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Abstract

We construct an oraclé such that
P* = aP* andNP* = EXP*.
This relativized world has several amazing properties:

e The oracleA gives the first relativized world where one can
solve satisfiability on formulae with at most one assignment
yetP # NP.

e The oracleA is the first where
P* = UP* # NP* = coNP*.

e The construction gives a much simpler proof than that of
Fenner, Fortnow and Kurtz of a relativized world where all
the NP-complete sets are polynomial-time isomorphic. It is
the first such computable oracle.

e Relative toA we have a collapse ghEXP* C ZPP*

c
P4/poly.

We also create a different relativized world where theretexi
a setL in NP that isNP-complete under reductions that make one
query toL but not complete under traditional many-one reductions.
This contrasts with the result of Buhrman, Spaan and Toienvl
showing that these two completeness notion$\fl&X P coincide.
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1 Introduction

Valiant and Vazirani [VV86] show the surprising power of\dal
satisfiability on formulae with at most one satisfying assignt or
equivalently detecting unique solutionsN® problems.

Theorem 1.1 (Valiant-Vazirani) If one could detect unique solu-
tions toNP problems theiR = NP.

The proof of Theorem 1.1 depends heavily on randomization.
They leave open whether detecting unique solutions imfties
NP.

Hypothesis 1.2 If one can detect unique solutionsi® problems
thenP = NP.

Theorem 1.1 relativizes. To help us gauge the difficulty of/pr
ing a deterministic version of Theorem 1.1 we will show Hyyst
sis 1.2 fails in a relativized world.

Theorem 1.3 There exists a relativized world where we can detect
unique solutions foNP problems yeP # NP.

To prove Theorem 1.3 we consider the getonsisting of all
formulae with an odd number of satisfying assignments. Itae
determine membership i@ than we can detect unique solutions.
This setQ also has some nice algebraic properties for our proofs.
Note the set) is P-complete.

In fact we prove a considerably stronger result.

Theorem 1.4 There exists an oraclé such thatt* = &P* and
NP4 = EXP*,

Theorem 1.4 has some other important applications. Berman
and Hartmanis [BH77] conjectured that &lP-complete sets are
polynomial-time isomorphic, i.e., for every pair dfP-complete
setsA and B there exists a polynomial-time computable and in-
vertible bijection reducingi to B.

Finding a relativized world where this isomorphism conjeet
held remained open for many years. Homer and Selman [HS92]
noted that ifP = UP andNP = EXP then the isomorphism con-
jecture holds. They created a relativized world where UP and
P = EXP. However, even a relativized world whelPe= UP #

NP = coNP seemed much more difficult to prove. Theorem 1.4 is
the first to break this barrier.

Coroallary 1.5 There exists an oracld such that

P* = UP* # NP* = coNP* = EXP*



Fenner, Fortnow and Kurtz [FFK96] used a very different and
complicated approach to resolve the relativized isomarphgon-
jecture. Their oracle is nonconstructive and makes therpohyal-
time hierarchy infinite. Theorem 1.4 is the first to fulfill th®mer
and Selman approach. The proof is considerably simplerfean
ner, Fortnow and Kurtz and is the first to achieve a constolecti
oracle and a collapse of the hierarchy.

Corollary 1.6 There exists a recursive sdtsuch that the isomor-
phism conjecture holds relative té. In addition the polynomial-
time hierarchy relative to1 collapses tdNP*.

Heller [Hel84] and Kurtz [Kur85] give arelativized world whe
EXP = ZPP. Theorem 1.4 gives a stronger collapse.

Corallary 1.7 There exists an oracld such that
GEXP* = ZPP* C P* /poly
We can generalize Theorem 1.4vmd ;. P classes on two fronts.

Theorem 1.8 For every prime; there is an oracleA such that for
all & not a power of;

P* = Mod,P* andMod,P* = NP* = EXP".

In particular we get a relativized world where bd®h= &P and
ModsP = EXP.

Homer, Kurtz and Royer [HKR93] show that if is complete
for the classEXP under 1-truth-table reductions thénis also
EXP-complete under the standard many-one reducibility. Bamm
Spaan and Torenvliet [BST93] show that the same result Holds
NEXP. We give a give a relativized world where this collapse does
not hold forNP.

Theorem 1.9 There exists an oracl® and a languagel. that is
1-tt-complete foNPZ but not m-complete.

