
Optimal Proof Systems and Sparse SetsHarry Buhrman?1, Steve Fenner??2, Lane Fortnow? ? ?3, andDieter van Melkebeeky41 CWI2 University of South Carolina3 University of Chiago4 University of Chiago and DIMACSAbstrat. We exhibit a relativized world where NP \ SPARSE hasno omplete sets. This gives the �rst relativized world where no optimalproof systems exist.We also examine under what redutions NP \ SPARSE an have om-plete sets. We show a lose onnetion between these issues and re-dutions from sparse to tally sets. We also onsider the question as towhether theNP \ SPARSE languages have a omputable enumeration.1 IntrodutionComputer sientists study lower bounds in proof omplexity with the ultimatehope of atual omplexity lass separation. Cook and Rekhow [CR79℄ formalizethis approah. They reate a general notion of a proof system and show thatpolynomial-size proof systems exist if and only if NP = oNP.Cook and Rekhow also ask about the possibility of whether optimal proofsystems exist. Informally an optimal proof system would have proofs whih areno more than polynomially longer than any other proof system.An optimal proof system would play a role similar to NP-omplete sets.There exists a polynomial-time algorithm for Satis�ability if and only if P =NP. Likewise, if we have an optimal proof system, then this system would havepolynomial-size proofs if and only if NP = oNP.The existene of optimal proof systems remained an interesting open ques-tion. No one ould exhibit suh a system exept under various unrealisti as-sumptions [KP89, MT98℄. Nor has anyone exhibited a relativized world whereoptimal proof systems do not exist.? CWI, INS4, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands. Email:buhrman�wi.nl.?? Supported in part by NSF grants CCR-9501794 and CCR-9996310. Address: Depart-ment of Computer Siene, The University of South Carolina, Columbia, SC 29208.Email: fenner�s.s.edu.? ? ? Supported in part by NSF grant CCR-9732922. Current Address: NEC Researh, 4Independene Way, Prineton, NJ 08540. Email: fortnow�researh.nj.ne.om.y Supported in part by NSF grant CCR-9732922. Current Address: DIMACS Cen-ter, Rutgers University, 96 Frelinghuysen Road, Pisataway, NJ 08854. Email:dieter�dimas.rutgers.edu.



We onstrut suh a world by building the �rst orale relative to whihNP \ SPARSE does not have omplete sets. Messner and Tor�an [MT98℄ give arelativizable proof that if an optimal proof system exists than NP \ SPARSEdoes have omplete sets.We also onsider whether NP \ SPARSE-omplete sets exist under othermore general redutions than the standard many-one redutions. We show sev-eral results suh as:{ There exists a relativized world where NP \ SPARSE has no disjuntive-truth-table omplete sets.{ There exists a relativized world whereNP \ SPARSE has no omplete setsunder truth-table redutions using o(n= logn) queries.{ For any positive onstant , there exists an orale relative to whih the lassNP \ SPARSE has no omplete sets under truth-table redutions usingo(n= logn) queries and  � logn bits of advie.{ Under a reasonable assumption for all values of k > 0, NP \ SPARSEhas a omplete set under onjuntive truth-table redutions that ask nk lognqueries and use O(logn) bits of advie.The tehniques used for relativized results on NP \ SPARSE-omplete setsalso apply to the question of reduing sparse sets to tally sets. We show severalresults along these lines as well.{ Every sparse set S is reduible to some tally set T under a 2-round truth-table redution asking O(n) queries.{ Let  be any positive onstant. There exists a sparse set S that does not re-due to any tally set T under truth-table redutions using o(n= logn) querieseven with  � logn bits of advie.{ Under a reasonable assumption for every sparse set S and every positiveonstant k, there exists a tally set T and a tt-redution from S to T thatasks nk logn queries and O(logn) bits of advie. We an also have a 2-roundtruth-table redution using nk logn queries and no advie.We use the \reasonable assumptions" to derandomize some of our onstru-tions using tehniques of Klivans and van Melkebeek [KvM99℄. The assumptionwe need is that there exists a set in DTIME[2O(n)℄ that requires iruits ofsize 2
(n) even when the iruits have aess to an orale for SAT. Under thisassumption we get tight bounds as desribed above.We also examine how NP \ SPARSE ompares with other promise lassessuh as UP and BPP in partiular looking at whether NP \ SPARSE has auniform enumeration.The proofs in our paper heavily use tehniques from Kolmogorov omplexity.We reommend the book of Li and Vit�anyi [LV97℄ for an exellent treatment ofthis subjet.1.1 Redutions and RelativizationsWe measure the relative power of sets using redutions. In this paper all redu-tions will be omputed by polynomial-time mahines.



