
An Oracle Builder’s Toolkit∗

Stephen Fenner† Lance Fortnow‡

Stuart A. Kurtz Lide Li§

University of Chicago

November 11, 2002

Abstract

We show how to use various notions of genericity as tools in oracle creation. In particular,

1. we give an abstract definition of genericity that encompasses a large collection of different
generic notions;

2. we consider a new complexity class AWPP, which contains BQP (quantum polynomial
time), and infer several strong collapses relative to SP-generics;

3. we show that under additional assumptions these collapses also occur relative to Cohen
generics;

4. we show that relative to SP-generics, ULIN∩ co-ULIN 6⊆ DTIME(nk) for any k, where
ULIN is unambiguous linear time, despite the fact that UP∪ (NP∩co-NP) ⊆ P relative
to these generics;

5. we show that there is an oracle relative to which NP/1∩co-NP/1 6⊆ (NP∩co-NP)/poly;
and

6. we use a specialized notion of genericity to create an oracle relative to which

NPBPP 6⊇MA.

Keywords: complexity classes, relativization, generic oracles, genericity, forcing.
∗This paper is an expanded version of one that appeared in Proceedings of the Eighth Annual IEEE Conference

on Structure in Complexity Theory, 1993, pages 120–131.
†Partially supported by NSF grants CCR 92-09833, CCR 95-01794, and CCR 99-96310, and by ARO grant

DAAD 190210048. Currently at University of South Carolina, Department of Computer Science and Engineering,

Columbia, SC 29208 USA. Some work done while at University of Southern Maine.
‡Partially supported by NSF grant CCR 92-53582. Currently at NEC Research Institute.
§Partially supported by NSF grant CCR 92-53582.

1

1 Introduction

Many constructions in structural complexity involve combining diagonalization and coding require-
ments. Such constructions face three kinds of difficulties: those intrinsic to the diagonalizations,
those intrinsic to the codings, and those arising out of interactions between coding and diagonal-
ization techniques.

The problems intrinsic to either diagonalizations or codings are often easily solved, while the
problems arising out of interactions usually prove to be the most challenging. In this paper, we
show how various notions of genericity can be used to overcome interaction difficulties.

The general concept of genericity has proven quite useful in oracle building. There are in fact
many different (usually mutually exclusive) ways to define when an oracle is generic. Each type of
genericity isolates those required properties of an oracle that can be enforced at intermediate stages
of an oracle construction. The best example of such requirements are those that can be satisfied
by extending the partial oracle a finite amount, perhaps to diagonalize against some relativized
computation. A Cohen generic oracle, defined in Section 4, is one that satisfies all definable
requirements of this type.1 There are, however, other types of diagonalization requirements that
are satisfied only by extending an infinite amount, and still others that must cohabit with coding
requirements to build the oracle we need. We will show that we can usually handle these other
types of requirements in a uniform way by defining alternate notions of genericity.

We therefore note a correspondence between sets of requirements needed to construct an oracle
on the one hand and notions of genericity on the other: a generic set is defined as one that meets all
requirements in a particularly specified set. This paper gathers evidence for the following thesis: for
any set of consistent requirements sufficient to construct an oracle with a desired property, one can
find an appropriate definition of genericity where all the generic sets under this definition satisfy
all the requirements and thus have the desired property. If the requirements in question include
any sort of diagonalizations, even if they are mixed with coding requirements, the corresponding
notion of genericity is nontrivial.

This correspondence has two useful implications.
First, explicit oracle constructions can be rephrased as proofs that any generic oracle (appro-

priately defined) can do the job. Rephrasing proofs in this way can lead to considerable conceptual
simplification. An explicit construction often involves interleaving coding and diagonalization re-
quirements, while worrying (a lot!) about how they might conflict with each other, all in one big
stage-by-stage construction. A generic oracle proof, on the other hand, separates this task neatly
into two independent parts:

• Choose an appropriate notion of genericity, and show that there exist sets which conform to
this notion.

• Show that each requirement that the oracle must satisfy is dense with respect to our chosen
notion of genericity, i.e., has the potential of being satisfied at any point.

1Definability is taken with respect to a countable formal language, such as first-order Peano arithmetic.

2

Taken together, these two facts automatically give an oracle that suffices for one’s purposes; in fact,
all the generic sets in question will suffice. One no longer needs to worry about how to interleave
requirements explicitly.

The benefits of such simplification are well-known in several cases involving Cohen generics,
where the requirements can always be met by finite extension. For example, a minor observation
regarding the construction of an oracle separating P from NP shows that any Cohen generic oracle
separates these two classes. Another example is implicit in the observation that Yao’s construction
of an oracle that separates the polynomial hierarchy works by finite extension, and so any Cohen
generic oracle must also separate the polynomial hierarchy. General techniques have been developed
to obtain results about Cohen generics; we will investigate some of them in Section 4, where we
show how several previously known oracle constructions can be replaced by results about Cohen
generics.

What about including requirements that can only be met by an infinite extension, or by explicitly
maintaining some invariant for an infinitely long time (coding requirements)? It is less obvious, but
such constructions can also be turned into generic oracle proofs, using notions of genericity other
than Cohen genericity. One such notion is SP-genericity, which we define in Section 5, and another
we will use in Section 7.2. In fact, there are a wide variety of different notions of genericity useful
in complexity theory, each with its own particular properties (see Sections 3 and 8). We do not
wish to imply that using genericity to prove the existence of oracles obviates the need for cleverness
or ingenuity. We merely wish to assert that the added modularity in a generic oracle proof allows
one to concentrate on the intricacies of the individual requirements themselves, rather than on how
different requirements interact.

The second practical implication of the correspondence between requirements and genericity
is that we often discover oracles with certain properties without explicitly constructing them, by
simply considering various notions of genericity. Given some particular notion of genericity, it will
be the case that any reasonable complexity theoretic property P either holds for all generics or none
of them. Thus, it is a natural question to ask, “does a generic set satisfy P or not?” Answering
such a question is considerably less daunting than trying to construct an oracle satisfying property
P from scratch. To resolve the question, one can work incrementally, trying to prove the question
true and false simultaneously, and gathering useful facts along the way. Hopefully, one proof
strategy wins in the end. If the answer turns out to be affirmative, an explicit oracle construction
is unnecessary.

This was exactly the line of attack used to discover an oracle for which the Berman-Hartmanis
Isomorphism Conjecture holds [FFK96]. The notion of SP-genericity (see Section 5) was defined
and many of its properties studied before its effect on the Conjecture was known. It was natural
to try to determine the status of the Conjecture relative to SP-generic oracles. We originally
attempted to prove that the Isomorphism Conjecture failed relative to these oracles. A careful
analysis of where the proof broke down led to the correct proof that it held relative to SP-generics.
Most importantly, this proof was built in a piecemeal fashion; it combines a number of smaller

3

results about SP-generics that were shown independently, and that bear no obvious relationship
to each other. It is difficult for us to imagine how one could have the foresight to formulate all at
once the widely different types of requirements needed to perform the construction from scratch,
without knowing at the outset how such requirements needed to be combined. The success of
applying the properties of SP-generic sets to the Isomorphism Conjecture is to our knowledge the
best illustration of the benefits of the genericity approach to oracle results in complexity theory.

In Section 3 we give a general framework for defining different types of generic sets in terms of
arithmetic forcing. It is well-known that there are often equivalent ways of defining genericity as a
purely topological notion, using the ideas of Baire category. We mention these as well.

In Section 4, we systematically assemble a number of basic facts about Cohen generic sets,
many of which are generalizations of known results [BI87]. We then use these results together
with the technique of ‘rerelativization’ to produce a number of oracles that cause the Isomorphism
Conjecture to fail in a variety of different ways.

We define SP-generic sets in Section 5, and recount some of their basic properties. The definition
of SP-genericity we give there is simpler and more managable than the original definition of SP-
genericity given in [FFK96], where it was denoted “sp-genericity.” The SP-generic sets defined
in the present paper, however, are easily seen to possess all the same useful properties of the
original SP-generics of [FFK96]. We end Section 5 with a result that ties SP-genericity with the
construction of exact pairs in computability theory.

In Section 6 we show how generic oracles collapse complexity classes. We unify and extend
results in [BI87, IN88, FFK96] by showing that a large number of interesting complexity classes
collapse to P relative to SP-generic oracles. We also use the notion of certificate complexity
and a new complexity class AWPP to present a general criterion for when such collapses occur.
Recently, Fortnow and Rogers [FR99] have shown that AWPP contains BQP, the class of all
languages decided by a quantum computer in bounded error probabilistic polynomial time [BV97].
Thus relative to SP-generics, P = BQP but PH separates. By similar proof techniques, all
these collapses also occur relative to Cohen generics, given certain assumptions about unrelativized
classes.

In contrast to Section 6, in Section 7 we give nontrivial separation results relative to generics.
We show that there is an oracle relative to which

NP/1 ∩ coNP/1 6⊆ (NP ∩ coNP)/poly.

We also show that there is an oracle A relative to which MA 6⊆ NPBPP. The proof introduces
a new notion of genericity that is different from both Cohen and SP-genericity. Finally, we show
that SP-generics separate various linear time promise classes from DTIME(nk) for all k.

We describe further research and present some open problems in Section 8.

4

2 Preliminaries

This paper treads across a number of mathematical areas (logic, computability, computational
complexity) with differing and sometimes conflicting notational conventions for basically the same
concepts. We will use notation that is mostly idiomatic to the subject at hand.

We let Σ = 2 = {0, 1} and let Σ∗ be the set of all finite binary strings. For n ≥ 0 we let Σn

and Σ≤n be the sets of binary strings of length equal to n and at most n, respectively. We use ω to
denote the set {0, 1, 2, . . .} of natural numbers, which we identify with binary strings in the usual
lexicographical way. We let Z denote the integers. Let f and g be partial functions on ω (or Σ∗).
We say that f extends g (f � g) if dom(g) ⊆ dom(f) and f agrees with g on g’s domain. If in
addition f 6= g, then we may write f � g. This sense of the � relation is the one commonly found
in the literature of computability theory and computer science, so we adopt it here even though it
is the reverse of the standard partial order notation for forcing. We say that f and g are compatible
if they share a common extension. We say f is a partial characteristic function or partial oracle if
range(f) ⊆ 2, and a finite characteristic function if, in addition, dom(f) is finite.

We let ε denote the empty string, and we let |σ| denote the length of string σ. We may also
regard string σ as a finite characteristic function whose domain is an initial segment of ω (or Σ∗).
Thus dom(σ) = {0, . . . , |σ| − 1}. If x and y are strings, then xy is the concatenation of x followed
by y, and for n ∈ ω, xn is the n-fold concatenation of x with itself. We use A,B,C, . . . to denote
arbitrary subsets of ω, which of course are canonically identified with subsets of Σ∗ (“languages”)
and with total functions ω → 2 or Σ∗ → 2.

Let M be a deterministic oracle machine, σ a partial oracle, and x ∈ Σ∗. We write Mσ(x)↓ to
mean M halts on input x where all M ’s oracle queries are in dom(σ) and are answered according
to σ.

If E is some expression then λx.E denotes the function that, on input y, outputs [y/x]E, that
is, E with the value y substituted for all free occurrences of x in E.

We assume knowledge of standard complexity classes and other complexity theoretic concepts.
These may be found in a number of places [BDG88, BDG90, Pap94]. For example, when we
say that a one-to-one (not necessarily onto) function f : Σ∗ → Σ∗ is invertible in ptime, we mean
left-invertible in ptime.

2.1 Counting Classes

In Section 6 we will refer to several classes that may not be widely known. These are mostly
counting classes described in, for example, [FFK94, For97, Sch90]. For completeness, we define
them here and give their basic properties.

Definition 2.1 ([Val79]) A function f : Σ∗ → ω is in #P if there is a nondeterministic polynomial-
time Turing machine M such that f(x) is the number of accepting paths of M on input x, for all
x ∈ Σ∗.

5

The rest of the information in this section is from [FFK94], which can be consulted for more
details.

Definition 2.2 A function f : Σ∗ → Z is in GapP if there are two #P functions f+ and f− such
that f(x) = f+(x) − f−(x) for all x. Equivalently, f ∈ GapP if there is a nondeterministic
polynomial-time Turing machine M such that f(x) is the number of accepting paths minus the
number of rejecting paths of M on input x (denoted gapM (x)).

It is easily shown that

GapP =
{
λx.

(
2p(|x|) − f(x)

)
| f ∈ #P and p a polynomial

}
,

and that GapP has the following closure properties:

1. #P ⊆ GapP.

2. If f ∈ GapP then −f ∈ GapP.

3. If f(·, ·) ∈ GapP and p is a polynomial, then g(·), h(·) ∈ GapP, where

g(x) =
∑

y,|y|≤p(|x|)

f(x, y)

and
h(x) =

∏
n,n≤p(|x|)

f(x, 0n).

Several counting classes can be defined easily using GapP.

Definition 2.3

• A language L is in PP (“probabilistic polynomial time”) if there is an f ∈ GapP such that
for all x ∈ Σ∗,

x ∈ L ⇐⇒ f(x) > 0.

• A language L is in C=P (“exact counting polynomial time”) if there is an f ∈ GapP such
that for all x ∈ Σ∗,

x ∈ L ⇐⇒ f(x) = 0.

• A language L is in ⊕P (“parity polynomial time”) if there is an f ∈ GapP such that for all
x ∈ Σ∗,

x ∈ L ⇐⇒ f(x) is odd.

6

• A language L is in SPP (“stoic PP”) if there is an f ∈ GapP such that for all x ∈ Σ∗,

x ∈ L ⇒ f(x) = 1,

x 6∈ L ⇒ f(x) = 0.

• A language L is in WPP (“wide PP”) if there is an f ∈ GapP and g ∈ FP such that, for
all x ∈ Σ∗, g(x) > 0 and

x ∈ L ⇒ f(x) = g(x),

x 6∈ L ⇒ f(x) = 0.

• A language L is in LWPP (“length-dependent WPP”) if there is an f ∈ GapP and g ∈ FP
such that, for all x ∈ Σ∗, g(x) > 0 and

x ∈ L ⇒ f(x) = g(0|x|),

x 6∈ L ⇒ f(x) = 0.

The following inclusions are known [FFK94]:

P ⊆ UP ⊆ FewP ⊆ Few ⊆ SPP ⊆ LWPP ⊆WPP

⊆ C=P ∩ co-C=P ⊆ C=P ∪ co-C=P ⊆ PP.

It is known that the Graph Isomorphism problem is in LWPP, and Graph Automorphism is in
SPP [KST92]. More recently Graph Isomorphism has been shown to be in SPP [AK02]. The
class AWPP (“approximate WPP”), defined in Section 6, contains WPP, but probably does not
contain C=P or co-C=P. All the definitions above relativize in the usual way.

3 Abstract Genericity

This section gives a detailed treatment of the theory of generic oracles. A full understanding of
this section is not required for understanding the remaining parts of the paper. Corollary 3.16 and
Lemma 3.17 are the most important facts, and the latter does not mention the forcing relation.