In Theorem 1.9 and Corollary 1.6 we allow the reductions teeas
the oracle.

1.1 Relativization

Most of the proofs in computational complexity theory rafiae:
The results hold even if all machines involved have acceskeao
same arbitrary oracle. Thus our paper shows that the reladiv
results described in this paper cannot be proven false inrtreda-
tivized world unless one uses nonrelativizing techniques.

The only reasonable use of nonrelativizing techniques so fa
has been in the area of interactive proof systems [LFKN9293h
BFL91, ALMT92]. Complexity theorists have yet to find many
other interesting applications of these techniques. Attinie we
know no nonrelativizing techniques to handle the questines-
tioned in this paper.

For a more thorough discussion on relativization see [Hor94

2 Preliminaries

We assume the reader familiar with basic notations in coxitgle
theory and classes suchRandNP.

We use the clasR to represent probabilistic polynomial-time
computation with one-sided error. The cl&&BP = R N coR is
probabilistic computation with zero-sided error running@kpected
polynomial time.

We letEXP = DTIME[2™  ].

Let # M represent the number of accepting computations of a
nondeterministic Turing machingf .

A languagel. is in UP if there exists a polynomial-time nonde-
terministic Turing machiné/ such that for allz,

O(1)

ezeL=H#M(z)=1
e v & L= #M(z)=0.

A languagel. is in &P if there exists a polynomial-time nonde-
terministic Turing machiné/ such that for allz,

e € L= #M(z)is odd.
o x & L = #M(z)iseven.

The classbEXP has the same definition asP except we allow

M touse2””" time.

We can generalizesP by allowing different modula. A lan-
guagel is in Mod,P if there exists a polynomial-time nondeter-
ministic Turing machineV/ such that for all,

e z € L= #M(z) modk # 0.
o z ¢ L = #M(z) mod k = 0.

Without loss of generality we can replace thg ‘0” in the first
condition by ‘= 1” (see [Bei91]).

We candetect unique solutions for every nondeterministic
Turing machineM there exists a languagé in P such that for all
z,

o #M(z)=0=>z¢ A
e #M(z)=1=>z€ A

We put no conditions o if #M (z) > 1. Note that detecting
unique solutions is a stronger restriction tHaa- UP.

Since the famous reduction of Cook [Coo71] preserves the num
ber of solutions, detecting unique solutions is equivaiersilving
satisfiability on formulae with at most one satisfying asgignt.

In this paper we also consider different reductions betveetn
Traditionally as defined by Karp [Kar72], we say a sets com-
plete for a clas¥’ if AisinC and for all L € C, there exists a
function f in FP such thatz is in L if and only if f(z) isin A.

To distinguish completeness notions we often use the term m-
completeness for this Karp definition. We says 1-li-complete if
f can always be a length increasing injection.

Cook [Coo71] uses the notion of Turing-completeness where
instead of a functiorf we have a polynomial-time Turing machine
M such that: is in I if and only if M (x) accepts. We say is
1-tt-complete ifM can make only one query té.

We say two setst and B are isomorphic ifA m-reduces tdB
via a polynomial-time computable function that is one-teeponto
and polynomial-time invertible.

3 Detecting Unique Solutions

Valiant and Vazirani [VV86] show how to randomly map satikfea
formula to those with unique satisfying assignments.

Lemma 3.1 There exists a probabilistic polynomial-time function
f such that for all boolean formulag¢ in n variables

o If ¢ & SAT thenf(¢) is never satisfiable.

e If $ € SAT then with probability at least /4n, f(¢) has
exactly one assignment.

If one takesn? independent applications ¢f(¢) for some satisfi-
able ¢ then with extremely high probability one of these outputs
will have a unique assignment. Theorem 1.1 follows direfrthyn
Lemma 3.1.

Valiant and Vazirani's construction creates random sutspa
of the assignments. Mulmuley, Vazirani and Vazirani [MV\/87
give an alternate proof looking at the maximal weighted uzig|



after putting random weights on the edges. Buhrman and Fort-

now [BF97] show how Lemma 3.1 follows from earlier work by
Sipser [Sip83] on Kolmogorov complexity. Gupta [Gup97]agv
a construction for Lemma 3.1 that improves the probabilityat
constant if we only requirg(¢) to have an odd number of assign-
ments.