We say a set A redues to a set B if there exists a polynomial-time omputablefuntion f suh that for all strings x, x is in A if and only if f(x) is in B. Wealso all this an m-redution, \m" for many-one.For more general redutions we need to use orale mahines. The set ATuring-redues to B if there is a polynomial-time orale Turing mahine Msuh that MB(x) aepts exatly when x is in A. A tt-redution (truth-table)requires that all queries be made before any answers are reeived.A 2-round tt-redution allows a seond set of queries to be made after theanswers from the �rst set of queries is known. This an be generalized to k-roundtt-redutions but we will not need k > 2 in this paper.We an think of a (one-round) tt-redution R as onsisting of two polynomial-time omputable funtions: One that reates a list of queries to make and anevaluator that takes the input and the value of B on those queries and eitheraepts or rejets. We use the notation QR(x) to denote the set of queries madeby redution R on input x. For a set of inputs X , we let QR(X) = [x2XQR(x).A dtt-redution (disjuntive-truth-table) means that MB(x) aepts if anyof the queries it makes are in B. A tt-redution (onjuntive-truth-table) meansthat MB(x) aepts if all of the queries it makes are in B. A q(n)-tt redutionis a tt-redution that makes at most q(n) queries. A btt-redution (bounded-truth-table) is a k-tt redution for some �xed k.We say a language L is r-hard for a lass C if every language in C r-reduesto L. If L also sits in C then we say L is r-omplete for C.All the results mentioned and ited in this paper relativize, that is they holdif all mahines involved an aess the same orale. If we show that a statementholds in a relativized world that means that proving the negation would requireradially di�erent tehniques. Please see the survey by Fortnow [For94℄ for afurther disussion on relativization.1.2 Optimal Proof SystemsA proof system is simply a polynomial-time funtion whose range is the set oftautologial formulae, i.e., formulae that remain true for all assignments. Cookand Rekhow [CR79℄ developed this onept to give a general proof system thatgeneralizes proof systems suh as resolution and Frege proofs. They also give analternate haraterization of the NP versus oNP question:Theorem 1 (Cook-Rekhow). NP = oNP if and only if there exists aproof system f and a polynomial p suh that for all tautologies �, there is a y,jyj � p(j�j) and f(y) = �.Cook and Rekhow [CR79℄ also de�ned optimal and p-optimal proof systems.De�nition 1. A proof system g is optimal if for all proof systems f , thereis a polynomial p suh that for all x, there is a y suh that jyj � p(jxj) andg(y) = f(x). A proof system g is p-optimal if y an be omputed in polynomialtime from x.



Messner and Tor�an [MT98℄ building on work of Kraj���ek and Pudl�ak [KP89℄show that ifNEE = oNEE then optimal proof systems exist and ifNEE = EEthen p-optimal proof systems exist. Here EE, double exponential time, is equalto DTIME[2O(2n)℄. The lass NEE is the nondeterministi version of EE.Messner and Tor�an [MT98℄ show onsequenes of the existene of optimalproof systems.Theorem 2 (Messner-Tor�an).{ If p-optimal proof systems exist then UP has omplete sets.{ If optimal proof systems exist then NP \ SPARSE has omplete sets.Hartmanis and Hemahandra [HH84℄ give a relativized world where UP doesnot have omplete sets. Sine all of the results mentioned here relativize, Messnerand Tor�an get the following orollary.Corollary 1 (Messner-Tor�an). There exists an orale relative to whih p-optimal proof systems do not exist.However Messner and Tor�an leave open the question as to whether a relativizedworld exists where there are no optimal proof systems. Combining our relativizedworld where NP \ SPARSE has no omplete sets with Theorem 2 answers thisquestion in the positive.1.3 Reduing SPARSE to TALLYA tally set is any subset of 1�. Given a set S, the ensus funtion S(n) is thenumber of strings of length n in S. A set S is sparse if the ensus funtion isbounded by a polynomial.In some sense both sparse sets and tally sets ontain the same amount ofinformation but in sparse sets the information may be harder to �nd. Determin-ing for whih kind of redutions SPARSE an redue to TALLY is an exitingresearh area.Book and Ko [BK88℄ show that every sparse set tt-redues to some tally setbut there is some sparse set that does not btt-redue to any tally set.Ko [Ko89℄ shows that there is a sparse set that does not dtt-redue to anytally set. He left open the onjuntive ase.Buhrman, Hemaspaandra and Longpr�e [BHL95℄ give the surprising resultthat every sparse set tt-redues to some tally set. Later Saluja [Sal93℄ provesthe same result using slightly di�erent tehniques.Sh�oning [Sh93℄ uses these ideas to show that SPARSE many-one reduesto TALLY with randomized redutions. In partiular he shows that for ev-ery sparse set S and polynomial p there is a tally set T and a probabilistipolynomial-time omputable f suh that{ If x is in S then f(x) is always in T .{ If x is not in S then Pr[f(x) 2 T ℄ � 1=p(jxj).We say that S o-rp-redues to T . Sh�oning notes that his redution only requiresO(logn) random bits.



