem 1.1 (Valiant-Vazirani) If one could detect unique solu-
tions toNP problems thenR = NP.

The proof of Theorem 1.1 depends heavily on randomization.
They leave open whether detecting unique solutions impliesP =
NP.

Hypothesis 1.2 If one can detect unique solutions toNP problems
thenP = NP.

Theorem 1.1 relativizes. To help us gauge the difficulty of prov-
ing a deterministic version of Theorem 1.1 we will show Hypothe-
sis 1.2 fails in a relativized world.

Theorem 1.3 There exists a relativized world where we can detect
unique solutions forNP problems yetP 6= NP.

To prove Theorem 1.3 we consider the setQ consisting of all
formulae with an odd number of satisfying assignments. If wecan
determine membership inQ than we can detect unique solutions.
This setQ also has some nice algebraic properties for our proofs.
Note the setQ is�P-complete.

In fact we prove a considerably stronger result.

Theorem 1.4 There exists an oracleA such thatPA = �PA and
NPA = EXPA.

Theorem 1.4 has some other important applications. Berman
and Hartmanis [BH77] conjectured that allNP-complete sets are
polynomial-time isomorphic, i.e., for every pair ofNP-complete
setsA andB there exists a polynomial-time computable and in-
vertible bijection reducingA toB.

Finding a relativized world where this isomorphism conjecture
held remained open for many years. Homer and Selman [HS92]
noted that ifP = UP andNP = EXP then the isomorphism con-
jecture holds. They created a relativized world whereP = UP and�p2 = EXP. However, even a relativized world whereP = UP 6=
NP = coNP seemed much more difficult to prove. Theorem 1.4 is
the first to break this barrier.

Corollary 1.5 There exists an oracleA such that

PA = UPA 6= NPA = coNPA = EXPA



Fenner, Fortnow and Kurtz [FFK96] used a very different and
complicated approach to resolve the relativized isomorphism con-
jecture. Their oracle is nonconstructive and makes the polynomial-
time hierarchy infinite. Theorem 1.4 is the first to fulfill theHomer
and Selman approach. The proof is considerably simpler thanFen-
ner, Fortnow and Kurtz and is the first to achieve a constructible
oracle and a collapse of the hierarchy.

Corollary 1.6 There exists a recursive setA such that the isomor-
phism conjecture holds relative toA. In addition the polynomial-
time hierarchy relative toA collapses toNPA.

Heller [Hel84] and Kurtz [Kur85] give a relativized world where
EXP = ZPP. Theorem 1.4 gives a stronger collapse.

Corollary 1.7 There exists an oracleA such that�EXPA = ZPPA � PA=poly
We can generalize Theorem 1.4 toModkP classes on two fronts.

Theorem 1.8 For every primeq there is an oracleA such that for
all k not a power ofq

PA = ModqPA andModkPA = NPA = EXPA:
In particular we get a relativized world where bothP = �P and
Mod3P = EXP.

Homer, Kurtz and Royer [HKR93] show that ifL is complete
for the classEXP under 1-truth-table reductions thenL is also
EXP-complete under the standard many-one reducibility. Buhrman,
Spaan and Torenvliet [BST93] show that the same result holdsfor
NEXP. We give a give a relativized world where this collapse does
not hold forNP.

Theorem 1.9 There exists an oracleB and a languageL that is
1-tt-complete forNPB but not m-complete.

In Theorem 1.9 and Corollary 1.6 we allow the reductions to access
the oracle.1.1 Relativization
Most of the proofs in computational complexity theory relativize:
The results hold even if all machines involved have access tothe
same arbitrary oracle. Thus our paper shows that the relativized
results described in this paper cannot be proven false in theunrela-
tivized world unless one uses nonrelativizing techniques.

The only reasonable use of nonrelativizing techniques so far
has been in the area of interactive proof systems [LFKN92, Sha92,
BFL91, ALM+92]. Complexity theorists have yet to find many
other interesting applications of these techniques. At this time we
know no nonrelativizing techniques to handle the questionsmen-
tioned in this paper.

For a more thorough discussion on relativization see [For94].2 Preliminaries
We assume the reader familiar with basic notations in complexity
theory and classes such asP andNP.