Attempts at a relativized counterexample to Hypothesihidva
a long history. Rackoff [Rac82] gives a relativized world exé
P = UP # NP but the proof heavily uses the fact that tb@
machines must have one accepting path for all inputs.

An easy application of Lemma 3.1 allows one to randomly find
a satisfying assignment of a formula making nonadaptivaigsie
to SAT. Buhrman and Thierauf [BT96] give a relativized world
where this fails deterministically.

Theorem 1.4 gives the first relativized counterexample te Hy
pothesis 1.2. In fact Theorem 1.4 shows a stronger resulss Bu
and Hay [BH91] and Wagner [Wag90] show that languages com-
putable with a polynomial number of nonadaptive querieSA®
are equivalent to those computable wiliflog n) adaptive queries
to SAT. For functions the equivalence would imply we can distin-
guish unique solutions (see [BFT97]). Theorem 1.4 giveda re
tivized world where the converse fails.

Corallary 3.2 There exists a relativized world where we can dis-
tinguish unique solutions but there is a function compugabith

a polynomial number of nonadaptive queriesS&T but not with
O(log n) adaptive queries.

Proof: Combine Theorem 1.4 with the fact that for all rela-
tivized worlds, if all functions computable with a polynaghnum-
ber of nonadaptive queries ®AT are equivalent to those com-
putable withO(log n) adaptive queries t8AT andNP = coNP
thenP = NP (see [BFT97]).0

4 The Isomorphism Conjecture

Berman and Hartmanis [BH77] consider whethed#-complete
sets are isomorphic.

Conjecture 4.1 (Berman-Hartmanis) Every pair ofNP-complete
sets are polynomial-time isomorphic.

Berman and Hartmanis [BH77] give a powerful tool to show
that sets are isomorphic.

Lemma 4.2 (Berman-Hartmanis) SetsA and B are polynomial-
time isomorphic if there exist length-increasing polynalriime
computable and invertible injections frorhto B and fromB to
A.

Berman and Hartmanis [BH77] use Lemma 4.2 to show that the
known naturaNP-complete sets of the time were all isomorphic.
Proving Conjecture 4.1 would imply th& # NP since otherwise
we would have finitdNP-complete sets isomorphic to infinite ones.

The Isomorphism Conjecture has been the subject of consider

able research. We recommend the surveys by Joseph and Young

[JY90] and Kurtz, Mahaney and Royer [KMR90].

Berman [Ber77] showed that every m-complete seE&P is
complete via one-to-one and length-increasing reducti@mll-
mann and Selman [GS88] show tHat= UP is equivalent to ev-
ery length-increasing polynomial-time computable ir@ttbeing
polynomial-time invertible. Using these results Homer &wl-
man [HS92] realized an implication that would imply the isom
phism conjecture.

Lemma 4.3 (Berman-Grollman-Selman-Homer) If P = UPand
NP = EXP then allNP-complete sets are polynomial-time isomor-
phic.

Lemma 4.3 relativizes so Homer and Selman tried to create-an o
acle relative to which the isomorphism conjecture holds &tyigg
P = UP andNP = EXP. They showed the following result.

Theorem 4.4 (Homer-Selman) There exists an oracle relativize
to whichP = UP and Xt = EXP.

Theorem 4.4 gives the first relativized world where&lcomplete
sets are isomorphic.

Later, Fenner, Fortnow and Kurtz [FFK96] used a very différe
approach to settle the relativized isomorphism conjecture

Theorem 4.5 (Fenner-Fortnow-Kurtz) There exists a relativized
world where alINP-complete sets are polynomial-time isomorphic.

The proof of Fenner, Fortnow and Kurtz requires a compltate
nonconstructive argument using a specialized form of geioea-
cles with infinite conditions. Relative to their oracle ttwymomial-
time hierarchy is infinite.

Since for allA, UP* C @P#, Theorem 1.4 combined with
Lemma 4.3 gives us an alternative proof of Theorem 4.5. Quofpr
is considerably simpler, constructive and collapses tignpmial-
time hierarchy ta\NP (Corollary 1.6).

5 Collapsing to ZPP and P/poly

Heller [Hel84] and Kurtz [Kur85] exhibit a relativized wakicol-
lapsingeXP to ZPP.