1.4 Complete sets for NP \ SPARSEHartmanis and Yesha [HY84℄ �rst onsidered the question as to whether thelass NP \ SPARSE has omplete sets. They show that there exists a tallyset T that is Turing-omplete for NP \ SPARSE. They also give a relativizedworld where there is no tally set that is m-omplete for NP \ SPARSE.We should note that NP \TALLY has m-omplete sets. Let Mi be anenumeration of polynomial-time nondeterministi mahines and onsiderf1hi;n;ki j Mi(1n) aepts in k stepsg: (1)Also there exists a set in Dp \ SPARSE that is m-hard for NP \ SPARSE.The lass Dp ontains the sets that an be written as the di�erene of two NPsets. For the NP \ SPARSE-hard language we need to onsider the di�ereneA�B where:A = fhx; 1i; 1ki j Mi(x) aepts in k stepsgB = fhx; 1i; 1ki j Mi aepts more than k strings of length jxj in k stepsgAs a simple orollary we get that if NP = oNP then NP \ SPARSE hasomplete sets. However the results mentioned in Setion 1.2 imply that one onlyneeds the assumption of NEE = oNEE.Sh�oning [Sh93℄ notes that from his work mentioned in Setion 1.3 if thesparse set S is in NP then the orresponding tally set T is also in NP. SineNP \TALLY has omplete sets we get thatNP \ SPARSE has a omplete setunder o-rp-redutions. The same argument applied to Buhrman-Hemaspaandra-Longpr�e shows that NP \ SPARSE has omplete sets under tt-redutions.2 NP \ SPARSE-Complete SetsIn this setion, we establish our main result.Theorem 3. There exists a relativized world where NP \ SPARSE has noomplete sets under many-one redutions.Proof. Let Mi be a standard enumeration of nondeterministi polynomial-timeTuring mahines and fi be an enumeration of polynomial-time redutions whereMi and fi use at most time ni.Let t(m) be the tower funtion, i.e., t(0) = 1 and t(m+ 1) = 2t(m).We will build an orale A. For eah i we will letLi(A) = fx j There is some y, jyj = 2jxj and hi; x; yi 2 Ag: (2)The idea of the proof is that for eah i and j, we will guarantee that eitherL(MAi ) has more than nj elements at some input length n or Li(A) is sparseand fAj does not redue Li(A) to L(MAi ).We start with the orale A empty and build it up in stages. At eah stagem = hi; ji we will add strings of the form hi; x; yi to A where jxj = n = t(m)and jyj = 2n. For eah stage m we will do one of the following:



1. Put more than rj strings into L(MAi ) for some length r, or2. Make Li(A) \�n have exatly one string and for some x in �n, havex 2 Li(A), fAj (x) 62 L(MAi ): (3)By the usual tower arguments we an fous only on the strings in A of lengthn: Smaller strings an all be queried in polynomial-time; larger strings are toolong to be queried.Pik a string z of length 2n2n that is Kolmogorov random onditioned onthe onstrution of A so far. Read o� 2n strings yx of length 2n for eah x in�n. Consider B = fhi; x; yxi j x 2 �ng.If L(MBi ) has more than rj strings of any length r then we an ful�ll therequirement for this stage by letting A = B. So let us assume this is not thease.Note that fBj (x) for x of length n annot query any string yw in B or wewould have a shorter desription of z by desribing yw by x and the index of thequery made by fBj (x). Our �nal orale will be a subset of B so we an just usef;j as the redution.Suppose f;j (x) = f;j (w) for some x and w of length n. We just let A ontainthe single string hi; x; yxi and f;j annot be a redution. Let us now assume thatthere is no suh x and w.So by ounting there must be some x 2 �n suh that f;j (x) 62 L(MBi ). Letv = f;j (x). We are not done yet sine Li(B) has too many strings.Now let A again onsist of the single string hi; x; yxi. If we still have v 62L(MAi ) then we have now ful�lled the requirement.Otherwise it must be the ase that MAi (v) aepts but MBi (v) rejets. Thusevery aepting path (and in partiular the lexiographially least) of MAi (v)must query some string in B � A. Sine we an desribe v by x this allows usa short desription of some yw given yx for w 6= x whih gives us a shorterdesription of z, so this ase annot happen. utCorollary 2. There exists a relativized world where optimal proof systems donot exist.Proof. Messner and Tor�an [MT98℄ give a relativizable proof that if optimal proofsystems exist then NP \ SPARSE has omplete sets. ut3 More Powerful RedutionsIn the previous setion, we onstruted a relativized world where the lassNP \ SPARSE has no omplete sets under m-redutions. We now strengthenthat onstrution to more powerful redutions. Using the same tehniques as wellas other ones, we will also obtain new results on the reduibility of SPARSEto TALLY.