We use the classR to represent probabilistic polynomial-time
computation with one-sided error. The classZPP = R \ coR is
probabilistic computation with zero-sided error running in expected
polynomial time.

We letEXP = DTIME[2nO(1) ].
Let #M represent the number of accepting computations of a

nondeterministic Turing machineM .
A languageL is in UP if there exists a polynomial-time nonde-

terministic Turing machineM such that for allx,

� x 2 L) #M(x) = 1� x 62 L) #M(x) = 0.

A languageL is in�P if there exists a polynomial-time nonde-
terministic Turing machineM such that for allx,� x 2 L) #M(x) is odd.� x 62 L) #M(x) is even.

The class�EXP has the same definition as�P except we allowM to use2nO(1)
time.

We can generalize�P by allowing different modula. A lan-
guageL is in ModkP if there exists a polynomial-time nondeter-
ministic Turing machineM such that for allx,� x 2 L) #M(x) mod k 6= 0.� x 62 L) #M(x) mod k = 0.

Without loss of generality we can replace the “6= 0” in the first
condition by “= 1” (see [Bei91]).

We candetect unique solutionsif for every nondeterministic
Turing machineM there exists a languageA in P such that for allx, � #M(x) = 0) x 62 A� #M(x) = 1) x 2 A
We put no conditions onA if #M(x) > 1. Note that detecting
unique solutions is a stronger restriction thanP = UP.

Since the famous reduction of Cook [Coo71] preserves the num-
ber of solutions, detecting unique solutions is equivalentto solving
satisfiability on formulae with at most one satisfying assignment.

In this paper we also consider different reductions betweensets.
Traditionally as defined by Karp [Kar72], we say a setA is com-
plete for a classC if A is in C and for allL 2 C, there exists a
functionf in FP such thatx is inL if and only if f(x) is inA.

To distinguish completeness notions we often use the term m-
completeness for this Karp definition. We sayA is 1-li-complete iff can always be a length increasing injection.

Cook [Coo71] uses the notion of Turing-completeness where
instead of a functionf we have a polynomial-time Turing machineM such thatx is in L if and only if MA(x) accepts. We sayA is
1-tt-complete ifM can make only one query toA.

We say two setsA andB are isomorphic ifA m-reduces toB
via a polynomial-time computable function that is one-to-one, onto
and polynomial-time invertible.3 Detecting Unique Solutions
Valiant and Vazirani [VV86] show how to randomly map satisfiable
formula to those with unique satisfying assignments.

Lemma 3.1 There exists a probabilistic polynomial-time functionf such that for all boolean formulae� in n variables� If � 62 SAT thenf(�) is never satisfiable.� If � 2 SAT then with probability at least1=4n, f(�) has
exactly one assignment.

If one takesn2 independent applications off(�) for some satisfi-
able� then with extremely high probability one of these outputs
will have a unique assignment. Theorem 1.1 follows directlyfrom
Lemma 3.1.

Valiant and Vazirani’s construction creates random subspaces
of the assignments. Mulmuley, Vazirani and Vazirani [MVV87]
give an alternate proof looking at the maximal weighted cliques



after putting random weights on the edges. Buhrman and Fort-
now [BF97] show how Lemma 3.1 follows from earlier work by
Sipser [Sip83] on Kolmogorov complexity. Gupta [Gup97] gives
a construction for Lemma 3.1 that improves the probability to a
constant if we only requiref(�) to have an odd number of assign-
ments.

Attempts at a relativized counterexample to Hypothesis 1.2have
a long history. Rackoff [Rac82] gives a relativized world where
P = UP 6= NP but the proof heavily uses the fact that theUP
machines must have one accepting path for all inputs.

An easy application of Lemma 3.1 allows one to randomly find
a satisfying assignment of a formula making nonadaptive queries
to SAT. Buhrman and Thierauf [BT96] give a relativized world
where this fails deterministically.

Theorem 1.4 gives the first relativized counterexample to Hy-
pothesis 1.2. In fact Theorem 1.4 shows a stronger result. Buss
and Hay [BH91] and Wagner [Wag90] show that languages com-
putable with a polynomial number of nonadaptive queries toSAT
are equivalent to those computable withO(log n) adaptive queries
to SAT. For functions the equivalence would imply we can distin-
guish unique solutions (see [BFT97]). Theorem 1.4 gives a rela-
tivized world where the converse fails.