Theorem 5.1 (Heller-Kurtz) There exists an oraclel such that
EXP4 = ZPP4.

If P = @¢Pthen by Theorem 1.1 we have thlit= NP. Also by
standard padding argumeris= &P impliesEXP = GEXP. If
alsoEXP = NP then we havesEXP = R. Since®EXP is closed
under complement, we haveEXP = ZPP.

This whole argument relativizes. Theorem 1.4 thus gives us a
strong improvement of Theorem 5.1 giving an oradlesuch that
@EXP* = ZPP* (Corollary 1.7).

Since for allB, ZPP? C BPP2 C PZ/poly, we also get that
@®EXP* C P“/poly. This gives a complementary result to an

oracleC by Heller [Hel86] showing thaEXPNP® C BPPC C
P /poly.

6 Proof of Main Theorem

In this section we prove Theorem 1.4 showing an oratlsuch
thatP* = @P* andNP* = EXP*.

Toran [Tor88] constructs the first oracle such thatNP* ¢
@P* which also follows from Theorem 1.4. Tarui [Tar91] gives an
alternate proof of Toran’s result using the high degreehefQR
function over GF[2]. This property of th®R function also plays
an important role in our proof.

Let M* be a nondeterministic linear time Turing machine such
that the languagé&* defined by

welL? & #M*(w) mod 2 =1

is ®P* complete for everyd. We assume without loss of gener-
ality that M* makes at most. queries on any computation path,
guesses the answers to all oracle queries and verifies thens
nonadaptively at the end.

Let N be a deterministic machine that runs in tiafeand for
all A accepts a languag€“ that iSEXP“ complete.

We will constructA such that for alkw

s (0,w,1")eA (Condition 0)
& Ju|v| = |w]* and(1,w,v) € A (Condition 1)

we LA
we K4



Condition 0 will guarantee th& = &P and Condition 1 will
guarantee thatiP = EXP.

We will use the termg-strings for all of the strings of the form
(0, w, 11*I”y and1-strings for the strings of the for1, w, v) with
|v| = |w|?. All other strings we immediately put iA.

First we give some intuition for the proof. Condition 0 wikb
automatically fulfilled by just describing how we set thetrings
because they force thestrings as defined by Condition 0.

Fulfilling Condition 1 requires a bit more care singg* (z)
can query exponentially long@ and1-strings. We consider eadh
string(1, w, v) as a variablg,, .,y whose value determines whether
(1, w,v) is in A. We will show that the computatio* (z) can
be represented by a low-degree polynomial over these Vesia
the field of two elements. To encode the computation propeey
use the fact that th®R function has high degree.

We will assign a polynomiap. over GF[2] to all of the0-
strings andi-stringsz. We ensure that for all

1. If p, = 1thenzisin A.

2. If p. = 0thenzisnotinA.

First for eachl-stringz = (1, w,v) we letp. be the single
variable polynomial, ..

We assign polynomials to thestrings recursively. Note that
M*(x) can only queryo-strings with|w| < +/]z[. Consider
an accepting computation pathof M (z) (assuming the oracle
queries are guessed correctly). lggti, ..., ¢~ be the queries
on this path and 1, . .., b. m be the query answers with ; = 1
if the query was guessed i andb. ; = 0 otherwise. Note that
m < n.

Let P be the set of accepting computation paths/bfz). We
then define the polynomial. for z = (0, z,1/*!") as follows:

p:=Y, [l ®ei+bai+)

rE€P i:1<i<m

@)

Remember that we are working over GF[2] so addition is parity
Setting the variableg., .y (and thus the-strings) forces the
values ofp. for the0-strings. We have set things up properly so the

following lemma is straightforward.

Lemma6.1 For eacho-string z = (0,z,1*") we havep. =
#M* () mod 2 and Condition 0 can be satisfied. The polynomial
p. has degree at most|>.

Proof: Simple proof by induction ofi|. O

We would like to create a polynomia). that captures the value
of N“(z). Consider a nondeterministic machivé(z) that simu-
latesN 4 () by first guessing the oracle queries and verifying them
atthe end. Similar to Equation (1), we can sum up over all #tbg
of the machine. We then defimg by

T, = Z H (Pay; +bri+1)

rE€P i:1<i<m

where the terms have similar meaning as in Equation 1. Here we

havem < 2171,

Lemma6.2 The valuer, is exactlyl whenN“ () accepts and
otherwise. The degree of is at most23!®!.