3.1 Relativized WorldsWe start by extending Theorem 3 to dtt-redutions.Theorem 4. There exists a relativized world where NP \ SPARSE has no dtt-omplete sets.The proof is an improvement of the proof of Theorem 3. In order to failitateother improvements and extensions, we ast it in a slightly di�erent form.Proof. Let Mi be a standard enumeration of nondeterministi polynomial-timeTuring mahines and Rj be an enumeration of polynomial-time dtt-redutionswhere Mi and Ri use at most time ni.We will onstrut an orale A. For eah i and j we will guarantee that eitherL(MAi ) has more than nj elements at some input length n, or else Li(A) is sparseand RAj does not redue Li(A) to L(MAi ), whereLi(A) = fx j There is some y, jyj = 2jxj and hi; x; yi 2 Ag: (4)We start with the orale A empty and build it up in stages. At eah stagem = hi; ji we will add strings of the form hi; x; yi to A where jxj = n = t(m),jyj = 2n, and t denotes the tower funtion. For suÆiently large i and j, we willdo one of the following:1. Put more than rj strings into L(MAi ) for some length r, or2. Make Li(A) \�n have exatly one string and for some x in �n, havex 2 Li(A), QRAj (x) \ L(MAi ) = ;: (5)By the usual tower arguments, for large i and j later stages annot undothese ahievements and we an fous on the strings oded in A of length n and2n.More spei�ally we do the following at stage m. Pik a string z of length2n2n that is Kolmogorov random given the orale as onstruted so far. Read o�2n strings yx of length 2n for eah x in �n and onsider B = fhi; x; yxi j x 2 �ng.If L(MBi ) has more than rj strings of any length r then we let A = B andwe are done.If not, we proeed as follows. We �rst note that the redution does not dependon the orale B.Claim. For any string x of length n, RBj (x) does not make an orale query abouta string in B.Otherwise, we ould desribe a string in B using n+O(j logn) bits as the k-thorale query (for some k � nj) Rj makes on input x. Thus we would obtain adesription of z of length less than jzj. Our orale at the end of stage m willbe a subset C of B with one element. By laim 3.1 we an just use R;j as theredution, whih we denote simply as Rj .Next we note that there exists a small set U ontaining every dtt-query thatRj makes on an input of length n and that belongs to L(MCi ) for some suhC � B.



Claim. There exists a set U of size at most nj(j+1) suh that for any C � Bwith jCj = 1, QRj (�n) \ L(MCi ) � U .Without loss of generality, we an assume that U � QRj (�n). In fat, U =QRj (�n) \ L(MBi ) satis�es Claim 3.1: Beause of the sparseness of L(MBi ),jU j �Pnjr=0 rj � nj(j+1) . Moreover, for any x 2 �n, any q 2 QRj (x), and anyC � B with jCj = 1, if q 2 L(MCi ) then q 2 L(MBi ). Otherwise every aeptingpath (and in partiular the lexiographially least) ofMCi on input q must querysome string in B � C. This allows us to desribe a tuple hi; w; ywi given yx forsome w 6= x using only n+O(ij logn) bits, namely, as the k-th orale query (forsome k � nij) whih MCi makes on the lexiographially �rst aepting pathgiven as input the `-th dtt-query (for some ` � nj) of Rj on input x. This inturn gives us a shorter desription of z.We then argue as follows. Assoiate with every query q 2 U a string xq suhthat q 2 QRj (xq). Let X denote the set of all xq 's. Sine U is sparse, for large iand j, there exists a string w of length n outside of X . Pik suh a string w andset A = fhi; w; ywig.If there exists a string x 2 X satisfying (5) then we are done. If not, thenQRj (X)\L(MAi ) = ;, as X\Li(A) = ;. Sine QRj (X) overs all of U , by Claim3.1, QRj (w) \ L(MAi ) = ;. However, w 2 Li(A) so x = w satis�es equation (5).utWe note that the proof of Theorem 4 works for any subexponential densitybound. In