Corollary 3.2 There exists a relativized world where we can dis-
tinguish unique solutions but there is a function computable with
a polynomial number of nonadaptive queries toSAT but not withO(log n) adaptive queries.

Proof: Combine Theorem 1.4 with the fact that for all rela-
tivized worlds, if all functions computable with a polynomial num-
ber of nonadaptive queries toSAT are equivalent to those com-
putable withO(log n) adaptive queries toSAT andNP = coNP
thenP = NP (see [BFT97]).24 The Isomorphism Conjecture
Berman and Hartmanis [BH77] consider whether allNP-complete
sets are isomorphic.

Conjecture 4.1 (Berman-Hartmanis) Every pair ofNP-complete
sets are polynomial-time isomorphic.

Berman and Hartmanis [BH77] give a powerful tool to show
that sets are isomorphic.

Lemma 4.2 (Berman-Hartmanis) SetsA andB are polynomial-
time isomorphic if there exist length-increasing polynomial-time
computable and invertible injections fromA to B and fromB toA.

Berman and Hartmanis [BH77] use Lemma 4.2 to show that the
known naturalNP-complete sets of the time were all isomorphic.
Proving Conjecture 4.1 would imply thatP 6= NP since otherwise
we would have finiteNP-complete sets isomorphic to infinite ones.

The Isomorphism Conjecture has been the subject of consider-
able research. We recommend the surveys by Joseph and Young
[JY90] and Kurtz, Mahaney and Royer [KMR90].

Berman [Ber77] showed that every m-complete set forEXP is
complete via one-to-one and length-increasing reductions. Groll-
mann and Selman [GS88] show thatP = UP is equivalent to ev-
ery length-increasing polynomial-time computable injection being
polynomial-time invertible. Using these results Homer andSel-
man [HS92] realized an implication that would imply the isomor-
phism conjecture.

Lemma 4.3 (Berman-Grollman-Selman-Homer) If P = UP and
NP = EXP then allNP-complete sets are polynomial-time isomor-
phic.

Lemma 4.3 relativizes so Homer and Selman tried to create an or-
acle relative to which the isomorphism conjecture holds by getting
P = UP andNP = EXP. They showed the following result.

Theorem 4.4 (Homer-Selman) There exists an oracle relativize
to whichP = UP and�p2 = EXP.

Theorem 4.4 gives the first relativized world where all�p2-complete
sets are isomorphic.

Later, Fenner, Fortnow and Kurtz [FFK96] used a very different
approach to settle the relativized isomorphism conjecture.

Theorem 4.5 (Fenner-Fortnow-Kurtz) There exists a relativized
world where allNP-complete sets are polynomial-time isomorphic.

The proof of Fenner, Fortnow and Kurtz requires a complicated,
nonconstructive argument using a specialized form of generic ora-
cles with infinite conditions. Relative to their oracle the polynomial-
time hierarchy is infinite.

Since for allA, UPA � �PA, Theorem 1.4 combined with
Lemma 4.3 gives us an alternative proof of Theorem 4.5. Our proof
is considerably simpler, constructive and collapses the polynomial-
time hierarchy toNP (Corollary 1.6).5 Collapsing to ZPP and P/poly
Heller [Hel84] and Kurtz [Kur85] exhibit a relativized world col-
lapsingEXP to ZPP.

Theorem 5.1 (Heller-Kurtz) There exists an oracleA such that
EXPA = ZPPA.

If P = �P then by Theorem 1.1 we have thatR = NP. Also by
standard padding argumentsP = �P implies EXP = �EXP. If
alsoEXP = NP then we have�EXP = R. Since�EXP is closed
under complement, we have�EXP = ZPP.

This whole argument relativizes. Theorem 1.4 thus gives us a
strong improvement of Theorem 5.1 giving an oracleA such that�EXPA = ZPPA (Corollary 1.7).

Since for allB, ZPPB � BPPB � PB/poly, we also get that�EXPA � PA/poly. This gives a complementary result to an

oracleC by Heller [Hel86] showing thatEXPNPC � BPPC �
PC /poly.6 Proof of Main Theorem
In this section we prove Theorem 1.4 showing an oracleA such
thatPA = �PA andNPA = EXPA.

