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We 
onstru
t su
h a world by building the �rst ora
le relative to whi
hNP \ SPARSE does not have 
omplete sets. Messner and Tor�an [MT98℄ give arelativizable proof that if an optimal proof system exists than NP \ SPARSEdoes have 
omplete sets.We also 
onsider whether NP \ SPARSE-
omplete sets exist under othermore general redu
tions than the standard many-one redu
tions. We show sev-eral results su
h as:{ There exists a relativized world where NP \ SPARSE has no disjun
tive-truth-table 
omplete sets.{ There exists a relativized world whereNP \ SPARSE has no 
omplete setsunder truth-table redu
tions using o(n= logn) queries.{ For any positive 
onstant 
, there exists an ora
le relative to whi
h the 
lassNP \ SPARSE has no 
omplete sets under truth-table redu
tions usingo(n= logn) queries and 
 � logn bits of advi
e.{ Under a reasonable assumption for all values of k > 0, NP \ SPARSEhas a 
omplete set under 
onjun
tive truth-table redu
tions that ask nk lognqueries and use O(logn) bits of advi
e.The te
hniques used for relativized results on NP \ SPARSE-
omplete setsalso apply to the question of redu
ing sparse sets to tally sets. We show severalresults along these lines as well.{ Every sparse set S is redu
ible to some tally set T under a 2-round truth-table redu
tion asking O(n) queries.{ Let 
 be any positive 
onstant. There exists a sparse set S that does not re-du
e to any tally set T under truth-table redu
tions using o(n= logn) querieseven with 
 � logn bits of advi
e.{ Under a reasonable assumption for every sparse set S and every positive
onstant k, there exists a tally set T and a 
tt-redu
tion from S to T thatasks nk logn queries and O(logn) bits of advi
e. We 
an also have a 2-roundtruth-table redu
tion using nk logn queries and no advi
e.We use the \reasonable assumptions" to derandomize some of our 
onstru
-tions using te
hniques of Klivans and van Melkebeek [KvM99℄. The assumptionwe need is that there exists a set in DTIME[2O(n)℄ that requires 
ir
uits ofsize 2
(n) even when the 
ir
uits have a

ess to an ora
le for SAT. Under thisassumption we get tight bounds as des
ribed above.We also examine how NP \ SPARSE 
ompares with other promise 
lassessu
h as UP and BPP in parti
ular looking at whether NP \ SPARSE has auniform enumeration.The proofs in our paper heavily use te
hniques from Kolmogorov 
omplexity.We re
ommend the book of Li and Vit�anyi [LV97℄ for an ex
ellent treatment ofthis subje
t.1.1 Redu
tions and RelativizationsWe measure the relative power of sets using redu
tions. In this paper all redu
-tions will be 
omputed by polynomial-time ma
hines.



We say a set A redu
es to a set B if there exists a polynomial-time 
omputablefun
tion f su
h that for all strings x, x is in A if and only if f(x) is in B. Wealso 
all this an m-redu
tion, \m" for many-one.For more general redu
tions we need to use ora
le ma
hines. The set ATuring-redu
es to B if there is a polynomial-time ora
le Turing ma
hine Msu
h that MB(x) a

epts exa
tly when x is in A. A tt-redu
tion (truth-table)requires that all queries be made before any answers are re
eived.A 2-round tt-redu
tion allows a se
ond set of queries to be made after theanswers from the �rst set of queries is known. This 
an be generalized to k-roundtt-redu
tions but we will not need k > 2 in this paper.We 
an think of a (one-round) tt-redu
tion R as 
onsisting of two polynomial-time 
omputable fun
tions: One that 
reates a list of queries to make and anevaluator that takes the input and the value of B on those queries and eithera

epts or reje
ts. We use the notation QR(x) to denote the set of queries madeby redu
tion R on input x. For a set of inputs X , we let QR(X) = [x2XQR(x).A dtt-redu
tion (disjun
tive-truth-table) means that MB(x) a

epts if anyof the queries it makes are in B. A 
tt-redu
tion (
onjun
tive-truth-table) meansthat MB(x) a

epts if all of the queries it makes are in B. A q(n)-tt redu
tionis a tt-redu
tion that makes at most q(n) queries. A btt-redu
tion (bounded-truth-table) is a k-tt redu
tion for some �xed k.We say a language L is r-hard for a 
lass C if every language in C r-redu
esto L. If L also sits in C then we say L is r-
omplete for C.All the results mentioned and 
ited in this paper relativize, that is they holdif all ma
hines involved 
an a