partiular, it yields a relativized world where the lass of NP setswith no more than 2no(1) strings of any length n has no dtt-omplete sets.We an handle polynomial-time tt-redutions with arbitrary evaluators pro-vided the number of queries remains in o(n= logn).Theorem 5. There exists a relativized world where NP \ SPARSE has noomplete sets under o(n= logn)-tt-redutions.Proof. The proof follows the lines of the proof of Theorem 4. We rede�ne Li(A)as Li(A) = fx j There is some y, jyj = 2jxj2 and hi; x; yi 2 Ag; (6)and we will allow up to n strings of length n in Li(A). Alternative 2 in the proofof Theorem 4 now reads:2. If RAj makes no more than 1(j+1)2 � nlogn queries on inputs of length n, thenmake Li(A) \�n have at most n strings, and for some x in �n, havex 2 Li(A), RAj (x) rejets when querying L(MAi ); (7)where R1; R2; : : : denotes an enumeration of polynomial-time tt-redutions.The strings yx are of length 2n2 eah, and their onatenation z is of length2n22n.The rest of the proof being the same as for Theorem 4, we only desribe howto onstrut A in the ase where L(MBi ) has no more than rj strings of anylength r. Claim 3.1 still holds:



Claim. For any string x of length n, RBj (x) does not make an orale query abouta string in B.Otherwise, we ould desribe a string in B as the k-th query (for some k � nj)whih Rj makes on input x when given the information it needs about L(MBi ).Sine this takes no more than 2n + O(j logn) bits, z would have a desriptionshorter than itself. As our �nal orale will be a subset C of B, it suÆes toonsider Rj = R;j as the redution.We now allow the sets C to be of size up to n. Claim 3.1 also holds for them.Claim. There exists a set U of size at most nj(j+1) suh that for any C � Bwith jCj � n, QRj (�n) \ L(MCi ) � U .The same argument as for Claim 3.1 in the proof of Theorem 4 works but nowthe desription of the string hi; w; ywi 2 B � C takes n2 +O(ij logn) bits.Suppose that Rj makes no more than 1(j+1)2 � nlogn queries on inputs of lengthn. Then there exists a large set X of inputs of length n on whih Rj asks thesame set Y of queries in U .Claim. There exists a setX � �n of size n and a set Y of size at most 1(j+1)2 � nlognsuh that 8x 2 X : QRj (x) \ U � Y: (8)The sets X and Y an be onstruted greedily. Start out with X = �n andY = ;, and perform the following step until QRj (X) \ U � Y : Pik among theelements of (QRj (X) \ U) � Y a most popular one, i.e., an element y 2 U � Ysuh that y 2 QRj (x) for the largest number of x's in X . Then add y to Y andrestrit X to those x 2 X for whih y 2 QRj (x) or QRj (x) \ U � Y .The proedure halts after at most 1(j+1)2 � nlogn steps, so the size of Y is aslaimed. In every step the size of X is shrunk by no more than a fator of jU j,so the �nal X satis�esjX j � 2njU j 1(j+1)2 � nlogn � 2n(nj(j+1)) 1(j+1)2 � nlogn = 2 1j+1n � n (9)for suÆiently large n. This establishes Claim 3.1.For any subset X 0 of X , let C(X 0) denote fhi; x; yxi jx 2 X 0g. By Claims 3.1and 3.1, we have thatQRj (X)\L(MC(X0)i ) � Y for anyX 0 � X . Sine jX j > jY j,there are more subsets X 0 of X than there are subsets of Y . It follows that thereare two subsets X1 and X2 of X , X1 6= X2, suh that QRj (X) \ L(MC(X1)i ) =QRj (X) \ L(MC(X2)i ). This implies that for at least one of A = C(X1) or A =C(X2), equation (7) holds for some x 2 X . utFor sets of subexponential density the proof of Theorem 5 yields a relativizedworld where the lass of NP sets ontaining no more than 2no(1) strings of anylength n, has no omplete sets under tt-redutions of whih the number of queriesis at most n� for some � < 1.On the positive side, reall from Setion 1.4 that NP \ SPARSE has om-plete sets under tt-redutions as well as under o-rp-redutions.