Torán [Tor88] constructs the first oracleA such thatNPA 6��PA which also follows from Theorem 1.4. Tarui [Tar91] gives an
alternate proof of Torán’s result using the high degree of the OR
function over GF[2]. This property of theOR function also plays
an important role in our proof.

LetMA be a nondeterministic linear time Turing machine such
that the languageLA defined byw 2 LA , #MA(w) mod 2 = 1
is �PA complete for everyA. We assume without loss of gener-
ality thatMA makes at mostn queries on any computation path,
guesses the answers to all oracle queries and verifies the answers
nonadaptively at the end.

LetNA be a deterministic machine that runs in time2n and for
all A accepts a languageKA that isEXPA complete.

We will constructA such that for allww 2 LA , h0; w; 1jwj2 i 2 A (Condition 0)w 2 KA , 9v jvj = jwj2 andh1; w; vi 2 A (Condition 1)



Condition 0 will guarantee thatP = �P and Condition 1 will
guarantee thatNP = EXP.

We will use the terms0-strings for all of the strings of the formh0; w; 1jwj2i and1-strings for the strings of the formh1; w; vi withjvj = jwj2. All other strings we immediately put inA.
First we give some intuition for the proof. Condition 0 will be

automatically fulfilled by just describing how we set the1-strings
because they force the0-strings as defined by Condition 0.

Fulfilling Condition 1 requires a bit more care sinceNA(x)
can query exponentially long0- and1-strings. We consider each1-
stringh1; w; vi as a variableyhw;vi whose value determines whetherh1; w; vi is in A. We will show that the computationNA(x) can
be represented by a low-degree polynomial over these variables in
the field of two elements. To encode the computation properlywe
use the fact that theOR function has high degree.

We will assign a polynomialpz over GF[2] to all of the0-
strings and1-stringsz. We ensure that for allz

1. If pz = 1 thenz is inA.

2. If pz = 0 thenz is not inA.

First for each1-string z = h1; w; vi we let pz be the single
variable polynomialyhw;vi.

We assign polynomials to the0-strings recursively. Note thatMA(x) can only query0-strings with jwj � pjxj. Consider
an accepting computation path� of M(x) (assuming the oracle
queries are guessed correctly). Letq�;1; : : : ; q�;m be the queries
on this path andb�;1; : : : ; b�;m be the query answers withb�;i = 1
if the query was guessed inA andb�;i = 0 otherwise. Note thatm � n.

LetP be the set of accepting computation paths ofM(x). We

then define the polynomialpz for z = h0; x; 1jxj2i as follows:pz =X�2P Yi:1�i�m(pq�;i + b�;i + 1) (1)

Remember that we are working over GF[2] so addition is parity.
Setting the variablesyhw;vi (and thus the1-strings) forces the

values ofpz for the0-strings. We have set things up properly so the
following lemma is straightforward.

Lemma 6.1 For each0-string z = h0; x; 1jxj2i we havepz =#MA(x) mod 2 and Condition 0 can be satisfied. The polynomialpz has degree at mostjxj2.

Proof: Simple proof by induction onjxj. 2
We would like to create a polynomialrx that captures the value

of NA(x). Consider a nondeterministic machineN 0(x) that simu-
latesNA(x) by first guessing the oracle queries and verifying them
at the end. Similar to Equation (1), we can sum up over all the paths
of the machine. We then definerx byrx =X�2P Yi:1�i�m(pq�;i + b�;i + 1)
where the terms have similar meaning as in Equation 1. Here we
havem � 2jxj.
Lemma 6.2 The valuerx is exactly1 whenNA(x) accepts and0
otherwise. The degree ofrx is at most23jxj.
Proof: SinceN is deterministic,N 0 can have at most one accept-
ing path.

To bound the degree note that the queries ofq made byNA(x)
have length at most2jxj so the degree ofpq is bounded by(2jxj)2 =22jxj. Sincem � 2jxj this gives us a total degree of23jxj. 2

To properly encode to fulfill Condition 1, we need the following
lemma about theOR function.