ess the same ora
le. If we show that a statementholds in a relativized world that means that proving the negation would requireradi
ally di�erent te
hniques. Please see the survey by Fortnow [For94℄ for afurther dis
ussion on relativization.1.2 Optimal Proof SystemsA proof system is simply a polynomial-time fun
tion whose range is the set oftautologi
al formulae, i.e., formulae that remain true for all assignments. Cookand Re
khow [CR79℄ developed this 
on
ept to give a general proof system thatgeneralizes proof systems su
h as resolution and Frege proofs. They also give analternate 
hara
terization of the NP versus 
oNP question:Theorem 1 (Cook-Re
khow). NP = 
oNP if and only if there exists aproof system f and a polynomial p su
h that for all tautologies �, there is a y,jyj � p(j�j) and f(y) = �.Cook and Re
khow [CR79℄ also de�ned optimal and p-optimal proof systems.De�nition 1. A proof system g is optimal if for all proof systems f , thereis a polynomial p su
h that for all x, there is a y su
h that jyj � p(jxj) andg(y) = f(x). A proof system g is p-optimal if y 
an be 
omputed in polynomialtime from x.



Messner and Tor�an [MT98℄ building on work of Kraj���
ek and Pudl�ak [KP89℄show that ifNEE = 
oNEE then optimal proof systems exist and ifNEE = EEthen p-optimal proof systems exist. Here EE, double exponential time, is equalto DTIME[2O(2n)℄. The 
lass NEE is the nondeterministi
 version of EE.Messner and Tor�an [MT98℄ show 
onsequen
es of the existen
e of optimalproof systems.Theorem 2 (Messner-Tor�an).{ If p-optimal proof systems exist then UP has 
omplete sets.{ If optimal proof systems exist then NP \ SPARSE has 
omplete sets.Hartmanis and Hema
handra [HH84℄ give a relativized world where UP doesnot have 
omplete sets. Sin
e all of the results mentioned here relativize, Messnerand Tor�an get the following 
orollary.Corollary 1 (Messner-Tor�an). There exists an ora
le relative to whi
h p-optimal proof systems do not exist.However Messner and Tor�an leave open the question as to whether a relativizedworld exists where there are no optimal proof systems. Combining our relativizedworld where NP \ SPARSE has no 
omplete sets with Theorem 2 answers thisquestion in the positive.1.3 Redu
ing SPARSE to TALLYA tally set is any subset of 1�. Given a set S, the 
ensus fun
tion 
S(n) is thenumber of strings of length n in S. A set S is sparse if the 
ensus fun
tion isbounded by a polynomial.In some sense both sparse sets and tally sets 
ontain the same amount ofinformation but in sparse sets the information may be harder to �nd. Determin-ing for whi
h kind of redu
tions SPARSE 
an redu
e to TALLY is an ex
itingresear
h area.Book and Ko [BK88℄ show that every sparse set tt-redu
es to some tally setbut there is some sparse set that does not btt-redu
e to any tally set.Ko [Ko89℄ shows that there is a sparse set that does not dtt-redu
e to anytally set. He left open the 
onjun
tive 
ase.Buhrman, Hemaspaandra and Longpr�e [BHL95℄ give the surprising resultthat every sparse set 
tt-redu
es to some tally set. Later Saluja [Sal93℄ provesthe same result using slightly di�erent te
hniques.S
h�oning [S
h93℄ uses these ideas to show that SPARSE many-one redu
esto TALLY with randomized redu
tions. In parti
ular he shows that for ev-ery sparse set S and polynomial p there is a tally set T and a probabilisti
polynomial-time 
omputable f su
h that{ If x is in S then f(x) is always in T .{ If x is not in S then Pr[f(x) 2 T ℄ � 1=p(jxj).We say that S 
o-rp-redu
es to T . S
h�oning notes that his redu
tion only requiresO(logn) random bits.



1.4 Complete sets for NP \ SPARSEHartmanis and Yesha [HY84℄ �rst 
onsidered the question as to whether the
lass NP \ SPARSE has 
omplete sets. They show that there exists a tallyset T that is Turing-
omplete for NP \ SPARSE. They also give a relativizedworld where there is no tally set that is m-
omplete for NP \ SPARSE.We should note that NP \TALLY has m-
omplete sets. Let Mi be anenumeration of polynomial-time nondeterministi
 ma
hines and 
onsiderf1hi;n;ki j Mi(1n) a

epts in k stepsg: (1)Also there exists a set in Dp \ SPARSE that is m-hard for NP \ SPARSE.The 
lass Dp 
ontains the sets that 
an be written as the di�eren
e of two NPsets. For the NP \ SPARSE-hard language we need to 
onsider the di�eren
eA�B where:A = fhx; 1i; 1ki j Mi(x) a