3.2 SPARSE to TALLYThe tehniques used in the proofs of Theorems 3, 4, and 5 also allow us toonstrut a sparse set S that does not redue to any tally set under the typeof redutions onsidered. As mentioned in Setion 1.3, suh sets were alreadyknown for m-redutions and for dtt-redutions. For o(n= logn)-tt-redutions weprovide the �rst onstrution.Theorem 6. There exists a sparse set S that does not o(n= logn)-tt-redue toany tally set.Proof. We onstrut a similar orale A as in the proof of Theorem 5. The setL(A) = fx j There is some y, jyj = 2jxj2 and hx; yi 2 Ag (10)will be the sparse set S we are looking for.There now is a stage m = j aording to every tt-redution Rj , and duringthat stage we do the following for n = t(m): If RAj asks no more than 1(j+1)2 � nlognqueries on inputs of length n, then make L(A) \ �n have at most n strings insuh a way that for any tally set T there is a string x of length n on whih Rjfails to redue L(A) to T .We realize this goal in the same way as we realize alternative 2 in the proofof Theorem 5. The argument there for redutions to sparse NPA sets only relieson the following property: On inputs of length n, the redution does not dependon the extensions of A onsidered, and the queries of the redution that areanswered positively all lie in a small set U whih is independent of the oraleextension. The proof of Theorem 5 shows that these onditions are met in thease of redutions to sparse NPA sets. In the ase of (unrelativized) redutionsto tally sets, they are trivially met. Therefore, the onstrution yields a sparseset L(A) whih does not o(n= logn)-tt redue to any tally set. utOn the other side, O(n) queries suÆe to redue any sparse set to a tally set.Previously, it was known that SPARSE tt- and o-rp-redues to TALLY (seeSetion 1.3). We give the �rst deterministi redution for whih the degree ofthe polynomial bounding the number of queries does not depend on the densityof the sparse set.Theorem 7. Every sparse set S is reduible to some tally set T under a 2-roundtt-redution asking O(n) queries.Proof. Sh�oning [Sh93℄ shows that for any onstant k > 0 there exists a tally setT1 and a polynomial-time redution R suh that for any string x of any lengthn x 2 S ) Pr[R(x; �) 2 T1℄ = 1x 62 S ) Pr[R(x; �) 2 T1℄ < 1nk ; (11)where the probabilities are uniform over strings � of length O(logn).



By piking nk logn independent samples �i, we have for any x 2 �n:x 2 S ) Pr[(8 i)R(x; �i) 2 T1℄ = 1x 62 S ) Pr[(8 i)R(x; �i) 2 T1℄ < ( 1nk ) nk logn = 12n :Therefore, there exists a sequene ~�i, i = 1; : : : ; nk logn , suh that8x 2 �n : x 2 S , (8 i)R(x; ~�i) 2 T1: (12)Sine eah ~�i is of length O(logn), we an enode them in a tally set T2 fromwhih we an reover them using O( nk logn � logn) nonadaptive queries. This way,we obtain a 2-round tt-redution from S to T1 � T2 using O(n) queries: The�rst round determines the ~�i's, and the seond round applies (12). Sine T1�T2m-redues to a tally set T , we are done. utIn Setion 4.1, we will show that under a reasonable hypothesis we an reduethe number of queries in Theorem 7 from O(n) to nk logn for any onstant k > 0.See Corollary 3.We do not know whether theNP \ SPARSE equivalent of Theorem 7 holds:DoesNP \ SPARSE have a omplete set under redutions askingO(n) queries?See Setion 6 for a disussion.4 Redutions With Advie | Tight ResultsOur results in Setion 3 pointed out a di�erene in the power of redutions mak-ing o(n= logn) queries and redutions making O(n) queries. In this setion welose the remaining gap between o(n= logn) and O(n) by onsidering redutionsthat take some advie. The approah works for both theNP \ SPARSE settingand the SPARSE-to-TALLY setting.4.1 SPARSE to TALLYWe �rst observe that Theorem 6 also holds when we allow the redution O(logn)bits of advie.Theorem 8. Let  be any positive onstant. There exists a sparse set S that doesnot redue to any tally set T under o(n= logn)-tt-redutions that take  � lognbits of advie.Proof. We make use of the same onstrution as in the proof of Theorem 6.When dealing with length n, we divide �n into n intervals of equal length andput the intervals in one-to-one orrespondene with the possible advie stringsof length  � logn. We then apply the strategy of the proof of Theorem 6 oneah interval separately in order to diagonalize against the redution Rj withthe orresponding advie. This will put at most n strings of length n into S forevery possible advie string, hene at most n+1 strings of length n in total. ut