3.1 Basic Definitions and Lemmas

In this subsection, we will discuss forcing in arithmetic in greater generality than usual. The results
given here are standard in the literature, with some occasional minor variations. This section is
meant primarily as a primer on forcing in arithmetic. Let 〈ω,+,×, 0, S〉 be the standard model of
Peano Arithmetic (S is the successor function). We let 2ω be the space of infinite binary sequences
endowed with the Cantor topology, so that each basic open set corresponds to a finite characteristic
function σ and consists of all infinite binary sequences extending σ. We identify subsets of ω with
infinite binary sequences via their characteristic functions.

7

Definition 3.1 A condition is a nonempty perfect subset of 2ω.

Recall that the perfect sets are closed sets without isolated points. A perfect subset of 2ω is
identified uniquely with a complete (fully branching) binary subtree of the full binary tree {0, 1}∗,
and vice versa, so it is sometimes better to view a condition as a tree. This allows us to speak
unambiguously about the 0-branch or 1-branch of a condition.

Definition 3.2 Let γ be a condition and let b ∈ {0, 1}. The b-branch of γ is the condition

{A ∈ γ | A(m) = b} ,

where m ∈ ω is least such that (∃A,B ∈ γ) A(m) 6= B(m).
For k > 1 and b1, . . . , bk ∈ {0, 1}, we inductively define the b1 · · · bk-branch of γ to be the

b2 · · · bk-branch of the b1-branch of γ.

Note that the 0- and 1-branches of a condition are also conditions.
From our point of view, conditions are approximations to subsets of ω (single infinite binary

sequences), where the latter are ultimately identified with subsets of 2<ω = Σ∗ for the purposes of
computation. An important special case of a condition is the set of total characteristic functions
extending some given partial function with coinfinite domain; in such cases we will identify the
condition with the partial function itself.

Definition 3.3 A notion of genericity is a nonempty set G of conditions such that, for all γ ∈ G,
all G ∈ γ, and all n ∈ ω, there is a condition γ′ ∈ G such that γ′ ⊆ γ and (∀G′ ∈ γ′)[G′(n) = G(n)].

The conditions of G are called G-conditions.

The closure property of Definition 3.3 simply enables us to refine any approximation (G-
condition) γ to completely determine the value of the oracle being approximated at any particular
input. It is also exactly the restriction necessary to prove one of the basis cases of Lemma 3.14
below. Note that Definition 3.3 implies that both the 0- and 1-branches of any G-condition contain
other G-conditions as subsets. Further, Definition 3.3 holds if all branches of any G-condition con-
tain other G-conditions as subsets, i.e., if for all γ ∈ G and all s ∈ 2<ω, there is a γ′ ∈ G which is a
subset of the s-branch of γ.

Remark A more traditional and more general approach to forcing and genericity would be to
start with an arbitrary partial order 〈P,≤〉 and let the conditions be the elements of P . Here we
restrict our partial orders to be particular families of perfect subsets of 2ω, partially ordered by
⊆ and satisfying Definition 3.3. Our restricted approach has the benefit of concreteness and is
more directly suited to constructing oracles. Traditionally, one defines forcing on 〈P,≤〉 in order to
obtain generic subsets of P . The information in these subsets must then be extracted to produce
oracles according to some explicit translation scheme that depends on the situation at hand. Our
approach makes this last translation step trivial and uniform over all the notions of genericity we

8

consider—we simply take the intersection of all elements of the generic subset (see Definitions 3.6
and 3.7 below). Furthermore, the added generality of the traditional approach does not really buy
us anything here; to our knowledge, all types of generic oracles used in complexity theory can be
built using notions of genericity obeying Definition 3.3.

For the rest of this section, we will assume that G is some fixed but arbitrary notion of genericity.

Definition 3.4 Let LPA[X] be the language of Peano Arithmetic, augmented by a unary predicate
symbol X. Let sent(LPA[X]) be the set of sentences (formulas with no free variables) in LPA[X].

We assume that the only logical operators in LPA[X] are ¬, ∨, and ∃; the other standard
operators are defined in terms of these three. The G-forcing relation G on G × sent(LPA[X]) is
defined by a simple recursion on the structure of formulas, which is essentially Tarski’s definition
of truth except in the case of negation. If n ∈ ω, we let n̄ denote the formal term SS · · ·S︸ ︷︷ ︸

n

0. The

variables γ and τ range over G.

γ G ϕ ⇐⇒
[
ϕ is true in ω (where ϕ is atomic and
X does not occur in ϕ)

]
, (1)

γ G X(n̄) ⇐⇒ (∀A ∈ γ) A(n) = 1 (where n ∈ ω), (2)

γ G ϕ ∨ ψ ⇐⇒ γ G ϕ or γ G ψ, (3)

γ G (∃x)ϕ ⇐⇒ (∃a ∈ ω) γ G [ā/x]ϕ, (4)

γ G ¬ϕ ⇐⇒ (∀τ ⊆ γ) τ 6G ϕ. (5)

A condition τ extends a condition γ if τ ⊆ γ. The intuition behind the term “extends” is that τ
more completely specifies the oracle than γ. Thus, clause (5) says roughly that ¬ϕ is forced iff we
can never force ϕ by refining our approximation of the oracle. Note that if γ G ϕ and δ ⊆ γ, then
δ G ϕ via a straightforward induction. Note also that γ G ¬X(n̄) iff (∀A ∈ γ) A(n) = 0, by
the closure property in Definition 3.3. We will usually drop the subscript from if the underlying
notion of genericity is clear from the context. In this section it will always be G.

One more clarification: when we identify partial characteristic functions with conditions, we
have σ � τ as partial functions if and only if σ ⊇ τ as conditions. In either sense, we still say
that τ extends σ. Likewise, if A ⊆ ω, then saying σ ≺ A assumes that we identify A with its total
characteristic function and σ with a partial function; if we view σ as a condition and A an element
of 2ω, we would say A ∈ σ to mean the same thing.

For any set S of conditions, we say that A meets S if A ∈ σ (σ ≺ A) for some σ ∈ S. For S ⊆ G,
we say that S is dense (in G) if for every σ ∈ G there is a τ ∈ S with σ ⊇ τ . For any Y ⊆ 2ω, we
say Y is dense in G if σ ∩ Y 6= ∅ for all σ ∈ G.

The following lemmas and definitions are standard.

Lemma 3.5 For every sentence ϕ of LPA[X], the set {α : α ϕ ∨ ¬ϕ} is dense in G, i.e., for all
γ ∈ G, there exists a δ ∈ G such that δ ⊆ γ and either δ ϕ or δ ¬ϕ.

9

Proof: Given γ suppose there is no δ ⊆ γ such that δ ϕ. Then by definition, γ ¬ϕ, so we
take δ = γ. �

The peculiar definition of forcing negations was chosen by Cohen precisely to facilite the proof of
Lemma 3.5. Our next goal is to extend the concept of forcing by elements of G (which approximate
oracles) to forcing by the oracles they approximate. However, we must first introduce generic filters,
which one may alternatively call “consistent approximation schemes.” These objects come from
a standard way of defining genericity in set theory (see [Kun80] or [Jec78] for example, and the
Remark above). Each generic filter will uniquely determine an oracle.

Definition 3.6 A generic filter over G is a subset G ⊆ G such that

1. (∀σ, τ ∈ G)[τ ∈ G & τ ⊆ σ → σ ∈ G],

2. (∀σ1, σ2 ∈ G)(∃τ ∈ G) τ ⊆ σ1 ∩ σ2 (i.e., τ extends both σ1 and σ2), and

3. For each ϕ ∈ sent(LPA[X]), there is a γ ∈ G such that γ ϕ ∨ ¬ϕ.

Condition (3) implies that G 6= ∅. Moreover, since (i) 2ω is compact (with respect to the
Cantor topology), (ii) all G-conditions are perfect sets and hence closed, and (iii) the intersection
of any finite number of G-conditions in G is nonempty by Condition (2), it follows that

⋂
G 6= ∅.

Furthermore, for each n ∈ ω, there is a γ ∈ G such that γ X(n̄) ∨ ¬X(n̄), which implies that
A(n) is the same for all A ∈ γ. It follows that

⋂
G is a singleton.

Definition 3.7 A set G ⊆ ω is G-generic if there is a generic filter G over G with
⋂
G = {G}. In

such a case, we say that G builds G.

We can now define forcing for generic filters over G and for G-generic sets.

Definition 3.8 Let G be a generic filter over G, and let ϕ ∈ sent(LPA[X]) be some sentence. We
say that G ϕ if there is a γ ∈ G such that γ ϕ.

We will see shortly (Lemma 3.14) that, given ϕ as above, the question of whether or not G ϕ
depends only on the G-generic set built by G, and thus the following definition makes sense:

Definition 3.9 Let G be a G-generic set, and let ϕ ∈ sent(LPA[X]). We say that G ϕ if some
(equivalently, every) generic filter over G that builds G also forces ϕ.2

In the meantime, we consider an important special case that applies to most of our notions of
genericity.

Definition 3.10 We say that G is basic if for every σ1, σ2 ∈ G and every A ∈ σ1 ∩σ2, there exists
a τ ∈ G with A ∈ τ ⊆ σ1 ∩ σ2.

2Often, there will be only one unique filter building G.

10

Most of the notions of genericity that we will work with are basic. In particular, all of the notions
we consider that are made up of conditions corresponding to partial characteristic functions are
basic. One chief advantage of basic notions is that they allow us to dispense with talk of generic
filters. For example,

Lemma 3.11 Suppose G is basic. Let G be G-generic and ϕ ∈ sent(LPA[X]). Then G ϕ if and
only if there exists a γ ∈ G such that G ∈ γ and γ ϕ.

Proof: Use Definition 3.9 and the fact that if G is basic, then {γ ∈ G | G ∈ γ} is a generic filter
over G (the biggest) that builds G. �

The reason for all of this machinery is, of course, to obtain G-generic sets. This would be a lot
of work for naught unless G-generics exist. Fortunately, they do, and in abundance.

Lemma 3.12 (Existence of Generic Sets) For every notion of genericity G, the set of G-generic
sets is dense in G, i.e., for every γ ∈ G, there is a G-generic set G ∈ γ (in fact, there are precisely
2ℵ0 (continuum) many generic sets in γ).

Proof: We first prove density. Let {ϕi}i∈ω be an enumeration of all sentences of LPA[X]. Fix
γ ∈ G, and let γ−1 = γ. For all i ≥ 0, given γi−1, choose γi extending γi−1 such that γi ϕi ∨ ¬ϕi
(cf. Lemma 3.5). Let G = {δ ∈ G | (∃i) γi ⊆ δ}. It is easy to check that G is a generic filter over G
which builds some element of γ.

To show abundance, we modify the construction above slightly as follows: Let γε = γ (ε
is the empty string). For all w ∈ Σ∗ and b ∈ {0, 1}, given γw, choose γwb to extend the b-
branch of γw such that γwb ϕ|w| ∨ ¬ϕ|w|. For any infinite binary sequence A ∈ 2ω, define
GA = {δ | (∃w ∈ Σ∗) w ≺ A & γw ⊆ δ}. The GA are all generic filters over G building distinct
generic sets. �

Finally, we need to make the formal connection between forcing and truth, i.e., between our
approximations to truth (forced sentences), and the theory of the objects being approximated
(subsets of ω, i.e., oracles). Given A ⊆ ω, let ω[A] be the expansion of the standard model of
Peano Arithmetic to the language LPA[X] in which X is interpreted as A, that is, Xω[A] = A. For
ϕ ∈ sent(LPA[X]), the expression ω[A] � ϕ means that ϕ is true (in the standard model) when X

is interpreted as A. We may write ϕA to stand for ω[A] � ϕ. An easy connection between truth
and forcing is the following, which will be used in later sections.

Proposition 3.13 For all σ ∈ G and ϕ ∈ sent(LPA[X]), if (∀A ∈ σ) ω[A] � ϕ, then σ ϕ.

Proof: Induction on the syntax of ϕ. �

The next connection is more significant.

11

Lemma 3.14 (Forcing is Truth) Let G be any generic filter over G and let G be the G-generic
set built by G. Then for all ϕ ∈ sent(LPA[X]), we have G ϕ if and only if ω[G] � ϕ.

Lemma 3.14 justifies Definition 3.9 by showing that G ϕ is independent of the generic filter
building G. Through the lens of Definition 3.9, it just says that G ϕ if and only if ω[G] � ϕ.

Proof of Lemma 3.14: We use a straightforward induction on the syntactical structure of ϕ.

• The lemma is clear if ϕ is atomic and does not mention X.

• If ϕ = X(n̄), then we have

G X(n̄) ⇐⇒ (∃γ ∈ G) γ X(n̄)

⇐⇒ (∃γ ∈ G)(∀A ∈ γ) A(n) = 1

⇐⇒ G(n) = 1

⇐⇒ ω[G] � X(n̄).

The first two equivalences follow from the definition of forcing. The third follows from the
fact that, for any G′ building G, there is a γ ∈ G′ that forces X(n̄)∨¬X(n̄), and if γ ¬X(n̄)
then G(n) must be 0.

• The cases for disjunctions and existentials are obvious.

• For negations, we have

G ¬ϕ ⇐⇒ (∃γ ∈ G) γ ¬ϕ

⇐⇒ (∀γ′ ∈ G) γ′ 6 ϕ

⇐⇒ G 6 ϕ

⇐⇒ ω[G] 6� ϕ

⇐⇒ ω[G] � ¬ϕ.

To see the second equivalence, suppose some γ′ ∈ G forces ϕ; then γ and γ′ have a mutual
extension in G that forces both ϕ and ¬ϕ—a contradiction. The fourth equivalence follows
from the inductive hypothesis.

�

The next lemma gives another connection between truth and forcing, this time with forcing
negations. Here we have a nice extensional characterization of forcing negations in the case where
G is basic.

Lemma 3.15 Suppose G is basic. Then, for every γ ∈ G and every ϕ ∈ sent(LPA[X]),

γ ¬ϕ ⇐⇒ (∀ G-generic G ∈ γ) ω[G] 6� ϕ.

That is, γ ¬ϕ iff ϕ is false for all generic elements of γ.

12

Proof: Suppose γ ¬ϕ. Then no extension of γ forces ϕ. Suppose ω[G] � ϕ for some G-generic
G ∈ γ. Then by Lemmas 3.11 and 3.14, G ∈ σ for some σ ∈ G that forces ϕ. Since G is basic, γ
and σ have a common extension, which also forces ϕ—a contradiction.

Conversely, suppose γ 6 ¬ϕ. Fix a G-condition σ ⊆ γ such that σ ϕ. By Lemma 3.12, there
is a G-generic G ∈ σ. By Lemma 3.11, G ϕ and hence ω[G] � ϕ by Lemma 3.14. �

Corollary 3.16 If G is basic and γ ∈ G, then γ ¬¬ϕ iff ω[G] � ϕ for all G-generic G ∈ γ.

(Statements similar to Lemma 3.15 and Corollary 3.16, involving generic filters, hold for arbi-
trary G (not necessarily basic).)