epts in k stepsgB = fhx; 1i; 1ki j Mi a

epts more than k strings of length jxj in k stepsgAs a simple 
orollary we get that if NP = 
oNP then NP \ SPARSE has
omplete sets. However the results mentioned in Se
tion 1.2 imply that one onlyneeds the assumption of NEE = 
oNEE.S
h�oning [S
h93℄ notes that from his work mentioned in Se
tion 1.3 if thesparse set S is in NP then the 
orresponding tally set T is also in NP. Sin
eNP \TALLY has 
omplete sets we get thatNP \ SPARSE has a 
omplete setunder 
o-rp-redu
tions. The same argument applied to Buhrman-Hemaspaandra-Longpr�e shows that NP \ SPARSE has 
omplete sets under 
tt-redu
tions.2 NP \ SPARSE-Complete SetsIn this se
tion, we establish our main result.Theorem 3. There exists a relativized world where NP \ SPARSE has no
omplete sets under many-one redu
tions.Proof. Let Mi be a standard enumeration of nondeterministi
 polynomial-timeTuring ma
hines and fi be an enumeration of polynomial-time redu
tions whereMi and fi use at most time ni.Let t(m) be the tower fun
tion, i.e., t(0) = 1 and t(m+ 1) = 2t(m).We will build an ora
le A. For ea
h i we will letLi(A) = fx j There is some y, jyj = 2jxj and hi; x; yi 2 Ag: (2)The idea of the proof is that for ea
h i and j, we will guarantee that eitherL(MAi ) has more than nj elements at some input length n or Li(A) is sparseand fAj does not redu
e Li(A) to L(MAi ).We start with the ora
le A empty and build it up in stages. At ea
h stagem = hi; ji we will add strings of the form hi; x; yi to A where jxj = n = t(m)and jyj = 2n. For ea
h stage m we will do one of the following:



1. Put more than rj strings into L(MAi ) for some length r, or2. Make Li(A) \�n have exa
tly one string and for some x in �n, havex 2 Li(A), fAj (x) 62 L(MAi ): (3)By the usual tower arguments we 
an fo
us only on the strings in A of lengthn: Smaller strings 
an all be queried in polynomial-time; larger strings are toolong to be queried.Pi
k a string z of length 2n2n that is Kolmogorov random 
onditioned onthe 
onstru
tion of A so far. Read o� 2n strings yx of length 2n for ea
h x in�n. Consider B = fhi; x; yxi j x 2 �ng.If L(MBi ) has more than rj strings of any length r then we 
an ful�ll therequirement for this stage by letting A = B. So let us assume this is not the
ase.Note that fBj (x) for x of length n 
annot query any string yw in B or wewould have a shorter des
ription of z by des
ribing yw by x and the index of thequery made by fBj (x). Our �nal ora
le will be a subset of B so we 
an just usef;j as the redu
tion.Suppose f;j (x) = f;j (w) for some x and w of length n. We just let A 
ontainthe single string hi; x; yxi and f;j 
annot be a redu
tion. Let us now assume thatthere is no su
h x and w.So by 
ounting there must be some x 2 �n su
h that f;j (x) 62 L(MBi ). Letv = f;j (x). We are not done yet sin
e Li(B) has too many strings.Now let A again 
onsist of the single string hi; x; yxi. If we still have v 62L(MAi ) then we have now ful�lled the requirement.Otherwise it must be the 
ase that MAi (v) a

epts but MBi (v) reje
ts. Thusevery a

epting path (and in parti
ular the lexi
ographi
ally least) of MAi (v)must query some string in B � A. Sin
e we 
an des
ribe v by x this allows usa short des
ription of some yw given yx for w 6= x whi
h gives us a shorterdes
ription of z, so this 
ase 
annot happen. utCorollary 2. There exists a relativized world where optimal proof systems donot exist.Proof. Messner and Tor�an [MT98℄ give a relativizable proof that if optimal proofsystems exist then NP \ SPARSE has 
omplete sets. ut3 More Powerful Redu
tionsIn the previous se
tion, we 
onstru
ted a relativized world where the 
lassNP \ SPARSE has no 
omplete sets under m-redu
tions. We now strengthenthat 
onstru
tion to more powerful redu
tions. Using the same te
hniques as wellas other ones, we will also obtain new results on the redu
ibility of SPARSEto TALLY.