Theorem 8 is essentially optimal under a reasonable assumption as the nextresult shows.Theorem 9. Suppose there exists a set in DTIME[2O(n)℄ that requires iruitsof size 2
(n) even when the iruits have aess to an orale for SAT. Thenfor all relativized worlds, every sparse set S and every positive onstant k, thereexists a tally set T and a tt-redution from S to T that asks nk logn queries andO(logn) bits of advie.Proof. Let S be a sparse set. The onstrution in the proof of Theorem 7 anbe seen as a tt-redution of S to the tally set T1 that makes nk logn queriesand gets O(n) bits as advie, namely the sequene of nk logn ~�i's, eah of length`(n) 2 O(logn).We will now show how the hypothesis of Theorem 9 allows us to redue therequired advie from O(n) to O(logn) bits.The requirement the ~�i's have to ful�ll is ondition (12). By a slight hangein the parameters of the proof of Theorem 7 (namely, by replaing k by 2k in(11)), we an guarantee that most sequenes ~�i atually satisfy (12). Sine theimpliation from left to right in (12) holds for any hoie of ~�i's, we really onlyhave to hek 8x 2 �n : x 62 S ) (9 i)R(x; ~�i) 62 T1: (13)Without loss of generality, we an assume that QR(�n)\T1 = QR(S\�n)\T1,where QR(X) = fR(x; �) jx 2 X and j�j = `(jxj)g. Therefore, we an replae(13) by the ondition8x 2 �n : x 62 S ) (9 i)R(x; ~�i) 62 QR(S \�n): (14)Sine S is sparse, this ondition on the ~�i's an be heked by a polynomial-sizefamily of iruits with aess to an orale for SAT: The iruit has a enumerationof the elements of S \�n built in, and one a polynomial-time enumeration ofS \�n is available, (14) beomes a oNP prediate.Under the hypothesis of Theorem 9, Klivans and Van Melkebeek [KvM99,Theorem 4.2℄ onstrut a polynomial-time omputable funtion f that mapsstrings of O(logn) bits to sequenes ~�i suh that most of the inputs map tosequenes satisfying (14). An expliit input to f for whih this holds, suÆes asadvie for our redution from S to T = T1. utSine we an enode the advie in a tally set and reover it from the tally setusing O(logn) queries, we obtain the following in the terminology of Theorem7.Corollary 3. Under the same hypothesis as in Theorem 9, for any onstantk > 0 every sparse set S is reduible to some tally set T under a 2-round tt-redution asking nk log n queries.



4.2 Relativized WorldsOur tight results about the reduibility of SPARSE to TALLY arry over tothe NP \ SPARSE setting.Theorem 10. For any onstant  > 0, there exists a relativized world whereNP \ SPARSE has no omplete sets under o(n= logn)-tt redutions that take � logn bits of advie.We also note that Theorem 4 an take up to n� !(logn) bits of advie.Theorem 11. There exists a relativized world where NP \ SPARSE has noomplete sets under dtt-redutions that take n� !(logn) bits of advie.On the positive side, we obtain:Theorem 12. Suppose there exists a set inDTIME[2O(n)℄ that requires iruitsof size 2
(n) even when the iruits have aess to an orale for SAT. Then forall relativized worlds and all values of k > 0, NP \ SPARSE has a ompleteset under tt-redutions that ask nk logn queries and O(logn) bits of advie.Proof. Let A be an arbitrary orale. Note that if the set S in Theorem 9 lies inNPA, then the set T also lies in NPA. SineNPA\TALLY has an m-ompleteset, the result follows. ut5 NP \ SPARSE and Other Promise ClassesInformally, a promise lass has a restrition on the set of allowable mahinesbeyond the usual time and spae bounds. For example, UP onsists of languagesaepted by NP-mahines with at most one aepting path. Other ommonpromise lasses inluded NP \ oNP, BPP (randomized polynomial time),BQP (quantum polynomial time) and NP \ SPARSE.Nonpromise lasses have easy omplete sets, for example:fhi; x; 1ji j Mi(x) aepts in at most j stepsg (15)is omplete for NP if Mi are nondeterministi mahines, but no suh analogueworks for UP.We say that UP has a uniform enumeration if there exists a omputablefuntion � suh that for eah i and input x, M�(i)(x) uses time at most jxji andhas at most one aepting path on every input and UP = [iL(M�(i)). Uniformenumerations for the other promise lasses are similarly de�ned.It turns out that for most promise lasses, having a omplete set and auniform enumeration are equivalent. Hartmanis and Hemahandra [HH84℄ showthis for UP and their proof easily generalizes to the other lasses. We inlude aproof here for ompleteness.Theorem 13 (Hartmanis-Hemahandra). The lasses UP, NP \ oNP,BPP and BQP have omplete sets under many-one redutions if and only ifthey have uniform enumerations.