Forcing the double negation is sometimes referred to as weak forcing, although some authors
prefer simply to call it forcing, and refer to our definition as “strong forcing.” Strong forcing
clearly implies weak forcing. Corollary 3.16 points to two conceptual advantages of weak forcing
over strong forcing: first, it gives a clean “extensional” characterization of forcing, without referring
to the syntactic structure of ϕ; as a consequence, weak forcing respects equivalent formulas, i.e., if
ϕ1 and ϕ2 are equivalent in ω[A] for all A, and σ is any condition, then σ ¬¬ϕ1 iff σ ¬¬ϕ2.
We’ll mention weak forcing particularly in the proof of Lemma 6.8.

Lemmas 3.11, 3.14, and 3.15, when taken together, have strong intuitive and practical appeal.
They imply (at least for basic G) that a given generic set G satisfies a given arithmetical property
P if and only if all generic sets in some G-condition containing G also satisfy P . In a rough sense, G
satisfies P iff P is ensured at some “finite” stage of G’s “construction”; if one had to work forever
to preserve P (say if P were some kind of coding requirement), then G would simply not satisfy P .
This fact alone is useful enough, and it captures the essence of forcing without explicitly mentioning
forcing or generic filters at all.

Lemma 3.17 If G is basic, G is G-generic, and ϕ ∈ sent(LPA[X]), then

ω[G] � ϕ iff (∃γ ∈ G)[G ∈ γ & (∀G-generic G′ ∈ γ) ω[G′] � ϕ].

Proof: By Lemmas 3.11 and 3.14 and Corollary 3.16. �

We are aware of seven previous notions of forcing in arithmetic, all of which are special cases
of our Definition 3.3 above. Cohen [Coh63, Coh64] introduced the notion of forcing in set theory
to establish the independence of the continuum hypothesis from ZFC. His ideas were transferred
to arithmetic in the guise of finite function forcing by Feferman [Fef65]. Finite function forcing
(and the derived notion of Cohen genericity over ω) has been extensively studied in computability
theory (see Jockusch [Joc80] for a slightly dated but very useful survey) and computer science
(e.g., [Meh73, BI87, AS96] and others). Spector [Spe56] implicitly used forcing with computable
trees to construct a minimal Turing degree. Sacks [Sac71] considered forcing with arithmetical and

13

pointed perfect sets.3 See Odifreddi [Odi83] for a detailed technical development of Feferman’s
and Sacks’s ideas in a context different from that presented in the present paper. Two notions of
genericity—similar to each other—were used by Slaman and Woodin to get results on definability
in the Turing and enumeration degrees [SW86, SW97]. The notion of SP-genericity, defined in
Section 5, was used by Fenner, Fortnow, and Kurtz [FFK96] to establish the existence of an oracle
relative to which the Isomorphism Conjecture holds. SP-genericity is really just a variant of what
one might call “exact pair forcing” (à la Kleene-Post [KP54], see Section 5.1), whose definition is
calibrated for complexity theory.

Finally, random sets, studied extensively by many people and first used as oracles in complexity
theory by Bennett and Gill [BG81], also fall under our scheme as R-generic sets for a particular
notion of genericity R. The fact that randomness may be viewed as a particular form of genericity
has been known for some time [Sol70]. The set R consists of those conditions, all of whose branches
have positive Lebesgue measure, i.e., ρ ∈ R iff ρ, its 0- and 1-branches, the 0- and 1-branches of
its 0- and 1-branches, etc. all have positive measure. More precisely, R is the largest notion of
genericity satisfying: (1) all R-conditions have positive Lebesgue measure, and (2) both the 0- and
1-branches of any R-condition are R-conditions. It can be easily shown that all R-generic sets are
arithmetically random,4 and µ({R | R is R-generic}) = 1. R is not basic.

3.2 Relativized Genericity

All the preceding concepts, definitions, and results can be relativized in a straightforward way. We
will need relativized genericity in Section 4 when we discuss the rerelativization technique, starting
with Theorem 4.10.

Fix a set B ⊆ ω. Forcing and truth relative to B is defined just as in the unrelativized case,
except that we expand both the language LPA[X] and the standard model ω of Peano Arithmetic
to include B as an extra unary predicate. Consequently we obtain the notion of “G-generic in B,”
or “G-generic relative to B,” or “G-generic with respect to B,” et cetera. All the results of this
section relativize to B in this manner.

Finally, two unary predicates can be collapsed to one in arithmetic formulas by using the join
operator. That is, given any formula ϕ of LPA[X,Y] mentioning the two unary predicates X and
Y , we can effectively find a formula ψ of LPA[X] such that for all A,B ⊆ ω,

ω[A,B] � ϕ iff ω[A⊕B] � ψ.

This comes up first in the proof of Theorem 4.10, where we relativize to an oracle R, then rerelativize
to another oracle G. This is tantamount to relativizing once to the oracle R⊕G.

3A pointed perfect set is a subtree of 2ω that can be computed given any of its branches. For example, all

conditions corresponding to partial characteristic functions with computable domains are pointed perfect sets.
4A set is arithmetically random if it is contained in all (first-order) arithmetically definable subclasses of 2ω with

Lebesgue measure 1.

14

3.3 Further Remarks

We conclude this section with some technical remarks of possible interest to specialists.
The notions of genericity studied in logic generally require that individual forcing conditions

be arithmetically definable (or arithmetically definable in any generic they contain, as in Sacks’s
pointed perfect forcing). Such a restriction is often useful, because it makes it possible to reason
formally about the forcing process in ω (or ω[G] for pointed perfect forcing). Nevertheless, no such
hypothesis is needed for the crucial Lemmas 3.12 and 3.14.

It is also possible to formalize forcing over structures other than ω. Indeed, the first—and
historically most important—application of forcing was in the context of set theory. We would
very much prefer to formalize forcing over a suitable theory of Σ∗ rather than ω, simply because
then our generics would be oracles, rather than encodings of oracles. While it is clear in principle
that such a theory must exist (and in the sequel, we generally describe our forcing conditions as
though they were subsets of 2Σ∗ rather than 2ω), there are significant technical difficulties that
remain to be surmounted. It is clear that if we view Σ∗ as the theory of two successors—much
as Peano Arithmetic is the theory of one successor—we can arrive at an appropriate theory. The
quickest approach is simply to add countably many new function symbols, one for each primitive
recursive function over Σ∗; along with axioms that give the corresponding definitions. The defect
of such an approach is that it requires a countable, rather than simply a finite language. For a
logician, the addition of countably many new symbols presents no essential difficulties. For us as
computer scientists, it is important that our languages ultimately have finitely based representa-
tions, for otherwise they have no concievable connection to the practice of computing. Much of the
attractiveness of the Incompleteness Theorem for Peano Arithmetic (and the metamathematical
encoding upon which the Incompleteness Theorem is based) for us comes from the fact that a
finite language ({0,+,×, S}) suffices. Obviously there is a theory of Σ∗ with finite signature that is
sufficiently powerful for our purposes—one needs only those symbols necessary to define the Kleene
T-predicate—but whether or not we can identify some simple set of functions and relations, with
interpretations over Σ∗ as natural as the interpretations of + and × are over ω, remains to be seen.

It may also be helpful to reflect on topological issues in forcing. These issues are clearest in
the case of Cohen (finite function) forcing, since the forcing conditions themselves are merely the
basic clopen sets of the Cantor topology of 2ω. Such topological issues are helpful in any case,
however, inasmuch as our forcing conditions are necessarily compact. From such a perspective,
the generic existence theorem is readily reducible to the well-known theorem that in a Hausdorff
space the intersection of any nested sequence of compact sets is nonempty. For Cohen forcing, the
Baire category theorem is an even more relevant idea from topology. The set of Cohen generics can
serve as the set of primitive elements (“Ur-elements”) of the arithmetical comeager sets: the set of
Cohen generics is comeager, it is a (proper) subset of every arithmetical comeager set, and in fact
is precisely the intersection of all arithmetical comeager sets.5

5This last fact follows from Cohen conditions being encodable as finite objects and the arithmetic definability of

the set {σ | σ ϕ} for any fixed ϕ.

15

The topological properties of Cohen forcing mentioned above can be generalized to basic notions
of genericity. For G to be basic simply means that G is a basis for a topology T on

⋃
G. The essential

properties of G are now reducible to the following two simple facts about T :

• 〈
⋃
G, T 〉 is a Baire space, by essentially the same proof that G-generic sets exist, and

• For any ϕ ∈ sent(LPA[X]), the set Sϕ
df=
⋃
{σ ∈ G | σ G ϕ ∨ ¬ϕ} is open and dense in

⋃
G,

whence the comeager set ⋂
ϕ∈sent(LPA[X])

Sϕ

consists of exactly the G-generic elements of
⋃
G.

In the case of Cohen forcing (next section), T is the Cantor topology.
Having laid out the connections with topology, we must caution that there is more going on

here than simple compactness. We have phrased forcing and genericity in terms of a unary relation
X over ω. There is nothing about the idea of forcing, however, that restricts us to unary relations.
The adaptation of forcing to relations of higher arity, or even to functions presents no interesting
difficulties. The point is that even though 2ω (or even 2ω

n
) is compact, ωω is not. The existence

theorem for generics still goes through, albeit by a simple tree pruning argument that doesn’t seem
to have an equally simple topological expression.

We also note that the extension of forcing and genericity from an individual relation or function
symbol to a countable set of relations and/or functions symbols is also routine. Although none of
the particular examples has survived to this paper, an earlier proof of Theorem 7.1 relied on the
simultaneous forcing of a relation (oracle) and function (advice function).

4 Cohen Genericity

We will first consider finite function forcing, i.e., Cohen forcing, where the conditions are all the
partial characteristic functions on ω with finite domain. The resulting notion of genericity is
clearly basic (see Definition 3.10), and any Cohen generic set G is built by exactly one generic
filter: {γ | γ ≺ G} (see Definition 3.6). In this section, “generic” always means Cohen generic, and
“forces” is forcing with finite functions. We assume the usual Cantor topology on 2ω, of which
the finite functions form a basis. We identify in the obvious way (binary) strings (elements of Σ∗)
with finite characteristic functions whose domains are initial segments of ω. The following lemma
is well-known (see [Joc80]):

Lemma 4.1 A set G is Cohen generic (in our sense) if and only if G meets every dense set of
strings that is (coded as) an arithmetically definable element of 2ω.

Definition 4.2 Let ϕ0(X;x), ϕ1(X;x), . . . be a sequence of formulas in LPA[X], each with at most
x free. For all A ⊆ ω and i ∈ ω, let

Li(A) = {x | ω[A] � ϕi(X;x)} ,

16

and let CA = {Li(A) | i ∈ ω}. Let C be the operator that takes A to CA. We call C a relativizable
complexity class if

1. for all i, the operator λX.Li(X) is continuous, i.e., for each x ∈ ω, and each A ⊆ ω, Li(A)(x)
depends on only finitely much of A, and

2. for all A,B ⊆ ω, if A4B is finite then CA = CB = CA⊕∅ = C∅⊕A.

Most relativizable machine-based complexity classes studied fall under this definition. For
example, to get NPA, we let ϕi(A;x) say “the ith polynomial-time nondeterministic oracle TM
(NOTM) with oracle A accepts x.” To get NPA ∩ co-NPA, we let ϕ〈i,j〉(A;x) say “with oracle
A, the ith ptime NOTM accepts x, and for all y < x, the ith ptime NOTM accepts y iff the jth
ptime NOTM rejects y.” In this latter case, either L〈i,j〉(A) is the language accepted by the ith
machine (when the ith and jth machines accept complementary languages), or L〈i,j〉(A) is finite.
The classes UP, BPP, etc. can be captured in a similar way. Function classes such as FP are also
captured under this definition: by identifying a function f with its graph {〈x, y〉 | f(x) = y}, we
may treat a function class as a special type of language class.

The following technical lemma extends a result of Blum and Impagliazzo [BI87]. It says that a
generic oracle helps in computing a language only if the language is nonarithmetic. The proof is a
routine use of Lemma 3.17.

Lemma 4.3 Let C be a relativizable complexity class by the definition above, let G be a generic
set, and let L be an arbitrary arithmetically definable language. If L ∈ CG, then L ∈ C∅.

Proof: Let L be arithmetic, defined by some ϕL ∈ LPA, and let L = Li(G) for some i. In what
follows γ ranges over all finite functions. We have

L = Li(G)

⇒ (∃γ)(∀generic G′ � γ) L = Li(G′) (Lemma 3.17 with ϕ = ∀x[ϕL(x)↔ ϕi(X;x)])

⇒ (∃γ)(∀A � γ) L = Li(A) (Lemma 3.12 and Li is continuous, see below)

⇒ (∃γ) L = Li(γ−1(1)) (because γ ≺ γ−1(1))

⇒ (∃γ) L ∈ Cγ−1(1)

⇒ L ∈ C∅ (γ−1(1) is finite).

The second implication above holds because the Cohen generics in S = {A | A � γ} form a dense
subset of S with respect to the Cantor topology. Since the function Li is continuous and constant
on a dense subset of S, it must be constant on all of S. (This fact is crucial, because we need to
know Li(A) for nongeneric A.) �

It is straightforward to relativize Lemma 4.3 to any oracle B.

17

Lemma 4.4 Let C be a relativizable complexity class, let B ⊆ ω be arbitrary, and let G be generic
in B. Suppose L is a language arithmetic in B. If L ∈ CB⊕G, then L ∈ CB.

From Lemma 4.3, we can easily derive a number of simple, useful results.

Lemma 4.5 Let C1 and C2 be relativizable complexity classes. Suppose that for any set A ⊆ ω we
have C∅1 ⊆ CA1 . Then for any generic G, C∅1 − C∅2 ⊆ CG1 − CG2 .

Proof: Suppose L ∈ C∅1 − C∅2 . Then L is arithmetic and L ∈ CG1 . But if L ∈ CG2 then by Lemma
4.3, L ∈ C∅2 , contradicting the assumption. Thus L ∈ CG1 − CG2 . �

Corollary 4.6 If C∅1 6= C∅2 , then for any generic G, CG1 6= CG2 .

Corollary 4.7 If PG = (NP ∩ coNP)G for generic G, then P = NP ∩ coNP (relative to ∅).
Similarly, if PG = UPG for generic G, then P = UP.

Let C be a class and let A and B be disjoint sets. A C-separator for A and B is a set S ∈ C
such that A ⊆ S ⊆ B. We say that A and B are C-inseparable if they have no C-separator.

Proposition 4.8 If G is generic and NPG has no PG-inseparable sets, then NP has no P-
inseparable sets.

Proof: Assume the hypothesis, and let L1 and L2 be disjoint NP languages. Then L1, L2 ∈ NPG,
and we have a language L ∈ PG such that L1 ⊆ L ⊆ L2. Let M be a deterministic polynomial
time OTM such that L = L(MG). Since G is generic and L1 and L2 are arithmetic, there is a finite
function γ ≺ G such that

γ L1 ⊆ L(MG) ⊆ L2.

This implies that for no extension δ � γ and for no x do we have

x ∈ L1 & M δ(x)↓= 0 or x ∈ L2 & M δ(x)↓= 1.

Thus, for any A � γ, we have L1 ⊆ L(MA) ⊆ L2. Taking A to be the finite set γ−1(1) makes
L(MA) a P-separator for L1 and L2. �

Corollary 4.6 leads to a most intriguing technique: rerelativizing by a generic oracle. The rest
of this section illustrates the technique. For background on the notions of “honest,” “paddable,”
“1-li degrees,” etc., see for example Kurtz et al. [KMR95] or [KMR90].