3.1 Relativized WorldsWe start by extending Theorem 3 to dtt-redu
tions.Theorem 4. There exists a relativized world where NP \ SPARSE has no dtt-
omplete sets.The proof is an improvement of the proof of Theorem 3. In order to fa
ilitateother improvements and extensions, we 
ast it in a slightly di�erent form.Proof. Let Mi be a standard enumeration of nondeterministi
 polynomial-timeTuring ma
hines and Rj be an enumeration of polynomial-time dtt-redu
tionswhere Mi and Ri use at most time ni.We will 
onstru
t an ora
le A. For ea
h i and j we will guarantee that eitherL(MAi ) has more than nj elements at some input length n, or else Li(A) is sparseand RAj does not redu
e Li(A) to L(MAi ), whereLi(A) = fx j There is some y, jyj = 2jxj and hi; x; yi 2 Ag: (4)We start with the ora
le A empty and build it up in stages. At ea
h stagem = hi; ji we will add strings of the form hi; x; yi to A where jxj = n = t(m),jyj = 2n, and t denotes the tower fun
tion. For suÆ
iently large i and j, we willdo one of the following:1. Put more than rj strings into L(MAi ) for some length r, or2. Make Li(A) \�n have exa
tly one string and for some x in �n, havex 2 Li(A), QRAj (x) \ L(MAi ) = ;: (5)By the usual tower arguments, for large i and j later stages 
annot undothese a
hievements and we 
an fo
us on the strings 
oded in A of length n and2n.More spe
i�
ally we do the following at stage m. Pi
k a string z of length2n2n that is Kolmogorov random given the ora
le as 
onstru
ted so far. Read o�2n strings yx of length 2n for ea
h x in �n and 
onsider B = fhi; x; yxi j x 2 �ng.If L(MBi ) has more than rj strings of any length r then we let A = B andwe are done.If not, we pro
eed as follows. We �rst note that the redu
tion does not dependon the ora
le B.Claim. For any string x of length n, RBj (x) does not make an ora
le query abouta string in B.Otherwise, we 
ould des
ribe a string in B using n+O(j logn) bits as the k-thora
le query (for some k � nj) Rj makes on input x. Thus we would obtain ades
ription of z of length less than jzj. Our ora
le at the end of stage m willbe a subset C of B with one element. By 
laim 3.1 we 
an just use R;j as theredu
tion, whi
h we denote simply as Rj .Next we note that there exists a small set U 
ontaining every dtt-query thatRj makes on an input of length n and that belongs to L(MCi ) for some su
hC � B.



Claim. There exists a set U of size at most nj(j+1) su
h that for any C � Bwith jCj = 1, QRj (�n) \ L(MCi ) � U .Without loss of generality, we 
an assume that U � QRj (�n). In fa
t, U =QRj (�n) \ L(MBi ) satis�es Claim 3.1: Be
ause of the sparseness of L(MBi ),jU j �Pnjr=0 rj � nj(j+1) . Moreover, for any x 2 �n, any q 2 QRj (x), and anyC � B with jCj = 1, if q 2 L(MCi ) then q 2 L(MBi ). Otherwise every a

eptingpath (and in parti
ular the lexi
ographi
ally least) ofMCi on input q must querysome string in B � C. This allows us to des
ribe a tuple hi; w; ywi given yx forsome w 6= x using only n+O(ij logn) bits, namely, as the k-th ora
le query (forsome k � nij) whi
h MCi makes on the lexi
ographi
ally �rst a

epting pathgiven as input the `-th dtt-query (for some ` � nj) of Rj on input x. This inturn gives us a shorter des
ription of z.We then argue as follows. Asso
iate with every query q 2 U a string xq su
hthat q 2 QRj (xq). Let X denote the set of all xq 's. Sin
e U is sparse, for large iand j, there exists a string w of length n outside of X . Pi
k su
h a string w andset A = fhi; w; ywig.If there exists a string x 2 X satisfying (5) then we are done. If not, thenQRj (X)\L(MAi ) = ;, as X\Li(A) = ;. Sin
e QRj (X) 
overs all of U , by Claim3.1, QRj (w) \ L(MAi ) = ;. However, w 2 Li(A) so x = w satis�es equation (5).utWe note that the proof of Theorem 4 works for any subexponential densitybound. In parti
ular, it yields a relativized world where the 
lass of NP setswith no more than 2no(1) strings of any length n has no dtt-
omplete sets.We 
an handle polynomial-time tt-redu
tions with arbitrary evaluators pro-vided the number of queries remains in o(n= logn).Theorem 5. There exists a relativized world where NP \ SPARSE has no
omplete sets under o(n= logn)-tt-redu
tions.Proof. The proof follows the lines of the proof of Theorem 4. We rede�ne Li(A)as Li(A) = fx j There is some y, jyj = 2jxj2 and hi; x; yi 2 Ag; (6)and we will allow up to n strings of length n in Li(A). Alternative 2 in the proofof Theorem 4 now reads:2. If RAj makes no more than 1(j+1)2 � nlogn queries on inputs of length n, thenmake Li(A) \�n have at most n strings, and for some x in �n, havex 2 Li(A), RAj (x) reje
ts when querying L(MAi ); (7)where R1; R2; : : : denotes an enumeration of polynomial-time tt-redu
tions.The strings yx are of length 2n2 ea
h, and their 
on
atenation z is of length2n22n.The rest of the proof being the same as for Theorem 4, we only des
ribe howto 
onstru
t A in the 
ase where L(MBi ) has no more than rj strings of anylength r. Claim 3.1 still holds:



Claim. For any string x of length n, RBj (x) does not make an ora
le query abouta string in B.Otherwise, we 
ould des
ribe a string in B as the k-th query (for some k � nj)whi
h Rj makes on input x when given the information it needs about L(MBi ).Sin
e this takes no more than 2n + O(j logn) bits, z would have a des
riptionshorter than itself. As our �nal ora
le will be a subset C of B, it suÆ
es to
onsider Rj = R;j as the redu
tion.We now allow the sets C to be of size up to n. Claim 3.1 also holds for them.Claim. There exists a set U of size at most nj(j+1) su
h that for any C � Bwith jCj � n, QRj (�n) \ L(MCi ) � U .The same argument as for Claim 3.1 in the proof of Theorem 4 works but nowthe des
ription of the string hi; w; ywi 2 B � C takes n2 +O(ij logn) bits.Suppose that Rj makes no more than 1(j+1)2 � nlogn queries on inputs of lengthn. Then there exists a large set X of inputs of length n on whi
h Rj asks thesame set Y of queries in U .Claim. There exists a setX � �n of size n and a set Y of size at most 1(j+1)2 � nlognsu
h that 8x 2 X : QRj (x) \ U � Y: (8)The sets X and Y 
an be 
onstru
ted greedily. Start out with X = �n andY = ;, and perform the following step until QRj (X) \ U � Y : Pi
k among theelements of (QRj (X) \ U) � Y a most popular one, i.e., an element y 2 U � Ysu
h that y 2 QRj (x) for the largest number of x's in X . Then add y to Y andrestri
t X to those x 2 X for whi
h y 2 QRj (x) or QRj (x) \ U � Y .The pro
edure halts after at most 1(j+1)2 � nlogn steps, so the size of Y is as
laimed. In every step the size of X is shrunk by no more than a fa
tor of jU j,so the �nal X satis�esjX j � 2njU j 1(j+1)2 � nlogn � 2n(nj(j+1)) 1(j+1)2 � nlogn = 2 1j+1n � n (9)for suÆ
iently large n. This establishes Claim 3.1.For any subset X 0 of X , let C(X 0) denote fhi; x; yxi jx 2 X 0g. By Claims 3.1and 3.1, we have thatQRj (X)\L(MC(X0)i ) � Y for anyX 0 � X . Sin
e jX j > jY j,there are more subsets X 0 of X than there are subsets of Y . It follows that thereare two subsets X1 and X2 of X , X1 6= X2, su
h that QRj (X) \ L(MC(X1)i ) =QRj (X) \ L(MC(X2)i ). This implies that for at least one of A = C(X1) or A =C(X2), equation (7) holds for some x 2 X . utFor sets of subexponential density the proof of Theorem 5 yields a relativizedworld where the 
lass of NP sets 
ontaining no more than 2no(1) strings of anylength n, has no 
omplete sets under tt-redu
tions of whi
h the number of queriesis at most n� for some � < 1.On the positive side, re
all from Se
tion 1.4 that NP \ SPARSE has 
om-plete sets under 
tt-redu
tions as well as under 
o-rp-redu
tions.



3.2 SPARSE to TALLYThe te
hniques used in the proofs of Theorems 3, 4, and 5 also allow us to
onstru
t a sparse set S that does not redu
e to any tally set under the typeof redu
tions 
onsidered. As mentioned in Se
tion 1.3, su
h sets were alreadyknown for m-redu
tions and for dtt-redu
tions. For o(n= logn)-tt-redu
tions weprovide the �rst 
onstru
tion.Theorem 6. There exists a sparse set S that does not o(n= logn)-tt-redu
e toany tally set.Proof. We 
onstru
t a similar ora
le A as in the proof of Theorem 5. The setL(A) = fx j There is some y, jyj = 2jxj2 and hx; yi 2 Ag (10)will be the sparse set S we are looking for.There now is a stage m = j a

ording to every tt-redu
tion Rj , and duringthat stage we do the following for n = t(m): If RAj asks no more than 1(j+1)2 � nlognqueries on inputs of length n, then make L(A) \ �n have at most n strings insu
h a way that for any tally set T there is a string x of length n on whi
h Rjfails to redu
e L(A) to T .We realize this goal in the same way as we realize alternative 2 in the proofof Theorem 5. The argument there for redu
tions to sparse NPA sets only relieson the following property: On inputs of length n, the redu
tion does not dependon the extensions of A 
onsidered, and the queries of the redu
tion that areanswered positively all lie in a small set U whi
h is independent of the ora
leextension. The proof of Theorem 5 shows that these 
onditions are met in the
ase of redu
tions to sparse NPA sets. In the 
ase of (unrelativized) redu
tionsto tally sets, they are trivially met. Therefore, the 
onstru
tion yields a sparseset L(A) whi
h does not o(n= logn)-tt redu
e to any tally set. utOn the other side, O(n) queries suÆ
e to redu
e any sparse set to a tally set.Previously, it was known that SPARSE 
tt- and 
o-rp-redu
es to TALLY (seeSe
tion 1.3). We give the �rst deterministi
 redu
tion for whi
h the degree ofthe polynomial bounding the number of queries does not depend on the densityof the sparse set.Theorem 7. Every sparse set S is redu
ible to some tally set T under a 2-roundtt-redu
tion asking O(n) queries.Proof. S
h�oning [S
h93℄ shows that for any 
onstant k > 0 there exists a tally setT1 and a polynomial-time redu
tion R su
h that for any string x of any lengthn x 2 S ) Pr[R(x; �) 2 T1℄ = 1x 62 S ) Pr[R(x; �) 2 T1℄ < 1nk ; (11)where the probabilities are uniform over strings � of length O(logn).