Proof: SinceN is deterministic,N' can have at most one accept-
ing path.

To bound the degree note that the querieg mfade byN4 ()
have length at mogt*! so the degree of, is bounded by2/*!)? =
2212l Sincem < 2!*! this gives us a total degree ot!*!. O

To properly encode to fulfill Condition 1, we need the follogi
lemma about th©R function.

Lemma 6.3 The functiorOR(u, ..., u.) as a multivariate poly-
nomial over GF[2] requires degree exactly.

Proof: Every function over GF[2] has a unique representation as
a multivariate multilinear polynomial.

Note thatAND is just the product so by using De Morgan’s
laws we can writéOR as

JUm) = 1+ H (1+w).O

1<i<m

OR(ul, e

First let us discuss how to fulfill condition 1 in isolation.et
us assume that the only variables thadepends on arg, . for
somev. We have two cases.

Case (1)r,(0) = 0: We just set all the variableg.,, ,y = 0.

Case (2):r,(0) = 1: In this case there must beia# 0 such
thatr, (£) = 1. Otherwisel — r,, computes th@R function on the
Y(a.»)- But the degree of — r,, is at most*/”! and by Lemma 6.3

the OR function has degre2”!”. We encode using thig

Howeverr,. may, of course, depend on variablgs . for w #
z. SO we must encode, in stages.

Stagex: We assume all the variableg,, , for w < « are
encoded. Fos < z define the polynomialg] as the polynomials
rs Where we replace the variablgs, .y for w < = with their
encoded value and variablgs, .y for w > = with 0. The only
remaining variables of; are of the formy,,, ..

For eachs < z, letb? = rf(@). There are two cases again.

Case (1):b; = 0: In this case just set the variablgs, ., to
zero.

Case (2)b; = 1. Consider the polynomial

R, = OR,<.(ry +b7).
R, has degree at most

2\m\+1( 3\5\) — 2\m\+123\m\ — 24\m\+1.

max 2
s<z

By the definition oft® we haveR, (0) = 0. There must be some
vectori # 0 such thatR, () = 0. OtherwiseR.. computes the
OR function over?!*!” variables.

We use thig as our encoding.
Theorem 1.4 follows from the following lemma.

Lemma 6.4 After all the stages, Condition 1 is fulfilled for every
x.

Proof: We will show by induction that after every stage> =
the polynomialr,, is properly encoded assuming that all unencoded
strings are zero. After stagefor |¢| > 2!*! all the variables used
by r, have been encoded and will no longer change.

Note that immediately after stagewe have that the value of
rt = r, forall s < ¢ assuming the unencoded string are zero.

Base Case/(= z): If b = r%(0) = 0 then we encode usiri)
so Condition 1 is satisfied. & = »2(0) = 1 then sinceR, (i) =
0,77 (#) = b® = 1 so by using ' we once again satisfy Condition 1.

Inductive Cased > z): In stage/ — 1 we haver, properly
encoded assuming all of the unencoded strings are zeroefbner
bt = rf(0) = r. immediately before stageé If in stage? we only
encode with then nothing changes. If we usesinceR, (i) = 0,
we still haver’ () = b% = r, as desiredD



7 Extension of Main Theorem

In this section we give a proof sketch showing that for anyngri
q there is an oraclet such that for allc not a power ofy, P*
Mod,P# andMod;P* = NP* = EXP*.

For all £ andj such thatt dividesj, Mod,P C Mod;P (see
[Bei91]). Thus we can assume thais a prime different frony.

To get an oracled such thatP* Mod,P* andNP*
EXP# is a simple variation of the proof in Section 6: One works
over GF[] instead of GF[2].

We will encodeEXP into Mod, P similarly to the way we en-
codedEXP into NP in Section 6. We will add the following Con-
dition & for each primet # q.

we K* e |{v: |v] = |w®and(k,w,v) € A} mod k = 1.

We will fulfill all of the conditionsk > 1 for each strings by
a standard dovetailing through paifs, w). We will only encode
pairs (k, w) wherek < loglog |w| to keep the number of condi-
tions we must fulfill at any length low.