Definition 4.9 ([KMR95]) A one-to-one and honest function f ∈ FP is annihilating if every P
subset of range(f) is sparse; f is scrambling if range(f) does not contain a paddable set.

18

If scrambling functions exist, then the complete 1-li degree of NP does not collapse to a
polynomial-time isomorphism type, and hence the Isomorphism Conjecture fails [KMR95]. An-
nihilating functions exist relative to a random oracle [KMR95], and it is easy to see that every
annihilating function is a scrambling function, which in turn is a one-way function. We can show,
however, that the existence of one-way functions does not necessarily entail the existence of anni-
hilating functions.

Theorem 4.10 There is an oracle relative to which one-way functions exist, but annihilating func-
tions do not.

To prove Theorem 4.10, we use the next lemma, whose proof is a modification of an earlier
proof showing that the Isomorphism Conjecture fails relative to a generic oracle [Kur88].

Lemma 4.11 If G is generic, then there are no annihilating functions relative to G.

Proof: Fix a deterministic ptime oracle transducer T , and for any oracle A, let fA ∈ FPA be
the function computed by TA. Suppose fG is one-to-one and honest. We show that fG cannot be
annihilating relative to G. The idea is that G will code infinitely often the pre-images under fG

of many elements in its range at a given length. This coding allows us to recognize a nonsparse
subset of range(fG).

It is clear that range(fA) cannot be sparse for any oracle A, i.e., for every polynomial q(n), there
are infinitely many n such that | range(fA) ∩ Σn| > q(n). Let p(n) be a nondecreasing polynomial
bounding both the running time and honesty condition of fG. Consider the following decision
procedure PG, which runs in polynomial time relative to G:

On input y: for all i ≤ p(|y|), let

xi
df= G(y10p(i)+1)G(y10p(i)+2) · · ·G(y10p(i)+i).

If fG(xi) = y for some xi then accept, else reject.

Note that |xi| = i for all i. Clearly, L(PG) ⊆ range(fG). It remains to show that L(PG) is not
sparse. Let q(n) be a polynomial, and let Sq be the set of strings σ with the following property:
there exists a length n such that, for at least q(n) + 1 many y of length n, y ∈ range(fσ) with
pre-image x = σ(y10p(|x|)+1)σ(y10p(|x|)+2) · · ·σ(y10p(|x|)+|x|). In other words, σ codes the pre-image
x of each y in just the right spot for P to find, above the use of the computation of fσ(x).

The set Sq is clearly arithmetically definable for all polynomials q. It is also not hard to see
that Sq is dense when viewed as a set of Cohen conditions: we can extend any finite function σ to
a string τ ∈ Sq because there are infinitely many lengths n with more than q(n) elements of length
n in the range of fA for any oracle A extending σ. We simply take that portion of A bounding
the use of these computations of range elements, then extend further by coding all the pre-images,
which does not disturb the computations. Since Sq is definable and dense, G must meet Sq by
Lemma 4.1. Thus, for every q there is a length n such that |L(PG)∩Σn| > q(n), and so range(fG)
contains a nonsparse subset in PG. �

19

Proof of Theorem 4.10: Let R be random, and let G be (Cohen) generic with respect to R

(see Section 3.2). We show that R ⊕ G satisfies the theorem. Let f be an annihilating function
relative to R [KMR95].6 As FPR ⊆ FPR⊕G, f is in FPR⊕G. On the other hand, f−1 is arithmetic
in R, but is not in FPR since f is one-way relative to R, therefore f−1 cannot be in FPR⊕G by
Lemma 4.4 with B = R, and so f is a one-way function relative to R⊕G.

Now Lemma 4.11 clearly relativizes. Relativizing it to R, we obtain that there can be no
annihilating functions in FPR⊕G, as desired. �

Remark Part of Theorem 4.10 can also be proved with language classes: the existence of one-way
functions relative to R is equivalent to PR 6= UPR, by relativizing results in [GS88]. Relativizing
Corollary 4.6 to R gives us PR⊕G 6= UPR⊕G, hence there exist one-way functions relative to R⊕G
[GS88].

Much of structural complexity, including this work, grew out of the Berman-Hartmanis Isomor-
phism Conjecture. The rerelativization technique can be used to give several novel failures of this
conjecture.

The following theorem was proven by Hartmanis and Hemachandra [HH91] to refute a con-
jecture by Kurtz, Mahaney, and Royer that the Isomorphism Conjecture might be equivalent to
the nonexistence of one-way functions. Their original proof combined two difficult constructions:
Kurtz’s original proof of an oracle relative to which the Isomorphism Conjecture fails, with Rackoff’s
construction of an oracle relative to which P = UP.

Theorem 4.12 ([HH91]) There is an oracle relative to which the Isomorphism Conjecture fails,
but relative to which there are no one-way functions. Relative to this oracle, the complete 1-li degree
of NP is an isomorphism type.

Proof: Consider A = B⊕G for PSPACE-complete B and generic G. The Isomorphism Conjec-
ture fails relative to A, because G is generic with respect to B (Kurtz’s result [Kur88] relative to
B). On the other hand, Blum and Impagliazzo [BI87] showed that if P = NP, then PG = UPG.
Since PB = NPB, rerelativizing by G yields PA = UPA. By Grollmann and Selman [GS88], we
see that there can be no one-way functions relative to A. Our final comment in the theorem is
justified by Berman and Hartmanis’s theorem [BH77] that if two sets are equivalent by one-one,
length-increasing, invertible functions, then they must be isomorphic. �

This oracle A collapses several other classes to P simultaneously. See Section 6.5.
A more recent result of Rogers now gives us oracles for all four possible combinations of truth

values for the two statements: (1) the Isomorphism Conjecture holds; (2) one-way functions exist
[HH91, KMR95, FFK96, Rog97].

6The fact that annihilating functions do exist relative to R is, strangely enough, not relevant to the proof.

20

Finally we know of two degree-theoretic ways for the Isomorphism Conjecture to fail: the
complete m-degree can fail to be a 1-degree, as relative to a generic oracle [Kur88]; or the complete
1-li degree can fail to be an isomorphism type, as relative to a random oracle [KMR95]. It is
interesting to note that we can combine these failures.

Theorem 4.13 There is an oracle relative to which both the complete m-degree of NP fails to be
a 1-degree, and the complete 1-li degree fails to be an isomorphism type.

Sketch: Consider R ⊕ G as in Theorem 4.10. Since G was chosen to be generic with respect to
R, we know that the complete m-degree of NP is not a 1-degree.

Now, it would be tempting to get annihilating functions by arguing that R must be random
relative to G, but this cannot be the case. As we’ve already seen, there are no annihilating
functions relative to R⊕G, so such an argument must fail. On the other hand, if f is annihilating
with respect to R, it is easily seen that f must be scrambling with respect to R ⊕ G (essentially
because G is infinitely often empty for arbitrarily computably long stretches, and so f “looks like”
an annihilating function for enough lengths to make it a scrambling function), and therefore the
complete 1-li degree of NP cannot be an isomorphism type relative to R⊕G. �

It is interesting to contrast all these results with the fact that the Isomorphism Conjecture holds
relative to SP-generics [FFK96].

5 Symmetric Perfect Generic Sets

The study of symmetric perfect genericity was initiated by Fenner, Fortnow, and Kurtz [FFK96],
who showed that the Isomorphism Conjecture holds relative to symmetric perfect generic sets.
In that paper, a symmetric perfect forcing condition (sp-condition) was associated with some in-
creasing polynomial p and was defined to be a partial characteristic function on Σ∗ whose domain
consisted of all strings whose lengths were not in the set {a0 < a1 < a2 < · · ·}, where a0 = 2 and
ai+1 = p(ai) for i ≥ 0. The definition below is different and simpler than the one given there, and
is a slight variant of a definition suggested by Böttcher [Böt93]. It is easy to show, however, that
the new definition suffices for all our results regarding SP-generics, both here and in the previous
paper [FFK96].

Definition 5.1 Let c be a positive integer. Define Ac =
{

22cn | n ≥ 1
}

. A c-condition is a partial
characteristic function τ : Σ∗ → {0, 1} such that

dom(τ) =
⋃

m∈Ac

Σm

In other words τ(x) is undefined for all x such that |x| = 22cn for some n ∈ ω with n ≥ 1, and τ(x)
is defined otherwise. A condition τ is a symmetric perfect forcing condition (SP-condition) if τ is
a c-condition for some c ≥ 1. We let SP denote the class of all SP-conditions.

21

Remark By our present definition, SP is basic (which was not true with the old definition)
and covers 2ω. Specifically, if σ1 and σ2 are compatible c1- and c2-conditions respectively, then
their least common extension (their intersection as perfect sets) is an lcm(c1, c2)-condition. The
resulting topology (cf. Section 3.3) is homeomorphic to the product of ω many copies of 〈2ω,D〉,
where D = P(2ω) is the discrete topology on 2ω.

In keeping with our current definition and naming conventions, we will call the resulting generic
sets SP-generic rather than sp-generic as in the older definition [FFK96].

Unlike Cohen forcing conditions, SP-conditions cannot be coded by finite objects. Further,
SP-generics are in fact very different from ordinary (Cohen) generics. For example, Lemma 4.3
shows that relativizing to Cohen generic oracles adds only nonarithmetic languages to the standard
complexity classes. Relative to SP-generics, the situation is almost the complete opposite:

Lemma 5.2 ([FFK96]) For any language L and any SP-condition σ, there is an SP-condition
τ extending σ such that L ∈ PG for all G ∈ τ .

Of course, Lemma 5.2 does not imply that there is an SP-generic set G such that for every set
L, L is reducible to G. For example, the halting problem relative to a SP-generic set G cannot be
reduced to G. Lemma 5.2 only implies that those L such that the predicate “L ∈ PX” is expressible
in LPA[X] are encoded into SP-generics. We have:

Corollary 5.3 If L is arithmetical and G is SP-generic, then L ∈ PG.

We now summarize some of the complexity theoretic facts known to hold relative to SP-generic
sets.

Proposition 5.4 If G is any SP-generic oracle, the following are true relative to G:

1. Any two NP-complete sets (under Karp reductions, i.e., ptime m-reductions) are ptime iso-
morphic (the Berman-Hartmanis Isomorphism Conjecture) [FFK96].

2. PH (the polynomial-time hierarchy) is infinite.

3. P = UP = FewP = NP ∩ co-NP [FFK96]

We note here that subsequent to the original Isomorphism oracle result [FFK96], Beigel, Buhr-
man, and Fortnow constructed an oracle making the Isomorphism Conjecture hold using an entirely
different construction employing coding via polynomials [BBF98]. Relative to their oracle, NP =
EXP and P = UP = ⊕P (see Definition 2.3 for a definition of ⊕P). It is known that the first two
identities together relativizably imply the Isomorphism Conjecture [HS92].

We will show collapses to P of a variety of other complexity classes in Section 6. In Section 7.3
we show that these collapses are optimal in some sense: we cannot stratify these collapses in time
classes smaller than P. The techniques we use there will quickly give us another oracle where none
of these classes collapse even to P (Section 7.3.1).

22

5.1 Exact Pair Forcing

This section will be of interest primarily to computability theorists. It describes the type of com-
putability theoretic forcing that SP-generic sets are capable of.

A pair a,b of Turing degrees is an exact pair if a∩b does not exist, that is, there is an infinite,
strictly increasing sequence of degrees c0 < c1 < · · · below both a and b such that, for any d with
d ≤ a and d ≤ b, there is an n such that d ≤ cn.

Exact pairs were first constructed [KP54, Lac54, Spe56] to show that the Turing degrees do not
form a lattice (see Odifreddi [Odi89, V.4] for example). Their construction can be easily cast as a
forcing argument with SP as the notion of genericity.

Definition 5.5 For any set A ⊆ Σ∗ and i ∈ {0, 1}, define A[i] ⊆ Σ∗ by A[i](x) = A(xi). We extend
the notation to partial characteristic functions in the obvious way.

We say that a class Y ⊆ 2ω is an arithmetically closed ideal if (i) Y is closed under finite joins,
and (ii) for all A ∈ Y and B arithmetical in A we have B ∈ Y .

Let ≤r be some type of reducibility, and let A ⊆ ω. We use ≤r(A) to denote the lower ≤r-cone
of A, that is, ≤r(A) = {B | B ≤r A}.

We have the following connection between SP-generic sets and arithmetically closed ideals.
It shows that the two “halves” of SP-generic sets form exact pairs in a very strong sense: the
intersections of the lower ≤T-cones of the two halves of SP-generic sets are exactly the countable
arithmetically closed ideals.

Theorem 5.6 If G is SP-generic, then ≤T(G[0]) ∩ ≤T(G[1]) is an arithmetically closed ideal.
Conversely, for any countable arithmetically closed ideal Y , there is an SP-generic G such that
Y = ≤T(G[0]) ∩ ≤T(G[1]).

Proof: We show the forward implication first. Let G be SP-generic and let I = ≤T(G[0]) ∩
≤T(G[1]). Clearly, I is closed under finite joins. Let A ∈ I be arbitrary, and fix e0, e1 such that

A = {e0}G
[0]

= {e1}G
[1]
.

It suffices to show that A′ ∈ I, where A′ =
{
e | {e}A(e)↓

}
is the Turing jump of A. Let ϕ be

a sentence in LPA[X] expressing that {e0}X
[0]

= {e1}X
[1]

and that both are total characteristic
functions. Then ω[G] � ϕ, and so by Lemma 3.14, G extends some SP-condition σ with σ SP ϕ.
By Lemma 3.15, every SP-generic extending σ satisfies ϕ. It follows that outputs of {e0}G

[0]
or

{e1}G
[1]

cannot vary depending on queries made outside of dom(σ[0]) or dom(σ[1]), respectively,
since otherwise σ extends to a τ that preserves an inequality between the two functions. Thus A
(= {e0}G

[0]
= {e1}G

[1]
) is computable in σ. (This is the well-known trick to building an exact

pair.) Let e ∈ ω be such that A = {e}σ and {e} makes all its oracle queries in dom(σ). Let
ξ ∈ sent(LPA[X]) say “{e}X is total and its jump is computable both in X [0] and in X [1].” We
claim that ω[G] � ξ and hence A′ ∈ I. Suppose ω[G] � ¬ξ. Then by Lemma 3.17 there is an

23

SP-condition τ extended by G such that all SP-generic sets extending τ satisfy ¬ξ. Let ρ be
a common extension of σ and τ . We can clearly extend ρ to another condition π for which π[0]

and π[1] each code A′. But then for any SP-generic H extending π we have A = {e}H as well as
A′ ≤T H [0] and A′ ≤T H [1]. Thus ω[H] � ξ, contradicting our choice of τ .