By pi
king nk logn independent samples �i, we have for any x 2 �n:x 2 S ) Pr[(8 i)R(x; �i) 2 T1℄ = 1x 62 S ) Pr[(8 i)R(x; �i) 2 T1℄ < ( 1nk ) nk logn = 12n :Therefore, there exists a sequen
e ~�i, i = 1; : : : ; nk logn , su
h that8x 2 �n : x 2 S , (8 i)R(x; ~�i) 2 T1: (12)Sin
e ea
h ~�i is of length O(logn), we 
an en
ode them in a tally set T2 fromwhi
h we 
an re
over them using O( nk logn � logn) nonadaptive queries. This way,we obtain a 2-round tt-redu
tion from S to T1 � T2 using O(n) queries: The�rst round determines the ~�i's, and the se
ond round applies (12). Sin
e T1�T2m-redu
es to a tally set T , we are done. utIn Se
tion 4.1, we will show that under a reasonable hypothesis we 
an redu
ethe number of queries in Theorem 7 from O(n) to nk logn for any 
onstant k > 0.See Corollary 3.We do not know whether theNP \ SPARSE equivalent of Theorem 7 holds:DoesNP \ SPARSE have a 
omplete set under redu
tions askingO(n) queries?See Se
tion 6 for a dis
ussion.4 Redu
tions With Advi
e | Tight ResultsOur results in Se
tion 3 pointed out a di�eren
e in the power of redu
tions mak-ing o(n= logn) queries and redu
tions making O(n) queries. In this se
tion we
lose the remaining gap between o(n= logn) and O(n) by 
onsidering redu
tionsthat take some advi
e. The approa
h works for both theNP \ SPARSE settingand the SPARSE-to-TALLY setting.4.1 SPARSE to TALLYWe �rst observe that Theorem 6 also holds when we allow the redu
tion O(logn)bits of advi
e.Theorem 8. Let 
 be any positive 
onstant. There exists a sparse set S that doesnot redu
e to any tally set T under o(n= logn)-tt-redu
tions that take 
 � lognbits of advi
e.Proof. We make use of the same 
onstru
tion as in the proof of Theorem 6.When dealing with length n, we divide �n into n
 intervals of equal length andput the intervals in one-to-one 
orresponden
e with the possible advi
e stringsof length 
 � logn. We then apply the strategy of the proof of Theorem 6 onea
h interval separately in order to diagonalize against the redu
tion Rj withthe 
orresponding advi
e. This will put at most n strings of length n into S forevery possible advi
e string, hen
e at most n
+1 strings of length n in total. ut



Theorem 8 is essentially optimal under a reasonable assumption as the nextresult shows.Theorem 9. Suppose there exists a set in DTIME[2O(n)℄ that requires 
ir
uitsof size 2
(n) even when the 
ir
uits have a

ess to an ora
le for SAT. Thenfor all relativized worlds, every sparse set S and every positive 
onstant k, thereexists a tally set T and a 
tt-redu
tion from S to T that asks nk logn queries andO(logn) bits of advi
e.Proof. Let S be a sparse set. The 
onstru
tion in the proof of Theorem 7 
anbe seen as a 
tt-redu
tion of S to the tally set T1 that makes nk logn queriesand gets O(n) bits as advi
e, namely the sequen
e of nk logn ~�i's, ea
h of length`(n) 2 O(logn).We will now show how the hypothesis of Theorem 9 allows us to redu
e therequired advi
e from O(n) to O(logn) bits.The requirement the ~�i's have to ful�ll is 
ondition (12). By a slight 
hangein the parameters of the proof of Theorem 7 (namely, by repla
ing k by 2k in(11)), we 
an guarantee that most sequen
es ~�i a
tually satisfy (12). Sin
e theimpli
ation from left to right in (12) holds for any 
hoi
e of ~�i's, we really onlyhave to 
he
k 8x 2 �n : x 62 S ) (9 i)R(x; ~�i) 62 T1: (13)Without loss of generality, we 
an assume that QR(�n)\T1 = QR(S\�n)\T1,where QR(X) = fR(x; �) jx 2 X and j�j = `(jxj)g. Therefore, we 
an repla
e(13) by the 
ondition8x 2 �n : x 62 S ) (9 i)R(x; ~�i) 62 QR(S \�n): (14)Sin
e S is sparse, this 
ondition on the ~�i's 
an be 
he
ked by a polynomial-sizefamily of 
ir
uits with a