Lemma 6.3 The functionOR(u1; : : : ; um) as a multivariate poly-
nomial over GF[2] requires degree exactlym.

Proof: Every function over GF[2] has a unique representation as
a multivariate multilinear polynomial.

Note thatAND is just the product so by using De Morgan’s
laws we can writeOR as

OR(u1; : : : ; um) = 1 + Y1�i�m(1 + ui): 2
First let us discuss how to fulfill condition 1 in isolation. Let

us assume that the only variables thatrx depends on areyhx;vi for
somev. We have two cases.

Case (1):rx(~0) = 0: We just set all the variablesyhx;vi = 0.
Case (2):rx(~0) = 1: In this case there must be a~t 6= ~0 such

thatrx(~t) = 1. Otherwise1�rx computes theOR function on theyhx;vi. But the degree of1� rx is at most23jxj and by Lemma 6.3

theOR function has degree2jxj2 . We encode using this~t.
Howeverrx may, of course, depend on variablesyhw;vi forw 6=x. So we must encoderx in stages.
Stagex: We assume all the variablesyhw;vi for w < x are

encoded. Fors � x define the polynomialsrxs as the polynomialsrs where we replace the variablesyhw;vi for w < x with their
encoded value and variablesyhw;vi for w > x with 0. The only
remaining variables ofrxs are of the formyhx;vi.

For eachs � x, let bxs = rxs (~0). There are two cases again.
Case (1):bxx = 0: In this case just set the variablesyhx;vi to

zero.
Case (2):bxx = 1. Consider the polynomialRx = ORs�x(rxs + bxs ):Rx has degree at most2jxj+1(maxs�x 23jsj) = 2jxj+123jxj = 24jxj+1:

By the definition ofbxs we haveRx(~0) = 0. There must be some
vector~t 6= ~0 such thatRx(~t) = 0. OtherwiseRx computes the

OR function over2jxj2 variables.
We use this~t as our encoding.
Theorem 1.4 follows from the following lemma.

Lemma 6.4 After all the stages, Condition 1 is fulfilled for everyx.

Proof: We will show by induction that after every stage` � x
the polynomialrx is properly encoded assuming that all unencoded
strings are zero. After stagèfor j`j > 2jxj all the variables used
by rx have been encoded and will no longer change.

Note that immediately after stagèwe have that the value ofrs̀ = rs for all s � ` assuming the unencoded string are zero.
Base Case (` = x): If bxx = rxx(~0) = 0 then we encode using~0

so Condition 1 is satisfied. Ifbxx = rxx(~0) = 1 then sinceRx(~t) =0, rxx(~t) = bxx = 1 so by using~t we once again satisfy Condition 1.
Inductive Case (̀ > x): In stage` � 1 we haverx properly

encoded assuming all of the unencoded strings are zero. Thereforebx̀ = rx̀(~0) = rx immediately before stagè. If in stage` we only
encode with~0 then nothing changes. If we use~t, sinceR`(~t) = 0,
we still haverx̀(~t) = bx̀ = rx as desired.2



7 Extension of Main Theorem
In this section we give a proof sketch showing that for any primeq there is an oracleA such that for allk not a power ofq, PA =
ModqPA andModkPA = NPA = EXPA.

For all k andj such thatk dividesj, ModkP � ModjP (see
[Bei91]). Thus we can assume thatk is a prime different fromq.

To get an oracleA such thatPA = ModqPA andNPA =
EXPA is a simple variation of the proof in Section 6: One works
over GF[q] instead of GF[2].

We will encodeEXP into ModkP similarly to the way we en-
codedEXP into NP in Section 6. We will add the following Con-
dition k for each primek 6= q.w 2 KA , jfv : jvj = jwj2 andhk; w; vi 2 Agj mod k = 1:

We will fulfill all of the conditionsk � 1 for each stringw by
a standard dovetailing through pairs(k; w). We will only encode
pairs(k; w) wherek < log log jwj to keep the number of condi-
tions we must fulfill at any length low.

To fulfill condition k without interfering with the other condi-
tions we need to show that the Modk function has high degree over
GF[q]. We will use the following lemma implicitly proven by Bar-
rington, Beigel and Rudich [BBR94].