Now we show the converse. Let Y = {A0, A1, . . .} be an arithmetically closed ideal, and let
{ϕ0, ϕ1, . . .} enumerate sent(LPA[X]). Using the definition of forcing, it can be shown by a straight-
foward induction on the complexity of ϕ ∈ sent(LPA[X]) that every SP-condition σ can be extended
to an SP-condition τ , arithmetic in σ, such that τ SP ϕ ∨ ¬ϕ. This is just a strengthening of
Lemma 3.5 in the case of SP forcing. It is now easy to construct the required G by extending
an SP-condition γ in stages: We start with γ being some trival SP-condition (all zeros, say). At
stages 2i for i ≥ 0, we extend γ just enough to code Ai on each side γ[0] and γ[1]. At stages 2i+ 1,
we extend γ to a condition arithmetic in γ that forces ϕi ∨ ¬ϕi. We let G be the limit of this
construction, and let I = ≤T(G[0]) ∩ ≤T(G[1]) as before. We show that Y = I. The odd stages
guarantee that G is SP-generic, and the even stages guarantee that Y ⊆ I. It is also clear from
the construction that immediately after any stage j, the condition γ built so far is arithmetic in
A0 ⊕ · · · ⊕Abj/2c. For any A ∈ I, we have by the previous paragraph’s argument A ≤T σ for some
SP-condition σ extended by G. Thus A can be computed from some finite stage of the construction,
and so A ∈ Y . �

6 Collapsing Classes

We have seen that generic oracles do not only separate classes, but in some cases they in fact collapse
them. In this section we will extend the results of Blum and Impagliazzo [BI87], Impagliazzo and
Naor [IN88], and Fenner, Fortnow and Kurtz [FFK96] to show general collapses for classes into P.
We will show that the following complexity classes equal P relative to SP-generic oracles: UP,
FewP, SPP, BPP, BQP7, WPP and NP ∩ co-NP. Under certain complexity assumptions we
have these collapses for Cohen generics as well.

In this section, we first define a new class AWPP that contains several well-known classes,
including all those mentioned in the previous paragraph with the possible exception of NP∩co-NP.
Next, we develop a general framework for proving collapses for generic oracles, involving the notion
of certificate complexity. We then apply this framework to show collapsing results for AWPP and
NP ∩ co-NP, which together imply all the other collapses mentioned above.

For a summary of the known inclusions between classes, and for definitions of GapP and count-
ing classes, see Section 2.

7The class BQP consists of languages accepted by polynomial-time quantum TMs, or equivalently, uniform families

of polynomial-size quantum circuits [BV97, Yao93].

24

6.1 AWPP

In this subsection, we introduce the class AWPP, and show that both BPP and WPP are
subclasses of AWPP. The BPP ⊆ AWPP inclusion is a simple observation and is not optimal;
Fortnow and Rogers [FR99] have shown that BQP ⊆ AWPP, and it is well-known [BV97] that
BPP ⊆ BQP.

Definition 6.1 The class AWPP consists of all languages L such that, for all polynomials r, there
exist g ∈ GapP and a polynomial q such that

x ∈ L⇒ (1− 2−r(n))2q(n) ≤ g(x) ≤ 2q(n)

x 6∈ L⇒ 0 ≤ g(x) ≤ 2−r(n)2q(n)

where n = |x|.

Li essentially showed that AWPP is low for the class PP, that is, PPL = PP for every L ∈ AWPP
[Li93] (for a published proof, see Fenner [Fen02a]). Fenner also showed that one can “amplify” the
ratio g(x)/2q(n) towards zero or one, so that 2−r(n) may be replaced with a constant, say 1/3,
wherever it occurs in the definition above, without changing the class [Fen02b].

Since #P is a subclass of GapP, it is not difficult to see that AWPP contains BPP. However,
it is not clear from the definition whether WPP is contained in this class. To show that it indeed
is, we introduce a new class that we shall prove is equal to AWPP.

Definition 6.2 The class AWPP′ consists of all languages L such that for all polynomials r, there
exist f ∈ FP and g ∈ GapP such that for all x, f(x) > 0 and

x ∈ L⇒ (1− 2−r(n))f(x) ≤ g(x) ≤ f(x)

x 6∈ L⇒ 0 ≤ g(x) ≤ 2−r(n)f(x)

where n = |x|.

It is clear that WPP is a subclass of AWPP′.

Lemma 6.3 AWPP = AWPP′.

Proof: Since for every polynomial q, 2q(n) ∈ FP, we have AWPP ⊆ AWPP′.
Conversely, let L ∈ AWPP′ as in Definition 6.2. Given a polynomial r′, we need to find a

g′ ∈ GapP and a polynomial q such that

x ∈ L⇒ (1− 2−r
′(n))2q(n) ≤ g′(x) ≤ 2q(n),

x 6∈ L⇒ 0 ≤ g′(x) ≤ 2−r
′(n)2q(n).

25

For any g ∈ GapP, f ∈ FP, and polynomial r, let g′(x) =
⌊
2q(n)/f(x)

⌋
g(x) where q is a polynomial

that will be specified later. Clearly g′ ∈ GapP. Suppose 0 ≤ g(x), f(x) ≤ 2p(n) for some polynomial
p. If x ∈ L,

(1− 2−r(n))f(x) ≤ g(x) ≤ f(x)⌊
2q(n)

f(x)

⌋
(1− 2−r(n))f(x) ≤ g′(x) ≤

⌊
2q(n)

f(x)

⌋
f(x)

(2q(n) − f(x))(1− 2−r(n)) ≤ g′(x) ≤ 2q(n)

(2q(n) − 2p(n))(1− 2−r(n)) ≤ g′(x) ≤ 2q(n)

Now setting r = r′ + 1 and q = p+ r′ + 1, we have (1− 2−r
′
)2q ≤ (2q − 2p)(1− 2−r). That is,

if x ∈ L,
(1− 2−r

′(n))2q(n) ≤ g′(x) ≤ 2q(n).

On the other hand, if x 6∈ L,
0 ≤ g(x) ≤ 2−r(n)f(x),

0 ≤ g′(x) ≤
⌊

2q(n)

f(x)

⌋
2−r(n)f(x)

≤ 2q(n)−r(n)

≤ 2−r
′(n)2q(n).

This proves that L ∈ AWPP. �

Corollary 6.4 BPP,WPP ⊆ AWPP.

6.2 General Framework

In this section we give a definition of complexity classes—different from Definition 4.2—that em-
phasizes the accept/reject criterion of the machine.

Definition 6.5 Let L(M,A) be some definable (in LPA[A]) partial function, mapping time-bounded
oracle machines M and languages A ∈ 2Σ∗ to languages, such that, for any M the function
λA.L(M,A) is a continuous8 partial mapping from 2Σ∗ to 2Σ∗ with closed domain. We say that
L(·, ·) is a language acceptance criterion, and we interpret L(M,A) as “the language accepted by M
with oracle A,” according to this criterion. We will abuse notation and write L(MA) for L(M,A).
If L(MA) is defined we say that MA is proper. Let M1,M2, . . . be some computable enumeration
of time-bounded oracle machines. We say a complexity class C is defined by this enumeration and
acceptance criterion if, for any oracle A,

CA =
{
L(MA

i) |MA
i is proper

}
.

8We assume the usual Cantor topology on 2Σ∗ .

26

It is straightforward to check that C, as defined above, is a relativizable complexity class ac-
cording to Definition 4.2.

Here and in the next section, we will fix a language acceptance criterion L(·, ·) and say that
MA(x) accepts if L(MA)(x) = 1 and MA(x) rejects if L(MA)(x) = 0.

Note that if L(MA) is not proper, then there is a finite partial function α ≺ A such that L(MB)
is undefined for all B � α. This is just a restatement of the condition that the domain of L(M, ·)
be closed.

For example, BPPA is defined by an enumeration of probabilistic polynomial-time Turing
machines where MA

i is proper iff for all x ∈ Σ∗, either MA
i (x) accepts with probability at least two-

thirds or accepts with probability at most one-third. It is important to note that this acceptance
criterion and those with other probability thresholds appearing later are all expressible in LPA[X].
If MA

i is not proper and x is an input string that exhibits that fact, then MB
i is not proper for

any oracle B that agrees with A on all strings of length at most p(|x|), where p is the polynomial
running time bound on Mi.

6.3 Certificate Complexity

In this section, we’ll have occasion to regard finite partial characteristic functions from Σ∗ to {0, 1}
as inputs to time-bounded computations. Therefore, for any such function ρ, we’ll define the size
of ρ to be

size(ρ) =
∑

y∈dom(ρ)

(1 + |y|),

which reasonably approximates the amount of space needed to represent ρ as a list of ordered pairs.
In this section, “M” will always refer to a Turing machine.

Definition 6.6 Let σ be a partial characteristic function from Σ∗ to {0, 1}, not necessarily finite.
We say machine M is categorical over σ if MA is proper for all A extending σ. M is categorical
if M is proper for all A.

Fix a partial function σ, an x ∈ Σ∗, an oracle A extending σ, and a machine M categorical over
σ. Let certificateA(x) be the lexicographically least partial function β � A of smallest size such
that L(MA)(x) = L(MB)(x) for all B extending σ ∪ β. By continuity, dom(certificateA(x)) must
be finite.

Definition 6.7 Assume machine M is categorical over a partial oracle σ. The certificate com-
plexity of M(x) over σ is

max
A�σ

(size(certificateA(x))) .

A class C defined by machines {Mi}i∈ω and acceptance criterion L(·, ·) has polynomial certificate
complexity if, for any machine Mi there is a polynomial p such that, for all partial functions σ, if
Mi is categorical over σ then for all x ∈ Σ∗ the certificate complexity of Mi(x) over σ is bounded
by p(|x|).

27

Informally, certificate complexity measures how much of any oracle A � σ we must commit
(beyond σ itself) to fix the value of M on input x to be that of L(MA)(x). If M is categorical
over σ, then the certificate complexity of M(x) always exists and is finite for any fixed x. This
can be seen from purely topological considerations. Clearly, the set S =

{
A ∈ 2Σ∗ | σ � A

}
is

closed and hence compact. Since every certificate is finite, we have that for every A ∈ S, the set
OA =

{
B ∈ 2Σ∗ | certificateA(x) ≺ B

}
is open and contains A. Thus {OA}A∈S is an open covering

of S from which we may take a finite subcovering.
The next lemma connects certificate complexity with generic collapses.

Lemma 6.8 If C has polynomial certificate complexity, then CG = PG for any SP-generic G.

The proof of this lemma uses techniques from [Kur88, HH91, BI87, IN88, FFK96]. Any forcing
in the proof is assumed to be SP-forcing.

Proof: Let Ri ∈ sent(LPA[X]) be the requirement: “Either MX
i is not proper or L(MX

i) ∈ PX .”
Clearly, if an oracle A satisfies Ri for all i, then PA = CA.
Fix i. We will show that the set of SP-conditions that force ¬¬Ri is dense (see the discussion

of weak forcing following Corollary 3.16). This immediately implies that γ ¬¬¬¬Ri for any
SP-condition γ, and so by Corollary 3.16 any SP-generic G will satisfy Ri. We will show this set
of SP-conditions is dense by showing how to extend any SP-condition σ to another condition τ

that forces ¬¬Ri.
Let M = Mi. Suppose σ does not force ¬¬(“MX is proper”). Then by Corollary 3.16, MA

is not proper for some A extending σ, and thus there is some α ≺ A of finite domain such that
for all B extending α, MB is not proper. Let τ be some SP-condition extending σ ∪ α. (τ is a
c-condition for some c such that 22c is greater than the length of any string in dom(α).) Clearly,
τ ¬(“MX is proper”) by Lemma 3.15, and so τ Ri.

For the rest of the proof we will assume σ ¬¬(“MX is proper”). This implies that M is
categorical over σ: otherwise, there is a finite α compatible with σ such that MB is not proper
for any B � σ ∪ α, and hence MB is not proper for at least one SP-generic B � σ, which is a
contradiction by Corollary 3.16.

Let q(n) be a polynomial bound on the certificate complexity of M(x) over σ′ for any σ′ � σ and
|x| = n. Let α be any finite characteristic function compatible with σ. There are three possibilities
for the behavior of M :

1. MB(x) accepts for every B � σ ∪ α,

2. MB(x) rejects for every B � σ ∪ α,

3. Neither (1) nor (2), in which case there are β0 and β1, each with size at most q(n) and
compatible with σ ∪ α, such that MB(x) rejects for all B � σ ∪ α ∪ β0 and MB(x) accepts
for all B � σ ∪ α ∪ β1.

28

BEGIN ALGORITHM MG(x)

α := ∅;
WHILE true

/∗ Invariant: α ≺ G ∗/
If fσ(x, α) = 1 then accept;
If fσ(x, α) = 0 then reject;
Set 〈β0, β1〉 = fσ(x, α);
α := α ∪ (G restricted to dom(β0) ∪ dom(β1));

ENDWHILE

END ALGORITHM.

Figure 1: The Standard Algorithm

Define

fσ(x, α) =

1 if case 1 holds,
0 if case 2 holds,
〈β0, β1〉 if case 3 holds,

(6)

where β0 and β1 are lexicographically least of smallest size satisfying the description in case 3.
Let Code(fσ) = {〈x, α, i〉 | the ith bit of fσ(x, α) is one}. By Lemma 5.2 there is an SP-

condition τ extending σ such that Code(fσ) ∈ PG (and thus fσ ∈ FPG) for all SP-generic G
extending τ .

Now fix any SP-generic G that extends τ . We will show that L(MG) ∈ PG using the following
algorithm, which we hereafter refer to as the Standard Algorithm:

Note that since α is always extended by G, if the Standard Algorithm halts then it will accept
if and only if x ∈ L(MG). Lemma 6.8 will follow from the following lemma:

Lemma 6.9 The Standard Algorithm runs in polynomial time relative to fσ and thus relative to
G.

Proof: Let n = |x|. Suppose MG(x) accepts. Since M(x) has certificate complexity at most
q(n) over σ, there must be a ρ ≺ G with size at most q(n) such that MB(x) accepts for any B

extending σ ∪ ρ. Consider a single nonhalting step of the algorithm with its corresponding α, β0

and β1, just after the latter two are defined. Now β0 and ρ must be incompatible, for otherwise
there would be a single oracle C extending σ∪α∪β0∪ρ such that MC(x) both accepts and rejects,
a manifest contradiction. Thus dom(β0) ∩ dom(ρ) 6= ∅, and it is clear by the minimum size of β0

that dom(β0) ∩ dom(α) = ∅. This means that |dom (ρ) − dom (α)| must decrease at every step.
Since |dom(ρ)| ≤ size(ρ) ≤ q(n), there can be at most q(n) iterations of the while loop before α � ρ

29

and hence fσ(x, α) = 1. Further, size(α) increases by at most size(β0) + size(β1) ≤ 2q(n) at each
step, so α always has polynomial size.

A similar argument works if MG(x) rejects, with the roles of β0 and β1 transposed. �

In terms of forcing, the Standard Algorithm shows that τ ¬¬(L(MX
i) ∈ PX). Since weak

forcing respects equivalent formulas, we have τ ¬¬Ri. This ends the proof of Lemma 6.8. �

6.4 Collapses for SP-generics

We can use Lemma 6.8 to show that many complexity classes collapse to P relative to SP-generics.
We will start with an easy one:

Theorem 6.10 For SP-generic G, NPG ∩ co-NPG = PG.