ess to an ora
le for SAT: The 
ir
uit has a enumerationof the elements of S \�n built in, and on
e a polynomial-time enumeration ofS \�n is available, (14) be
omes a 
oNP predi
ate.Under the hypothesis of Theorem 9, Klivans and Van Melkebeek [KvM99,Theorem 4.2℄ 
onstru
t a polynomial-time 
omputable fun
tion f that mapsstrings of O(logn) bits to sequen
es ~�i su
h that most of the inputs map tosequen
es satisfying (14). An expli
it input to f for whi
h this holds, suÆ
es asadvi
e for our redu
tion from S to T = T1. utSin
e we 
an en
ode the advi
e in a tally set and re
over it from the tally setusing O(logn) queries, we obtain the following in the terminology of Theorem7.Corollary 3. Under the same hypothesis as in Theorem 9, for any 
onstantk > 0 every sparse set S is redu
ible to some tally set T under a 2-round tt-redu
tion asking nk log n queries.



4.2 Relativized WorldsOur tight results about the redu
ibility of SPARSE to TALLY 
arry over tothe NP \ SPARSE setting.Theorem 10. For any 
onstant 
 > 0, there exists a relativized world whereNP \ SPARSE has no 
omplete sets under o(n= logn)-tt redu
tions that take
 � logn bits of advi
e.We also note that Theorem 4 
an take up to n� !(logn) bits of advi
e.Theorem 11. There exists a relativized world where NP \ SPARSE has no
omplete sets under dtt-redu
tions that take n� !(logn) bits of advi
e.On the positive side, we obtain:Theorem 12. Suppose there exists a set inDTIME[2O(n)℄ that requires 
ir
uitsof size 2
(n) even when the 
ir
uits have a

ess to an ora
le for SAT. Then forall relativized worlds and all values of k > 0, NP \ SPARSE has a 
ompleteset under 
tt-redu
tions that ask nk logn queries and O(logn) bits of advi
e.Proof. Let A be an arbitrary ora
le. Note that if the set S in Theorem 9 lies inNPA, then the set T also lies in NPA. Sin
eNPA\TALLY has an m-
ompleteset, the result follows. ut5 NP \ SPARSE and Other Promise ClassesInformally, a promise 
lass has a restri
tion on the set of allowable ma
hinesbeyond the usual time and spa
e bounds. For example, UP 
onsists of languagesa

epted by NP-ma
hines with at most one a

epting path. Other 
ommonpromise 
lasses in
luded NP \ 
oNP, BPP (randomized polynomial time),BQP (quantum polynomial time) and NP \ SPARSE.Nonpromise 
lasses have easy 
omplete sets, for example:fhi; x; 1ji j Mi(x) a

epts in at most j stepsg (15)is 
omplete for NP if Mi are nondeterministi
 ma
hines, but no su
h analogueworks for UP.We say that UP has a uniform enumeration if there exists a 
omputablefun
tion � su
h that for ea
h i and input x, M�(i)(x) uses time at most jxji andhas at most one a

epting path on every input and UP = [iL(M�(i)). Uniformenumerations for the other promise 
lasses are similarly de�ned.It turns out that for most promise 
lasses, having a 
omplete set and auniform enumeration are equivalent. Hartmanis and Hema
handra [HH84℄ showthis for UP and their proof easily generalizes to the other 
lasses. We in
lude aproof here for 
ompleteness.Theorem 13 (Hartmanis-Hema
handra). The 
lasses UP, NP \ 
oNP,BPP and BQP have 
omplete sets under many-one redu
tions if and only ifthey have uniform enumerations.



Proof. We will give the proof forUP. The proofs for the other 
lasses are similar.Suppose UP has a 
omplete set L a

epted by a UP ma
hine M that runsin time nk. Let f1; f2; : : : be an enumeration of the polynomial-time 
omputablefun
tions su
h that fi uses at most ni steps. De�ne M�(hi;iki)(x) to simply sim-ulate M(fi(x)).SupposeUP has a uniform enumeration via �. We de�ne the set L as follows:L = fhx; i; 1ki j �(i) outputs j in k steps and Mj(x) a

epts in k stepsg (16)If A is inUP then A = L(Mj) where for some i, k and `, �(i) outputs j in k stepsand Mj runs in time n`. We de�ne the redu
tion f(x) = hx; i; 1max(k;jxj`)i. utFor NP \ SPARSE neither dire
tion of the proof goes through. In the �rstpart, if fi is not honest then M�(i) may a

ept too many strings. In the se
ondpart, L might not be sparse if we merge too many sparse sets with di�erent
ensus fun
tions.In fa
t despite Theorem 3, NP \ SPARSE has a uniform enumeration (inall relativized worlds).Theorem 14. The 
lass NP \ SPARSE has a uniform enumeration.Proof. De�neM�(i)(x) as follows: First see if for anym � logn,Mi a