Proof. We will give the proof forUP. The proofs for the other lasses are similar.Suppose UP has a omplete set L aepted by a UP mahine M that runsin time nk. Let f1; f2; : : : be an enumeration of the polynomial-time omputablefuntions suh that fi uses at most ni steps. De�ne M�(hi;iki)(x) to simply sim-ulate M(fi(x)).SupposeUP has a uniform enumeration via �. We de�ne the set L as follows:L = fhx; i; 1ki j �(i) outputs j in k steps and Mj(x) aepts in k stepsg (16)If A is inUP then A = L(Mj) where for some i, k and `, �(i) outputs j in k stepsand Mj runs in time n`. We de�ne the redution f(x) = hx; i; 1max(k;jxj`)i. utFor NP \ SPARSE neither diretion of the proof goes through. In the �rstpart, if fi is not honest then M�(i) may aept too many strings. In the seondpart, L might not be sparse if we merge too many sparse sets with di�erentensus funtions.In fat despite Theorem 3, NP \ SPARSE has a uniform enumeration (inall relativized worlds).Theorem 14. The lass NP \ SPARSE has a uniform enumeration.Proof. De�neM�(i)(x) as follows: First see if for anym � logn,Mi aepts morethanmi strings of lengthm by trying all possible omputation paths on all inputsof length m. If so then rejet. Otherwise simulateMi(x). Note that this will onlyenumerate sparse sets: If Mi aepts more than mi strings of length m for somem, L(M�(i)) will eventually beome �nite. On the other hand, if Mi aepts nomore than mi strings of length m for every m, then L(M�(i)) = L(Mi). utIn some sense Theorem 14 is a heat. In the uniform enumeration, all thesets are sparse but we annot be sure of the ensus funtion at a given inputlength. To examine this ase we extend the de�nition of uniform enumeration.De�nition 2. We say NP \ SPARSE has a uniform enumeration with sizebounds if there exists a omputable funtion � suh that NP \ SPARSE =[iL(M�(i)), and for all i and n, M�(i) aepts at most ni strings of length nusing at most ni time.Hemaspaandra, Jain and Vereshhagin [HJV93℄ developed a similar extensionfor the lass FewP.We an use De�nition 2 to prove a result similar to Theorem 13 for the lassNP \ SPARSE.Theorem 15. NP \ SPARSE has omplete sets under invertible redutions ifand only if NP \ SPARSE has a uniform enumeration with size bounds.Proof. Suppose NP \ SPARSE has a omplete set S under invertible redu-tions, that is for every NP \ SPARSE set A there are two polynomial-timeomputable funtions f and g suh that for all x, x is in A exatly when f(x) isin S, and g(f(x)) = x.



Suppose S has at most nk strings at eah length n. Let f1; f2; : : : be anenumeration of the polynomial-time funtions suh that fi uses time at most ni.Let us de�ne M�(hi;j;i(k+1)i) as follows: On input x, ompute y = fi(x) andaept if1. fj(y) = x, and2. y is in S.Note that this mahine an aept no more than ni(k+1) strings sine the twotests guarantee that we aept at most one string for every string in S of lengthat most ni.Now suppose NP \ SPARSE has a uniform enumeration with size bounds.We de�ne the omplete set as follows:L = fhx; 1i; 1ki j �k(i) = j, k � jxji, and Mj(x) aeptsg (17)where �k(i) = j means �(i) outputs j in k steps.The set L learly belongs to NP. It is sparse beause for any �xed i, k andn, there an be no more than k strings x of length n suh that hx; 1i; 1ki 2 L. IfA is in NP \ SPARSE then for some i, j and `, A = L(Mj), �(i) outputs j in `steps andMj runs in time jxji. We de�ne the redution f(x) = hx; 1i; 1max(`;jxji)iwhih is easily invertible. utThe promise lass NP \ SPARSE di�ers from the other lasses in anotherinteresting way. Consider the question as to whether there exists a languageaepted by a nondeterministi mahine using time n3 whih has at most oneaepting path on eah input that is not aepted by any suh mahine usingtime n2. This remains a murky open question forUP and the other usual promiselasses.For NP \ SPARSE the situation is quite di�erent as shown by Seiferas,Fisher and Meyer [SFM78℄ and �Z�ak [�Z�ak83℄.Theorem 16 (Seiferas-Fisher-Meyer,�Z�ak). Let the funtions t1 and t2 betime-onstrutible suh that t1(n+1) = o(t2(n)). There exists a tally set aeptedby a nondeterministi mahine in time t2(n) but not in time O(t1(n)).6 Open ProblemsSeveral interesting questions remain inluding the following.{ Theorem 7 whih shows that every sparse set redues to a tally set using O(n)queries does not seem to give a orresponding result for NP \ SPARSE-omplete sets. Is there a relativized world where NP \ SPARSE does nothave omplete sets under Turing redutions using O(n) queries? If we anonstrut the ~�i's in the proof of Theorem 7 in polynomial time using aessto a set in NP \ oNP, the answer is yes. However, the best we know is toonstrut them in polynomial time with orale aess to NPNP.
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