Proof: NP ∩ co-NP is defined by the enumeration M1,M2, . . ., where Mi with i = 〈i1, i2〉 is the
pair of nondeterministic oracle Turing machines Ni1 and Ni2 such that both these machines run
in time ni. The corresponding language acceptance criterion for MA

i is L(NA
i1

) if L(NA
i1

) = L(NA
i2

)
and undefined otherwise (L(·, ·) is the standard NP language acceptance criterion). Fix i and let
M = Mi. If MA(x) accepts, then certificateA(x) must be no larger than A restricted to the oracle
queries along a single accepting computation path of NA

i1
(x). If MA(x) rejects, then σA(x) must

be no larger than A restricted to the oracle queries along a single accepting computation path
of NA

i2
(x). Thus NP ∩ co-NP has polynomial certificate complexity, and Theorem 6.10 follows

immediately from Lemma 6.8. �

For the remaining collapses we will use the class AWPP described in Section 6.1 and a powerful
theorem from Nisan and Szegedy [NS94].

For a Boolean function f(x1, . . . , xN) and an input y ∈ {0, 1}N let Sy ⊆ {1, . . . , N} be the
lexicographically least set of minimum size such that f(z) = f(y) for all z agreeing with y on the
variables with indices in Sy. We define the certificate complexity of f as

max
y∈{0,1}N

|Sy|.

Theorem 6.11 (Nisan-Szegedy) There is a fixed polynomial c such that, if

1. f(x1, . . . , xN) is a Boolean function,

2. p(x1, . . . , xN) is a polynomial with real coefficients of degree d, and

3. for all 〈x1, . . . , xN 〉 ∈ {0, 1}N ,

|f(x1, . . . , xN)− p(x1, . . . , xN)| ≤ 1
3
,

then f has certificate complexity bounded by c(d).

30

Let M be a nondeterministic oracle Turing machine running in time nk for all inputs of length
n. Clearly the length of each oracle query is also bounded by nk. Let y =

〈
yε, . . . , y1nk

〉
be a

(0,1)-vector indexed by all binary strings of lengths up through nk. Such a y certainly defines a
partial oracle in an obvious way. Thus for all x of length n we define gy(x) = gapMy(x), the finite
GapPy function defined by M on inputs of length n with “oracle” y (see Definition 2.2). On the

other hand, we may fix x and define a function gx: {0, 1}2
nk+1−1 → Z so that gx(y) = gy(x).

Lemma 6.12 For every GapPy function g defined by machine M running in time nk and string
x of length n, there is a polynomial h with integer coefficients of degree bounded by nk such that

gx(y) = h(y) for all y =
〈
yε, . . . , y1nk

〉
∈ {0, 1}2

nk+1−1.

Proof: Modify M so that it guesses the query answers before its computation and then verifies
its answers at the end. For any 1 ≤ i ≤ nk and any path p of M , let ti,p be a polynomial over the
variables yw for w ∈

{
ε, . . . , 1n

k
}

defined as

ti,p =

yw, if w is the ith query of p and is
guessed to be in the oracle;

1− yw, if w is the ith query of p and is
guessed to not be in the oracle;

1, if M uses fewer than i queries on
path p.

We then define the polynomial tp over the variables yw as follows:

tp =

{ ∏
1≤i≤nk ti,p, if M(x) accepts along path p;

−
∏

1≤i≤nk ti,p, if M(x) rejects along path p.

It is easy to verify that h =
∑

p tp fulfills the requirements of Lemma 6.12. �

Theorem 6.13 AWPP has polynomial certificate complexity.

Proof: Let M be a nondeterministic oracle Turing machine that runs in time nk and let g be the
GapPy function defined by that machine. For any oracle A, let L(MA) be defined according to the
conditions of Definition 6.1 when r(n) = 2, provided those conditions are fulfilled for every x, that
is, provided there is a polynomial q such that either 3/4 ≤ g(x)/2q(n) ≤ 1 or 0 ≤ g(x)/2p(n) ≤ 1/4,
where n = |x|.

Suppose M is categorical over a partial function σ. Fix an input x of length n. For all

y =
〈
yε, . . . , y1nk

〉
∈ {0, 1}2

nk+1−1 extending σ (i.e., ∀w ∈ dom(σ), yw = σ(w) is fixed), define
the function f(y) to be 1 when My(x) accepts and 0 when My(x) rejects. Let q(n) be from

Definition 6.1 and h(y) be from Lemma 6.12. Define p(y), for y =
〈
yε, . . . , y1nk

〉
∈ {0, 1}2

nk+1−1

extending σ, as h(y)/2q(n).

31

The degree of p(y) is bounded by nk by Lemma 6.12, and by the definitions of f(y), p(y), and
AWPP, we have |f(y) − p(y)| ≤ 1/3. So we can apply Theorem 6.11 with N = 2n

k+1 − 1 −
|domσ ∩ Σ≤n

k | to get the certificate complexity of f to be polynomial in n. That is, if we fix a y
extending σ, there is a set Sy (of size at most c(nk)) of strings of length less than or equal to nk

such that f(y) = f(z) for all z agreeing with y on Sy. Particularly, let y be induced by any oracle
A, i.e., ∀w, yw = χA(w). We then see that the certificate complexity of M(x) over σ is bounded
by c(nk)(1 + nk), a polynomial independent of σ; therefore, AWPP has polynomial certificate
complexity. �

Corollary 6.14 For SP-generic G, AWPPG = PG.

Proof: From Theorem 6.13 and Lemma 6.8. �

Corollary 6.15 For SP-generic G, PG = UPG = FewPG = SPPG = WPPG = BPPG =
BQPG.

The techniques in this subsection imply lower bounds on the sizes of quantum circuits computing
properties of black-box functions. This idea was developed and refined independently by Beals, et
al. [BBC+98].

6.5 Collapses for Cohen Generics

How can we use Section 6.3 to show collapses for Cohen generics? Cohen generics do not allow us
to encode a function f as in the proof of Lemma 6.8, but we can still get collapses if we allow a
little help or use assumptions. We will give an informal description of the process in this section.

To simplify matters, we will make one additional assumption about the complexity class C
we wish to collapse. Suppose Mi is categorical over a finite partial function σ. We will require
that we can easily find—given Mi and σ—another machine Mj categorical (over ε) such that
L(MA

i) = L(MA
j) for all A extending σ. This assumption certainly holds for all the classes we

discuss below. Note that the first part of the proof of Lemma 6.8 still goes through if we replace
SP forcing with Cohen forcing, that is, if a machine is not categorical over some (finite!) Cohen
condition, we can force it not to be proper and hence discard it from consideration. Then by our
assumption we need only deal with categorical machines.

Now reconsider the function fσ defined (Equation 6) for the Standard Algorithm in Figure 6.3
of the proof of Lemma 6.8, where σ was an SP-condition. For our current effort, we can just as
well have σ be a finite (Cohen) condition, and by the discussion above, we can restrict attention to
machines Mj that are categorical over ε, and thus we may further assume that σ = ε. In essence,
our function does not depend on the particular Cohen generic G we create. For all j, let Fj(x, α)
be the function f ε(x, α) created in the proof of Lemma 6.8 for machine Mj , given that Mj is a
categorical machine (if Mj is not categorical, then Fj(x, α) could be anything). We now have the
following lemma, similar to Lemma 6.8, but for Cohen generics:

32

Lemma 6.16 If C has polynomial certificate complexity, then CG ⊆ PG⊕F1⊕F2⊕F3⊕··· for all Cohen
generic G. In fact, for any categorical Mj, L(MG

j) ∈ PG⊕Fj .

For a given class CA with polynomial certificate complexity, and for a fixed j such that Mj

is categorical, how hard is it to compute the corresponding function Fj(x, α), and thus run the
Standard Algorithm? Blum and Impagliazzo [BI87] show that Fj ∈ FPNP for CA either UPA or
NPA ∩ co-NPA. Impagliazzo and Naor [IN88] show that Fj ∈ FPΣp2 for CA = BPPA. Fenner,
Fortnow and Kurtz [FFK96] show that Fj ∈ FPNP for CA = FewPA. In general, we have the
following lemma, whose proof is a straightforward adaptation of Impagliazzo and Naor [IN88].

Lemma 6.17 (Impagliazzo, Naor) Under the conditions of Lemma 6.16, Fj is computable in
FP(Σp2)C , where C here stands for the unrelativized complexity class C∅.

Sketch: Let q(n) be a polynomial bound on the certificate complexity for Mj(x) over any finite
partial oracle and any input x, letting n = |x|. For any given finite partial oracle α, a 1-certificate
is a polynomial-size (in n) partial oracle β compatible with α such that α ∪ β ensures that Mj(x)
accepts, and a 0-certificate is such a β which ensures that Mj(x) rejects.

Fix a finite partial oracle α and x as input to Fj . Given any polynomial-size β compatible with
α, we decide whether or not it is a 1-certificate as follows: if β is not a 1-certificate, then there is
an oracle extending α ∪ β that makes Mj(x) reject, hence there is a polynomial-size 0-certificate γ
compatible with α∪β; on the other hand, if β is a 1-certificate, then there is no extension at all that
makes Mj(x) reject. Thus, β is a 1-certificate iff, for all γ compatible with α ∪ β and with size at
most q(n), Mα∪β∪γ(x) accepts, where all queries outside dom(α ∪ β ∪ γ) are answered negatively.

This test is in co-NPC . Similarly, there is a co-NPC test for a 0-certificate. We can now find
either kind of certificate using a standard prefix search algorithm, asking NP questions relative to
the tests. �

Given Lemma 6.17 it is easy to see that Fj ∈ FPSPACE for CA = AWPPA.
Clearly if Fj ∈ FP then Lemma 6.8 goes through for Cohen generics. Using the fact that

P = NP implies P = Σp
2 we get the following theorem:

Theorem 6.18 Let G be Cohen generic.

1. If P = NP then UPG = NPG ∩ co-NPG = FewPG = BPPG = PG.

2. If P = PSPACE then UPG = NPG∩co-NPG = FewPG = BPPG = SPPG = AWPPG =
PG.

Lemma 4.5 tells us that we can’t do without at least some assumptions in Theorem 6.18.
The rerelativization technique can be combined with Theorem 6.18 to get Cohen generic oracles

to collapse these classes. We use the same oracle as in Theorem 4.12. Let B be some PSPACE-
complete set. Then P = PSPACE relative to B, and since Theorem 6.18 also holds relative to

33

B, rerelativizing with a Cohen generic G gives us all the collapses above relative to B ⊕G with no
assumptions. In this and other papers [FR94, FR99], when trying to show that an oracle exists for
a certain property, we often assume that P = PSPACE unrelativized before we define the oracle.
If our oracle construction is relativizable (and it always is), then this assumption costs us nothing,
since it can be discharged by rerelativization.

7 Separating Classes

In this section, we will give some generic oracle separations that are less obvious than those given
in previous sections.

7.1 Separating Nonuniform Classes

Theorem 6.18 shows that generic oracles may collapse classes like UP and NP∩ co-NP. However,
various generic requirements will actually separate these classes from P for many different input
lengths. Machines witnessing this separation will fail to be categorical on other input lengths. If
we had access to nonuniform computation, we could pick out these hard input lengths.

We can use genericity to separate various nonuniform classes in this manner. In particular,
we can use the theory of genericity to exhibit the difference in the two different ways of defining
nonuniform NP ∩ co-NP:

Theorem 7.1 If G is a Cohen generic and P = NP, then NPG/1 ∩ co-NPG/1 is not contained
in (NPG ∩ co-NPG)/poly.

Corollary 7.2 There is an oracle A such that NPA/1 ∩ co-NPA/1 is not contained in (NPA ∩
co-NPA)/poly.

Proof Sketch of Theorem 7.1: Assume P = NP. By Theorem 6.18 we have that NPG ∩
co-NPG = PG. Thus we need only show that NPG/1 ∩ co-NPG/1 is not contained in PG/poly.
For each n, define

LGn = {x | ∃y |x| = |y| = n ∧ 〈x, y, 0〉 ∈ G}.

We say n is nice relative to G if for all x of length n, there is a y of length n such that
〈x, y, 0〉 ∈ G if and only if there is no y of length n such that 〈x, y, 1〉 ∈ G.

Let requirement Ri be “There exists an n such that n is nice and LGn is not accepted by
deterministic Turing machine Mi running in time ni with any advice string of length ni.” A
straightforward combinatorical argument shows that the set of Cohen conditions forcing Ri is
dense.

Define LG =
⋃
{n|n nice} L

G
n . Then LG is in NPG/1∩ co-NPG/1 by letting the one bit of advice

an = 1 iff n is nice. However, LG is not in PG/poly since each requirement Ri is met. �

34

7.2 Separating NPBPP from MA

We can use similar techniques to prove the following theorem. One interesting aspect of this theorem
is that the basic construction consists of specifying a new notion of genericity which ensures that
MA coding requirements are met. This new notion still fits into our general scheme described in
Section 3, that is, MA-conditions are (or at least can be identified with) perfect subsets of 2ω that
collectively satisfy Definition 3.3.

Theorem 7.3 There is an oracle A such that

NPBPPA 6⊇MAA.

Proof: By first relativizing with a PSPACE-complete set, we can assume P = NP unrelativized
(see the last paragraph in Section 6).

Define L(A) as follows:

L(A) = {1n | ∃y ∈ Σn, for most z ∈ Σn, yz ∈ A}.

We say A is MA-proper for length n if either there exists a y ∈ Σn such that yz ∈ A for at
least two-thirds of the z’s in Σn, or for all y ∈ Σn, yz ∈ A for at most one-third of the z’s in Σn.
We say that A is MA-proper if A is MA-proper for all lengths.

Definition 7.4 An MA-condition σ is a partial characteristic function with domain a finite initial
segment of Σ∗, such that there is some MA-proper A extending σ.

The MA-conditions form a notion of genericity that is basic, as in Definition 3.10. In this
section, all our conditions will be MA-conditions and our forcing will be MA-forcing. Clearly, all
MA-generic oracles are MA-proper. We will show that any MA-generic G fulfills the following
three properties:

1. L(G) ∈MAG,

2. L(G) 6∈ NPG, and

3. BPPG = PG.

If G fulfills these conditions then NPBPPG = NPG which does not contain L(G) ∈MAG.
The first property holds by the MA-propriety of MA-generic oracles.
Let N1, . . . be an enumeration of nondeterministic oracle Turing machines with an ni clock on

Ni. Let P1, . . . be an enumeration of probabilistic oracle Turing machines with an ni clock on Pi.
To prove the second property we need to show that for every i, the following set of conditions

is dense:
Si =

{
τ | τ L(X) 6= L(NX

i)
}
.

35

If Si is dense, then by definition, the empty string ε forces ¬¬(L(X) 6= L(NX
i)). The second

property will then follow from Corollary 3.16.
Fix i. Let σ be a condition. Pick n larger than the length of any string in dom(σ) and also such

that 2n > 3ni. If there is an A extending σ such that NA
i (1n) accepts, then let γ be A restricted

to queries made on an accepting path of NA
i (1n). Let τ(x) be defined as

τ(x) =

σ(x) if x ∈ dom(σ)
γ(x) if x ∈ dom(γ)
0 if x ∈ Σ≤n

i − dom(σ)− dom(γ)
undefined otherwise.