epts morethanmi strings of lengthm by trying all possible 
omputation paths on all inputsof length m. If so then reje
t. Otherwise simulateMi(x). Note that this will onlyenumerate sparse sets: If Mi a

epts more than mi strings of length m for somem, L(M�(i)) will eventually be
ome �nite. On the other hand, if Mi a

epts nomore than mi strings of length m for every m, then L(M�(i)) = L(Mi). utIn some sense Theorem 14 is a 
heat. In the uniform enumeration, all thesets are sparse but we 
annot be sure of the 
ensus fun
tion at a given inputlength. To examine this 
ase we extend the de�nition of uniform enumeration.De�nition 2. We say NP \ SPARSE has a uniform enumeration with sizebounds if there exists a 
omputable fun
tion � su
h that NP \ SPARSE =[iL(M�(i)), and for all i and n, M�(i) a

epts at most ni strings of length nusing at most ni time.Hemaspaandra, Jain and Veresh
hagin [HJV93℄ developed a similar extensionfor the 
lass FewP.We 
an use De�nition 2 to prove a result similar to Theorem 13 for the 
lassNP \ SPARSE.Theorem 15. NP \ SPARSE has 
omplete sets under invertible redu
tions ifand only if NP \ SPARSE has a uniform enumeration with size bounds.Proof. Suppose NP \ SPARSE has a 
omplete set S under invertible redu
-tions, that is for every NP \ SPARSE set A there are two polynomial-time
omputable fun
tions f and g su
h that for all x, x is in A exa
tly when f(x) isin S, and g(f(x)) = x.



Suppose S has at most nk strings at ea
h length n. Let f1; f2; : : : be anenumeration of the polynomial-time fun
tions su
h that fi uses time at most ni.Let us de�ne M�(hi;j;i(k+1)i) as follows: On input x, 
ompute y = fi(x) anda

ept if1. fj(y) = x, and2. y is in S.Note that this ma
hine 
an a

ept no more than ni(k+1) strings sin
e the twotests guarantee that we a

ept at most one string for every string in S of lengthat most ni.Now suppose NP \ SPARSE has a uniform enumeration with size bounds.We de�ne the 
omplete set as follows:L = fhx; 1i; 1ki j �k(i) = j, k � jxji, and Mj(x) a

eptsg (17)where �k(i) = j means �(i) outputs j in k steps.The set L 
learly belongs to NP. It is sparse be
ause for any �xed i, k andn, there 
an be no more than k strings x of length n su
h that hx; 1i; 1ki 2 L. IfA is in NP \ SPARSE then for some i, j and `, A = L(Mj), �(i) outputs j in `steps andMj runs in time jxji. We de�ne the redu
tion f(x) = hx; 1i; 1max(`;jxji)iwhi
h is easily invertible. utThe promise 
lass NP \ SPARSE di�ers from the other 
lasses in anotherinteresting way. Consider the question as to whether there exists a languagea

epted by a nondeterministi
 ma
hine using time n3 whi
h has at most onea

epting path on ea
h input that is not a

epted by any su
h ma
hine usingtime n2. This remains a murky open question forUP and the other usual promise
lasses.For NP \ SPARSE the situation is quite di�erent as shown by Seiferas,Fis
her and Meyer [SFM78℄ and �Z�ak [�Z�ak83℄.Theorem 16 (Seiferas-Fis
her-Meyer,�Z�ak). Let the fun
tions t1 and t2 betime-
onstru
tible su
h that t1(n+1) = o(t2(n)). There exists a tally set a

eptedby a nondeterministi
 ma
hine in time t2(n) but not in time O(t1(n)).6 Open ProblemsSeveral interesting questions remain in
luding the following.{ Theorem 7 whi
h shows that every sparse set redu
es to a tally set using O(n)queries does not seem to give a 
orresponding result for NP \ SPARSE-
omplete sets. Is there a relativized world where NP \ SPARSE does nothave 
omplete sets under Turing redu
tions using O(n) queries? If we 
an
onstru
t the ~�i's in the proof of Theorem 7 in polynomial time using a

essto a set in NP \ 
oNP, the answer is yes. However, the best we know is to
onstru
t them in polynomial time with ora
le a

ess to NPNP.



{ Can we redu
e or eliminate the assumption needed for Theorem 9, Corol-lary 3, and Theorem 12? If we knew how to 
onstru
t the ~�i's from the proofof Theorem 9 in polynomial time with O(logn) bits of advi
e, we 
ould dropthe assumption.{ Does NP \ SPARSE having m-
omplete sets imply NP \ SPARSE hasa uniform enumeration with size bounds? Can we 
onstru
t in a relativizedworld a 
omplete set for NP \ SPARSE that is not 
omplete under invert-ible redu
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