Lemma 7.1 (Barrington-Beigel-Rudich) Let r be a polynomial
in binary variablesx1; : : : ; xN . Let q be a prime. Suppose thatr
satisfies:� r(x1; : : : ; xN ) 6� 0 mod q if x1 + : : :+ xN = 0, and� r(x1; : : : ; xN ) � 0 mod q if x1 + : : :+ xN is a power ofq
Then the degree ofr is at leastN=2q.
If we haver(0; : : : ; 0) 6� 0 mod q andr(x1; : : : ; xN) � 0 mod q
wheneverx1+ : : :+xN 6� 0 mod k then the degree ofr is at leastN=2q.

This allows us to use the same kind of argument to fulfill Con-
dition k > 1 as we used to fulfill Condition 1 in Section 6.8 1-tt-completeness for NP
Homer, Kurtz and Royer [HKR93] show that every 1-tt-complete
set forEXP is also m-complete. If one can show that there exists a
1-tt-complete set forNP that is not m-complete this would separate
NP from EXP. Theorem 1.9 shows a relativized world where this
possibility holds.

Buhrman, Spaan and Torenvliet [BST93] show that every 1-tt-
complete set forNEXP is also m-complete. Buhrman and Fort-
now [BF96] give a relativized world where a 1-tt-complete set for
PSPACE is not m-complete.

Proof of Theorem 1.9: We will construct an oracleB rela-
tive to which there exists a 1-tt-complete set forNP that is not m-
complete. Not just the classes but the reductions themselves must
have access to the oracle.

We use the generic oracle approach along the lines of Fortnow
and Rogers [FR94]. We show that the theorem is true for what
Fortnow and Rogers callUP \ coUP-generic oracles.

For the construction we assume thatP = PSPACE. Since the
proof below relativizes, we can remove this assumption by first rel-
ativizing to an oracle that makesP = PSPACE.

We guarantee that our oracleB contains exactly one string at
lengths that are towers of 2. At all other lengths the oracleB is
empty.

We can create a nondeterministic machineMB(x) that runs in
linear time, queries at mostjxj strings whose length is less than

jxj andMB(x) accepts anNPB-complete set under unrelativized
reductions.

Fortnow and Rogers [FR94] show thatNPB = coNPB =
PSPACEB for these oracles. Thus we have a polynomialp(n)-
time computable functionf such thatMB(x) accepts if and only
if MB(f(x)) rejects. The functionf does not depend onB.

Let m be the largest tower of 2 at mostp(jxj). Let C be the
set of strings inB of length less thanm. Since every string inC
has length at mostlogm, we can enumerateC in polynomial-time
with access toB by brute-force search.

We call an inputx good if the number ofz of lengthm such
thatMC[fzg(x) accepts is at least2m�1. SinceP = PSPACE we
can determine whether an inputx is good in polynomial time.

Consider the setLB defined asLB = fx : MB(x) accepts andx is goodg:
We will show thatLB is in NPB, 1-tt-hard forNPB but not m-
complete where the reductions can access the oracle.LB is in NPB sinceM is a nondeterministic polynomial-time
Turing machine and testing goodness is in polynomial time.

If a string x is not good thenf(x) is good since for allz,MC[fzg(f(x)) accepts exactly whenMC[fzg(x) rejects.
We create a 1-tt reduction fromL(MB) toLB as follows: Ifx

is good then accept ifx 2 LB otherwise accept iff(x) 62 LB .
We still need to show thatLB is not m-complete forNPB . Con-

sider the setSB = f1m : There exists ay of lengthm� 2 such that00y 2 Bg
We show how to diagonalize over a potential many-one reduc-

tion g from SB toLB .
Fixm a large tower of 2. Considerr = gB(1m) putting any un-

encoded query made bygB(1m) out ofB. If jrj � m thenMB(r)
cannot query any strings of lengthm so we can easily diagonalize.

Otherwise we have two cases:
Case (1):r is not good: In this case we put some unencoded

stringy of lengthm that starts with00 in B. We have1m in SB
but r is not inLB .

Case (2):r is good: Since at least2m�1 stringsy of lengthm
makeMC[fyg(r) accept there must be such an unencodedy that
does not start with00. Puttingy in B gives us thatr 2 LB but1m 62 SB finishing the proof.2Acknowledgments
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