If there is no such oracle A, then let τ be σ extended by defining τ(x) = 1 for all x ∈ Σ≤n−dom(σ).
In either case, τ is a condition and τ L(X) 6= L(NX

i) by Proposition 3.13, and so τ is in Si

and extends σ. Hence, Si is dense.
For the third property we show that for every i, the following set of conditions is dense:

Ti =
{
τ | τ

(
L(PXi) defined→ L(PXi) ∈ PX

)}
.

Recall that for defining BPP, PAi is proper just in the case that its acceptance probability for any
input is either at least 2/3 or at most 1/3.

Fix i and let σ be a condition. We’ll find a condition τ ∈ Ti extending σ. Pick n larger than
the length of any element of dom(σ) and also such that 2n >> ni. We can assume that σ is defined
on exactly the strings of length less than n.

First, suppose that there exists some x with m = |x| and 3i logm ≥ n and there exists an oracle
A that extends σ and is MA-proper for all lengths less than 3i logm, such that the probability
that PAi (x) accepts is between 2/5 and 3/5. We would now like to extend σ according to A to a
τ defined on all strings of length up through mi, thus preventing P τi from being a proper BPP
machine. Unfortunately, we can’t quite do this, because although A is MA-proper for lengths less
than 3i logm, it may not be proper for lengths between 3i logm and mi/2, and so τ would not
be an MA-condition. In this case, however, we can tweak τ a little bit so that it becomes an
MA-condition without changing the acceptance probability of P τi (x) too much.

For any y ∈ Σ∗ let Sy = {yz : |y| = |z|}.

Lemma 7.5 For every t ≥ 3i logm, there exists a yt with |yt| = t such that the strings in Syt only
appear in less than a 1

15mi
fraction of the computation paths of PAi (x).

Proof: Fix t in the given range. Let Qp be the set of queries made on computation path p of
PAi (x). Note |Qp| ≤ mi.

Choose y at random of length t. We have, for any fixed p,

Pr(Sy ∩Qp 6= ∅) ≤
mi

2t
≤ mi

m3i
<

1
15mi

.

36

Of course, if we choose both y and p at random the same inequality holds. Thus there must be
some y such that if we choose p at random the same inequality holds. �

Define τ(w) as

τ(w) =

σ(w) if |w| < n

1 if w ∈ Syt for some t, 3i logm ≤ t ≤ mi/2

A(w) otherwise, if |w| ≤ mi

undefined otherwise.

Clearly, τ is an MA-condition extending σ. Further, τ differs from A at most on strings in Syt
for n ≤ t ≤ mi/2, which appear as queries on a combined total of less than 1

15 of the paths
of PAi (x). Thus P τi (x) accepts with probability strictly between 1

3 and 2
3 , which implies that

τ
(
L(PXi) is undefined

)
by Proposition 3.13, and so τ ∈ Ti.

Now suppose there is no such x and A, that is, for every x such that 3i log |x| ≥ n, and for every
A extending σ that is MA-proper for all lengths less than 3i log |x|, the probability that PAi (x)
accepts is either less than 2/5 or greater than 3/5.

Fix any x with |x| = m and such that ` = 3i logm ≥ n, and let G be any MA-proper oracle
extending σ. We will show that L(PGi) ∈ PG and thus σ ∈ Ti. Let σ′ be G restricted to strings of
length less than `. (For the moment, we’ll allow BPP machines to have error up to 2

5 ; this doesn’t
affect the rest of the proof.)

Now Pi may not be categorical over σ′; σ′ alone doesn’t tell us about the behavior of Pi on
inputs bigger than m, so we cannot define the certificate complexity of Pi(y) over σ′ for |y| > m in
accordance with Definition 6.7. However, we do know that Pi(x) behaves in a BPP-proper way for
all oracles extending σ′, and the results of Impagliazzo and Naor [IN88] show us that polynomial-
sized (in m) certificates for Pi(x) over σ′ can be computed in FPΣp2 (see the discussion following
Lemma 6.16), and hence in FP. Therefore, once we compute σ′ explicitly (using m3i queries to G),
we can run the Standard Algorithm, simulating the computation of fσ

′
(x, α) corresponding to the

machine Pi(x) in polynomial time. This approach works for all x with |x| ≥ 2n/3i, where n and i

were fixed. This shows that L(PGi) ∈ PG. �

Definition 6.7 can be loosened to accommodate this last point. We could have defined cate-
goricity of M over σ for a particular input x in the expected way. Then, to define the certificate
complexity of M(x) over σ, we only require that M be categorical over σ for input x. The function
f of Equation 6 is then defined arbitrarily whenever M is not categorical for x. But when M is
categorical for x, the Standard Algorithm can be run.

7.3 Separations with SP-Generics

Theorem 6.10 and Corollaries 6.14 and 6.15 show dramatic collapses relative to SP-generic oracles.
A natural question to ask is whether these collapses are tight with regard to the time hierarchy.
For example, PG = UPG for SP-generic G, but this would also follow from a stronger collapse:

37

(∀i)(∃j)[UTIMEG(ni) ⊆ DTIMEG(nj)]. Such stronger collapses occur when the class in ques-
tion has a complete set. For example, if P = NP, then the “standard” complete set (cf. [BDG88])

K =
{〈
i, x, 1t

〉
| the ith NTM accepts x within time t

}
would be computable in DTIME(na) for some a ∈ ω, and so for all b ∈ ω,

NTIME(nb) ⊆ DTIMEK(nb) ⊆ DTIME(na+b).

The next theorem shows that no such stronger collapse occurs relative to G for any of the
classes we have been discussing. Another motivation for the theorem is that the proof easily scales
up to obtain a generic oracle that separates all these classes from P. We’ll discuss this briefly in
Section 7.3.1.

Theorem 7.6 For any SP-generic G and any k ∈ ω,

ULING ∩ co-ULING ∩ ZPLING 6⊆ DTIMEG(nk).

[Here, ULIN stands for unambiguous nondeterministic linear time, and ZPLIN stands for zero-
error probabilistic linear time.]

Proof: For simplicity, we only prove that ULING ∩ co-ULING 6⊆ DTIMEG(nk). Combining
this with similar techniques proves the theorem. The basic idea is simple: when building the
oracle G, we extend some SP-condition σ to an SP-condition τ by filling in some of the gaps
in dom(σ) with hidden witnesses or cowitnesses, in order to put some standard test language LG

out of DTIME(nk)G while maintaining some ULIN ∩ co-ULIN promise for LG. We can make
the gaps remaining in dom(τ) to be too far apart to interfere with the diagonalizations against
DTIME(nk) oracle machines.

Unfortunately, the situation is more complicated than this and requires greater care. There are
infinitely many lengths where τ is completely undefined, and even though a DTIME(nk) machine
running on a test input of length n does not have time to make queries in the next bigger gap
in dom(τ), it can still make queries outside of dom(τ) at lengths shorter than n. We have no
control over how the oracle G is eventually defined at these lengths, and G may perhaps tell the
machine where to find witnesses and so defeat the diagonalization. The trick to the construction is
to attempt diagonalization on many inputs of length n at once. The deterministic machine may be
able to find some witnesses, but computing the right answer on all test inputs would require more
information than can fit in the oracle at the shorter lengths.

Let σ be any c-condition for c ≥ 1, undefined on strings with lengths in Ac (cf. Definition 5.1.)
We show how to extend σ to a d-condition τ with d = 2c such that the test language

LG = { x : 4|x| ∈ (Ac −Ad) & (∃y)[|y| = 3|x| − 1 & xy1 ∈ G] }

is a member of (ULING ∩ co-ULING) − DTIME(nk)G for any oracle G extending τ . We can
assume without loss of generality that 2c > k (otherwise, we just extend σ in some arbitrary way

38

first), which means that for any element n ∈ Ac, the next bigger element of Ac is n2c > nk. The
extension τ is defined by giving its values on strings with lengths in Ac −Ad as follows: For every
n ∈ Ac − Ad, let m = n/4 and let x1, . . . , x2m be the lexicographical enumeration of all strings of
length m. Choose a Kolmogorov random (relative to σ) string y = y1y2 · · · y2m of length 3m2m,
cut into blocks yi of length 3m each. We let τ(xiyi) = 1 for 1 ≤ i ≤ 2m, and let τ(z) = 0 for all
other strings z of length n. Doing the above for all n ∈ Ac − Ad defines τ . This clearly puts LG

into ULING ∩ co-ULING for all G extending τ .
Fix a deterministic oracle machine M running in time nk. Let n0 be a sufficiently large element

of Ac − Ad, and let m0 = n0/4. Let x1, . . . , x2m0 be the lexicographic enumeration of the strings
of length m0, and let y = y1 · · · y2m0 be the Kolmogorov random string as described above, for
n = n0. The next higher (than n0) gap in dom(σ) comes at a length above nk0, and so does not
affect any computation of M(xi). The gaps at lengths smaller than n0 come (at worst) at lengths
n

1/2
0 , n

1/4
0 , n

1/8
0 , . . . , for a total of at most 2n

1/2
0 +1 < 2m0/4 strings shorter than n0 outside dom(σ).

Call this set of strings the spoiler set, and let G be any oracle extending τ .
We restrict our attention to computations of MG(xi) for 1 ≤ i ≤ 2m0 . We claim first that

the total number N of strings xiyi queried by M over all these computations together is less than
2m0/4. Suppose not, i.e., N ≥ 2m0/4. We could give a short description (relative to σ; recall that the
Kolmogorov randomness of y is relative to σ) of y consisting of the following four self-terminating9

strings in sequence:

• m0 in binary,

• all the bits of G restricted to the spoiler set,

• a concatenation in increasing order of i of all the yi such that xiyi is not queried by M , and

• a concatenation of strings xjr such that MG(xj) makes its first query to some string xiyi as
its rth query. (Each r has length k logm0 bits, and each queried xiyi is counted exactly once
in the string.)

It is clear that y can be effectively recovered, using σ as an oracle, from this description and a
program for M . By assumption, N ≥ 2m0/4, and if m0 is large enough then m0 ≥ k logm0, and so
the entire description has length

2m0/4 + 3m0 (2m0 −N) +N (m0 + k logm0) +O(m0)

= 2m0/4 + 3m02m0 +N (k logm0 − 2m0) +O(m0)

≤ 2m0/4 + 3m02m0 −Nm0 +O(m0)

≤ 2m0/4 + 3m02m0 − 2m0/4m0 +O(m0)

< m0

(
3 · 2m0 − (1/2)2m0/4 +O(1)

)
,

9To be self-terminating, string s is preceded by some information to let a machine know where s ends, assuming

it is concatenated with more bits to its right. The length of this prefix is O(log |s|). See Li and Vitanyi [LV93] for

details.

39

which is shorter than |y| by more than a constant. This contradicts our choice of Kolmogorov
random y, and thus less than 2m0/4 of the xiyi are queried by M .

Now we chop up the set {1, . . . , 2m0} into blocks

Bj =
{
j23m0/4 + 1, j23m0/4 + 2, . . . , (j + 1)23m0/4

}
for 0 ≤ j < 2m0/4. From the claim above, there is a block Bj such that no xiyi for i ∈ Bj is ever
queried by M . We now claim that there must be an xi with i ∈ Bj such that MG(xi) 6= LG(xi).
Suppose not. Noticing that LG(xi) corresponds to the rightmost bit of xiyi, we see that, for all
i ∈ Bj , MG(xi) correctly computes the rightmost bit of xiyi without querying any xi′yi′ for i′ ∈ Bj .
We therefore get a short description of y as a concatenation of the following strings:

• j in binary, using m0/4 bits,

• all the bits of G restricted to the spoiler set, padded out to 2m0/4 bits,

• a concatenation of all yi without the rightmost bit of each, for all i ∈ Bj , and

• a concatenation of all yi for i 6∈ Bj , in order of increasing i.

Again, y can be effectively generated relative to σ from this description (note that m0 can be
computed from its length). To find the rightmost bit of some yi with i ∈ Bj , we run MG(xi), using
the spoiler set bits when we need them. If MG(xi) queries any xi′z where |z| = 3m0, then the
answer is 0 if i′ ∈ Bj since MG(xi) doesn’t query xi′yi′ by assumption. Otherwise if i′ 6∈ Bj , we
can determine the answer by checking whether z occurs in the last part of the description at the
position corresponding to i′.

The length of the description above is

m0/4 + 2m0/4 + (3m0 − 1)23m0/4 + 3m0

(
2m0 − 23m0/4

)
= 3m02m0 − 23m0/4 + 2m0/4 +m0/4

< |y| −O(1),

which again contradicts the fact that y is incompressible.
Since we chose M arbitrarily, we’ve established that L(MG) 6= LG for any G extending the SP-

condition τ . Hence, τ SP ϕ, where ϕ ∈ sent(LXPA) is the sentence “(∀k)[ULINX ∩ co-ULINX 6⊆
DTIME(nk)X].” Thus σ SP ¬¬ϕ, and since σ was chosen arbitrarily, we have that ω[G] � ϕ for
any SP-generic G. �

7.3.1 SP-Conditions with Larger Gaps

In this section we generalize SP to a family {SP i}i∈ω of notions of genericity with different com-
plexity theoretic properties. Compare the following with Definition 5.1.

40

Definition 7.7 For i, n ∈ ω, define Ti(n) to be an exponential tower of i 2’s below n, that is,

T0(n) = n,

Tj+1(n) = 2Tj(n) for j ∈ ω.

For c a positive integer, let Ai,c = {Ti(cn) | n ∈ ω}. An i-c-condition is a partial characteristic
function τ : Σ∗ → {0, 1} such that

dom(τ) =
⋃

m∈ω−Ai,c

Σm.

A condition τ is an SP i-condition if τ is an i-c-condition for some c ≥ 1. We let SP i denote the
class of all SP i-conditions.

Clearly, SP = SP2. As i increases, the gaps in the domains of SP i conditions grow further
and further apart. For instance, each successive gap in an SP3-condition comes at strings of length
superpolynomial in lengths of strings in the previous gap. It is easy to see that SP i is basic for
all i. Indeed, the notions SP i all have identical topological and computability theoretic properties;
in particular, Theorem 5.6 holds for SP i-generics by the same proof. The notions have different
complexity theoretic properties, however—a difference that we will see especially in the polynomial
case between SP2 and SP3, underscoring how much more sensitive complexity theory is compared
to computability theory in the face of relativization.

Definition 7.8 For all integers c > 0 and real x ≥ 0, we define inductively

g0,c(x) = x+ c,

and
gi+1,c(x) = 2gi,c(log2 x)

for all i ∈ ω.

The functions gi,c are defined so that, for any i-c-condition σ, if dom(σ) has a gap at length
`, then the next bigger gap will be at length gi,c(`). Note that g1,c(x) = x2c and g2,c(x) = x2c ,
and for fixed c, g3,c(x) = 22c log x grows superpolynomially in x. The gi,c form a natural hierarchy
of subexponentially growing functions (see, for example, Lutz [Lut92]). The proof of Theorem 7.6
“scales up” in a straightforward way to prove

Theorem 7.9 For i, j, k ∈ ω with 2 ≤ i < j, relative to any SPj-generic set,

ULIN ∩ co-ULIN ∩ ZPLIN 6⊆ DTIME(gi,k).