To fulfill condition k£ without interfering with the other condi-
tions we need to show that the Motlunction has high degree over
GF[g]. We will use the following lemma implicitly proven by Bar-
rington, Beigel and Rudich [BBR94].

Lemma 7.1 (Barrington-Beigel-Rudich) Let » be a polynomial
in binary variablesz., ...,z x. Letqg be a prime. Suppose that

satisfies:
e r(z1,...,zn) Z0modqifz1 +...+ 2y =0,and
e r(z1,...,zn) =0mod qifz1 + ...+ zn iS apower ofy

Then the degree ofis at least/V/2q.

If we haver(0,...,0) Z 0 mod g andr(z1,...,zn) = 0 mod ¢
wheneverr; + ... +ax # 0 mod k then the degree ofis at least
N/2gq.

This allows us to use the same kind of argument to fulfill Con-
dition & > 1 as we used to fulfill Condition 1 in Section 6.

8 1-tt-completeness for NP

Homer, Kurtz and Royer [HKR93] show that every 1-tt-comglet
set forEXP is also m-complete. If one can show that there exists a
1-tt-complete set foNP that is not m-complete this would separate
NP from EXP. Theorem 1.9 shows a relativized world where this
possibility holds.

Buhrman, Spaan and Torenvliet [BST93] show that every 1-tt-
complete set foNEXP is also m-complete. Buhrman and Fort-
now [BF96] give a relativized world where a 1-tt-complet¢ fee
PSPACE is not m-complete.

Proof of Theorem 1.9:  We will construct an oraclé3 rela-
tive to which there exists a 1-tt-complete set fP that is not m-
complete. Not just the classes but the reductions thenseahust
have access to the oracle.

We use the generic oracle approach along the lines of Fortnow
and Rogers [FR94]. We show that the theorem is true for what

Fortnow and Rogers cdllP N coUP-generic oracles.

For the construction we assume tifat= PSPACE. Since the
proof below relativizes, we can remove this assumption Isy rfii-
ativizing to an oracle that mak&= PSPACE.

We guarantee that our oracke contains exactly one string at
lengths that are towers of 2. At all other lengths the ordgles
empty.

We can create a nondeterministic machidé () that runs in
linear time, queries at mos$t| strings whose length is less than

|| and M B (z) accepts aNPP-complete set under unrelativized
reductions.

Fortnow and Rogers [FR94] show thsiPZ = coNP?
PSPACE?® for these oracles. Thus we have a polynomigh)-
time computable functiorf such thatM Z (z) accepts if and only
if MP(f(z)) rejects. The functiorf does not depend oA.

Let m be the largest tower of 2 at mogt|=|). Let C be the
set of strings inB of length less thamn. Since every string i
has length at mogbg m, we can enumerat€ in polynomial-time
with access td3 by brute-force search.

We call an inputz goodif the number ofz of lengthm such
that M Y1} (1) accepts is at leagt” ~'. SinceP = PSPACE we
can determine whether an inpufs good in polynomial time.

Consider the set” defined as

.2 = {z : MP(x)accepts and is good}.
We will show thatZ? is in NP2, 1-tt-hard forNP? but not m-
complete where the reductions can access the oracle.

LP is in NPP since M is a nondeterministic polynomial-time
Turing machine and testing goodness is in polynomial time.

If a string z is not good thenf(z) is good since for alk,
M=} (f(z)) accepts exactly whel! ©“{#} (z) rejects.

We create a 1-tt reduction frof(M ?) to I.? as follows: Ifz
is good then accept if € L? otherwise accept if (z) ¢ L.

We still need to show that” is not m-complete foNP®. Con-
sider the set

SB = {1™ . There exists g of lengthm — 2 such thaboy € B}

We show how to diagonalize over a potential many-one reduc-
tion g from S to LE.

Fix m a large tower of 2. Consider= ¢®(1™) putting any un-
encoded query made lgy? (1™) out of B. If |r| < m then ® (r)
cannot query any strings of length so we can easily diagonalize.

Otherwise we have two cases:

Case (1):r is not good: In this case we put some unencoded
stringy of lengthm that starts wit00 in B. We havel™ in S
butr is notin LB,

Case (2)r is good: Since at leagt™ ' stringsy of lengthm
make M ““1¥} (1) accept there must be such an unencogéat
does not start witld0. Puttingy in B gives us that € L” but
1™ ¢ S® finishing the proofd
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