In particular, for polynomially bounded classes we have

41

Corollary 7.10 Relative to any SP3 generic set,

P 6= UP ∩ co-UP ∩ ZPP.

Thus SP3-generic oracles are almost the opposite of SP-generics in how they treat these promise
classes. On the other hand, all the collapsing results for SP-generics also scale up to show that

Proposition 7.11 Relative to any SP i-generic set with i ≥ 2,⋃
k

DTIME(gi,k) =
⋃
k

UTIME(gi,k) =
⋃
k

BPTIME(gi,k) =

8 Further Work and Open Problems

Despite the almost complete and coherent relativized world view generic oracles provide, there are
still some open questions regarding the collapse of certain complexity classes relative to generics.
For SP-generics, or for Cohen generics under suitably strong unrelativized assumptions, we have
P = AWPP and P = NP ∩ co-NP. Are stronger collapses possible? For example, is it the case
that P = C=P ∩ co-C=P with respect to SP-generics, or with respect to Cohen generics with
sufficient unrelativized “help”? This would be the case if a certain strengthening of Nisan-Szegedy
[NS94] held, i.e., if we weakened the hypothesis by allowing the Boolean formula to be represented
by any rational function rather than just a polynomial. Such a collapse would imply at once both
the known collapses P = WPP and P = NP∩ co-NP with respect to generics, currently achieved
by different proofs. Is there any reasonable class containing both NP ∩ co-NP and AWPP that
would collapse to P?

The collapse of AWPP to P relative to SP-generics, while PH remains infinite (Proposi-
tion 5.4), has special significance to the quantum computing model. The relativizable inclusion
BQP ⊆ AWPP shown by Fortnow and Rogers [FR99] implies that SP-generics provide a rela-
tivized world where quantum computers are no more powerful than classical deterministic ones,
and NP-complete problems are beyond the reach of both. This bolsters an earlier result of Bennett
et al. that NP 6⊆ BQP relative to a random oracle [BBBV97], and suggests severe limitations on
quantum computation.

Several questions that were open when the proceedings version of this paper appeared [FFKL93]
have been answered, and further results have been obtained. In Section 7.2, we created a specialized
form of generic, an MA-generic, to solve a specific problem. Other specialized generic sets, including
UP-generic and (NP ∩ co-NP)-generic sets, have been applied by Fortnow and Rogers [FR94] to
get simultaneous collapses and separations of various subclasses of NP. Buhrman and Fortnow also
used a UP-generic set to find an oracle where NP 6= co-NP but PNP[1] = PNP[2] = PSPACE
[BF99]. In a clever use of the rerelativization technique, Rogers [Rog97] defined a generic oracle
where both P 6= UP and the Isomorphism Conjecture holds. This oracle is a UP-generic oracle
built “on top of” an SP-generic. Perhaps other specialized forms of generics may have applications
to other oracle constructions.

42

So far all our collapsing results collapse classes down to P. Until recently, a long standing open
question was what happens one level up in the polynomial hierarchy. With respect to SP-generics
(or Cohen generics with help), is it the case that Σp

2 ∩ Πp
2 collapses to PNP? What happens at

higher levels? Both these questions were resolved by Fortnow and Yamakami [FY96], who showed
that Σp

2 ∩ Πp
2 does not collapse to PNP, and that separations also occur at higher levels as well.

Whether their techniques apply to hierarchies involving counting classes is a natural question. For
example, is SPPNP = PNP relative to an SP-generic oracle?

Finally, there are notions of forcing/genericity in the literature—used in constructing oracles
in complexity theory—that fall under the general scheme described in Section 3, but that did
not appear to originally. Particular examples are in Fortnow and Rogers [FR94] and Fenner and
Schaefer [FS97, Proof of Lemma 8.5]. These notions of genericity involve extra “promises” about
the structure of the generic set being built. For instance, Fortnow and Rogers define size-bounded
generic sets as follows: Define t(0) = 1 and t(n + 1) = 2t(n), and call the range of t the set of
allowed lengths. A condition is a pair (σ, k) such that k is a positive integer, σ: Σ≤n → {0, 1} for
some n > 0, and σ(x) = 0 for all x ∈ dom(σ) when |x| is not an allowed length. One condition
(τ, `) extends another condition (σ, k) iff

• σ � τ ,

• k ≤ `, and

• for all n such that there are strings of length n in dom(τ)− dom(σ), we have τ(x) = 1 for at
most n/2k strings x of length n.

A dense set of conditions is defined in the usual way, and given a prespecified countable collection
of dense sets of conditions, there is a countable chain c1 � c2 � · · · of conditions that intersects
each dense set in the collection. The sb-generic oracle is then the union of the first components
of the conditions in the chain. The presence of the integer k in a condition encodes the promise
that future extensions of σ will be sufficiently sparse. Fortnow and Rogers show that relative to a
sufficiently sb-generic oracle, P = UP = NP∩ co-NP and there are no pairs of P-inseparable sets
either in NP or in co-NP. (There are P-inseparable sets in co-NP relative to Cohen generics.)

The notion of size-bounded genericity is actually an instance of Definition 3.3 when we identify
a condition (σ, k) with the correct perfect subset γσ,k of 2ω. The set γσ,k consists of all A ∈ 2ω = 2Σ∗

such that

• A extends σ,

• A(x) = 0 for all x ∈ Σ∗ such that |x| is not an allowed length, and

• for every allowed length n such that σ is undefined on strings of length n, we have A(x) = 1
for at most n/2k strings x of length n.

43

Such a γσ,k is easily seen to be a perfect set. Moreover, for any two conditions (σ, k) and (τ, `), we
have (σ, k) � (τ, `) if and only if γσ,k ⊇ γτ,`. Finally, it is clear that the set of all γσ,k is a notion of
genericity according to Definition 3.3.

A similar identification works for the (unnamed) notion of genericity defined in [FS97]. Thus to
our knowledge, all notions of genericity used in complexity theory (including randomness) fit the
framework described in Section 3. Any useful notion that violates this framework would be highly
interesting.

9 Acknowledgments

We would like to take this opportunity to repay through thanks a number of specific debts we
incurred in preparing this paper. We have benefited from helpful discussions with Martin Böttcher,
Carl Jockusch, John Rogers, Jim Royer, and Yong Zhang. We have come to rely on Noam Nisan
and Mario Szegedy, who have demonstrated a remarkable ability to publish combinatorial results
just before we need them.

References

[AK02] V. Arvind and Piyush P. Kurur. Graph Isomorphism is in SPP. In Proceedings of the
43rd IEEE Symposium on Foundations of Computer Science, New York, 2002. IEEE.
To appear.

[AS96] K. Ambos-Spies. Resource-bounded genericity. In S. B. Cooper, T. A. Slaman, and S. S.
Wainer, editors, Computability, Enumerability, Unsolvability: Directions in recursion
theory, pages 1–59. Cambridge University Press, 1996.

[BBBV97] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and weaknesses
of quantum computation. SIAM Journal on Computing, 26(5):1510–1523, 1997, quant-
ph/9701001.

[BBC+98] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by
polynomials. In Proceedings of the 39th IEEE Symposium on Foundations of Computer
Science, pages 352–361. IEEE, 1998, quant-ph/9802049.

[BBF98] R. Beigel, H. Buhrman, and L. Fortnow. NP might not be as easy as detecting unique
solutions. In Proceedings of the 30th ACM Symposium on the Theory of Computing,
pages 203–208, New York, 1998. ACM.

[BDG88] J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity I, volume 11 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1988.

[BDG90] J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity II, volume 22 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1990.

44

[BF99] H. Buhrman and L. Fortnow. Two queries. Journal of Computer and System Sciences,
59(2):182–194, 1999.

[BG81] C. H. Bennett and J. Gill. Relative to a random oracle A, PA 6= NPA 6= co-NPA with
probability 1. SIAM Journal on Computing, 10:96–113, 1981.

[BH77] L. Berman and J. Hartmanis. On isomorphism and density of NP and other complete
sets. SIAM Journal on Computing, 1:305–322, 1977.

[BI87] M. Blum and R. Impagliazzo. Generic oracles and oracle classes. In Proceedings of the
28th IEEE Symposium on Foundations of Computer Science, pages 118–126, New York,
1987. IEEE.

[Böt93] Martin Böttcher. Private communication, 1993.

[BV97] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal on Comput-
ing, 26(5):1411–1473, 1997.

[Coh63] Paul J. Cohen. The independence of the continuum hypothesis, I. In Proceedings of the
National Academy of Science, volume 50, pages 1143–1148, 1963.

[Coh64] Paul J. Cohen. The independence of the continuum hypothesis, II. In Proceedings of
the National Academy of Science, volume 51, pages 105–110, 1964.

[Fef65] S. Feferman. Some applications of the notions of forcing and generic sets. Fundamenta
Mathematicæ, 56:325–345, 1965.

[Fen02a] S. A. Fenner. Counting complexity and quantum computation. In R. K. Brylinski and
G. Chen, editors, Mathematics of Quantum Computation, chapter 8, pages 171–219.
CRC Press, 2002.

[Fen02b] S. A. Fenner. PP-lowness and a simple definition of AWPP. Theory of Computing
Systems, 2002. To appear. Also available as ECCC Report TR02-036.

[FFK94] S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal of Com-
puter and System Sciences, 48(1):116–148, 1994.

[FFK96] S. A. Fenner, L. J. Fortnow, and S. A. Kurtz. The isomorphism conjecture holds relative
to an oracle. SIAM Journal on Computing, 25(1):193–206, 1996.

[FFKL93] S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder’s toolkit. In Proceedings
of the 8th IEEE Structure in Complexity Theory Conference, pages 120–131, 1993.

[For97] L. Fortnow. Counting complexity. In L. A. Hemaspaandra and A. L. Selman, editors,
Complexity Theory Retrospective II. Springer-Verlag, 1997.

45

[FR94] L. Fortnow and J. Rogers. Separability and one-way functions. In Proceedings of the
5th Annual International Symposium on Algorithms and Computation, volume 834 of
Lecture Notes in Computer Science, pages 396–404. Springer-Verlag, Berlin, 1994.

[FR99] L. Fortnow and J. Rogers. Complexity limitations on quantum computation. Journal
of Computer and System Sciences, 59(2):240–252, 1999, cs.CC/9811023.

[FS97] S. Fenner and M. Schaefer. Simplicity and strong reductions. Unpublished manuscript,
http://www.cse.sc.edu/˜fenner/papers/simplicity.ps, 1997.

[FY96] L. Fortnow and T. Yamakami. Generic separations. Journal of Computer and System
Sciences, 52(1):191–197, 1996.

[GS88] J. Grollmann and A. Selman. Complexity measures for public-key cryptosystems. SIAM
Journal on Computing, 17:309–335, 1988.

[HH91] J. Hartmanis and L. Hemachandra. One-way functions and the nonisomorphism of
NP-complete sets. Theoretical Computer Science, 81(1):155–163, 1991.

[HS92] S. Homer and A. Selman. Oracles for structural properties: The isomorphism problem
and public-key cryptography. Journal of Computer and System Sciences, 44(2):287–301,
1992.

[IN88] R. Impagliazzo and M. Naor. Decision trees and downward closures. In Proceedings
of the 3rd IEEE Structure in Complexity Theory Conference, pages 29–38, New York,
1988. IEEE.

[Jec78] T. Jech. Set Theory. Academic Press, New York, 1978.

[Joc80] C. G. Jockusch. Degrees of generic sets. In F. R. Drake and S. S. Wainer, editors, Recur-
sion Theory: Its Generalizations and Applications, pages 110–139. Cambridge University
Press, Cambridge, 1980.

[KMR90] S. A. Kurtz, S. R. Mahaney, and J. S. Royer. The structure of complete degrees. In A. L.
Selman, editor, Complexity Theory Retrospective, chapter 6, pages 108–146. Springer-
Verlag, 1990.

[KMR95] S. Kurtz, S. Mahaney, and J. Royer. The isomorphism conjecture fails relative to a
random oracle. Journal of the ACM, 42(2):401–420, 1995.

[KP54] S. Kleene and E. Post. The uppersemilattice of degrees of recursive unsolvability. Annals
of Mathematics, 59:379–407, 1954.

[KST92] J. Köbler, U. Schöning, and J. Torán. Graph Isomorphism is low for PP. Computational
Complexity, 2(4):301–330, 1992.

46

[Kun80] K. Kunen. Set Theory: An Introduction to Independence Proofs, volume 102 of Studies
in Logic and the Foundations of Mathematics. North-Holland, 1980.

[Kur88] S. Kurtz. The isomorphism conjecture fails relative to a generic oracle. Technical Report
88-018, Department of Computer Science, University of Chicago, 1988.

[Lac54] D. Lacombe. Sur le semi-réseau constitué par les degrès d’indécidabilité ré récursive.
Comptes rendus hebdomadaires des séances de l’Académie des Sciences (Paris),
239:1108–1109, 1954.

[Li93] L. Li. On the counting functions. Technical Report TR-93-
12, The University of Chicago, 1993. PhD thesis, available at
http://www.cs.uchicago.edu/research/publications/techreports/TR-93-12.

[Lut92] J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer and
System Sciences, 44:220–258, 1992.

[LV93] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and its Applications.
Texts and Monographs in Computer Science. Springer-Verlag, 1993.

[Meh73] Kurt Mehlhorn. On the size of sets of computable functions. In Proceedings of the 14th
Annual IEEE Symposium on Switching and Automata Theory, pages 190–199. IEEE
Computer Society, 1973.

[NS94] N. Nisan and M. Szegedy. On the degree of boolean functions as real polynomials.
Computational Complexity, 4:301–313, 1994.

[Odi83] P. Odifreddi. Forcing and reducibilities. Journal of Symbolic Logic, 48(2):288–310, 1983.

[Odi89] P. Odifreddi. Classical Recursion Theory. Studies in Logic and the Foundations of
Mathematics. North-Holland, 1989.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Rog97] J. Rogers. The Isomorphism Conjecture holds and one-way functions exist relative to
an oracle. Journal of Computer and System Sciences, 54(3):412–423, 1997.

[Sac71] Gerald E. Sacks. Forcing with perfect closed sets. In Dana S. Scott, editor, Axiomatic
Set Theory, pages 331–355. American Mathematical Society, Providence, 1971.

[Sch90] U. Schöning. The power of counting. In A. L. Selman, editor, Complexity Theory
Retrospective. Springer-Verlag, 1990.

[Sol70] R. M. Solovay. A model of set theory in which every set of reals is Lebesgue measurable.
Annals of Mathematics, 92:1–56, 1970.

47

[Spe56] C. Spector. On degrees of recursive unsolvability. Annals of Mathematics, 64(2):581–592,
1956.

[SW86] T. A. Slaman and W. H. Woodin. Definability in the Turing degrees. Illinois J. Math.,
30:320–334, 1986.

[SW97] T. A. Slaman and W. H. Woodin. Definability in the enumeration degrees. Arch. Math.
Logic, 36:255–267, 1997.

[Val79] L. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8:189–201, 1979.

[Yao93] A. Yao. Quantum circuit complexity. In Proceedings of the 34th IEEE Symposium on
Foundations of Computer Science, pages 352–361, 1993.

48

