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Abstract

We show that any 1-round 2-server Private Information Retrieval Protocol where the answers
are 1-bit long must ask questions that are at least n− 2 bits long, which is nearly equal to the
known n−1 upper bound. This improves upon the approximately 0.25n lower bound of Kerenidis
and de Wolf while avoiding their use of quantum techniques.

1 Introduction

Following prior papers on Private Information Retrieval Protocols ([1, 3, 4, 6, 9]) we model a
database as an n-bit string x = x1 . . . xn. Suppose that the user wants to know xi but does not
want the database to obtain any information about i. We do not impose any computational limits
on the database, though some researchers have considered such limits [3, 9]. If there is only one
copy of the database then the only way to ensure privacy is to request the entire string x, which
is n bits long. If there are k ≥ 2 copies of the database that do not communicate with each other
then the number of bits can be reduced. We refer to a copy of the database as a server.

Many upper bounds have been obtained. These include

1. If there are two servers then O(n1/3) bits of communication suffice [4].

2. If there are k servers then O(n1/(2k−1)) bits of communication suffice [1, 2].

3. If there are k servers then nO(log log k/k log k) bits of communication suffice [2].

Lower bounds on Private Information Retrieval Protocols have been hard to obtain. The lower
bounds that are known either limit the type of query [7, 10] or are weak [8, 11].

We assume throughout the paper that the queries sent to each server are the same length.
Consider the case that the answers from the database are linear, i.e., they are an XOR of some
subset of the bits of the database. Goldreich, Karloff, Schulman, and Trevisan [7] show that Ω( n

2a )
bits must be sent to each server where a is the number of bits each server could send back to the
user. The lower bound also holds for randomized protocols with a small probability of error. The
multiplicative constant depends on the probability of error. In the special case of a = 1 where
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the user simply XORs the bits he gets, Chor, Kushilevitz, Goldreich and Sudan [4] show that any
protocol would require n − 1 bits sent to each server. They also give a matching upper bound in
this model.

In the case that answers are not restricted to be linear, nontrivial lower bounds have only
recently been discovered. Kerenidis and de Wolf [8] show that at least Ω(n/25a) bits must be sent
to each server. This has been improved to Ω(n/22a) by Wehner and de Wolf [11]. In the case a = 1
Kerendis and de Wolf show that at least (1−H(11/14))n−4 ∼ 0.25n bits are required. Their proof
first converts a 2-server randomized protocol to a 1-server quantum protocol and then they show
lower bounds on the quantum protocol. Hence their lower bounds hold for randomized protocols
that allow a small probability of error.

In this paper we obtain a lower bound of n−2 for 2-server deterministic error-free PIR schemes
with the assumption that the answers are 1-bit long. This nearly matching the n− 1 upper bound
of Chor, Kushilevitz, Goldreich and Sudan [4].

We avoid the quantum techniques used by Kerenidis and de Wolf. Rather our proof builds
on classical tools developed by Yao [12] and Fortnow and Szegedy [5] for studying locally-random
reductions, a complexity-theoretic tool for information hiding that predates private information
retrieval.

2 The Lower Bound

In this section we formally define the model and state and prove our main result.

Definition 2.1 A 2-server 1-round r-random bit PIR for databases of size n with m-bit queries
and a-bit answers is a tuple (q1, q2, a1, a2, φ) such that the following hold.

1. qj : [n]× {0, 1}r → {0, 1}m. This is the query sent to server j. The distribution of qj(i, ρ) is
independent of i (this ensures privacy).

2. aj : {0, 1}n × {0, 1}m → {0, 1}a. This is the response server j gives if the database is
x ∈ {0, 1}n and he sees query µ ∈ {0, 1}m.

3. φ : [n] × {0, 1}r × {0, 1}m × {0, 1}m × {0, 1}a × {0, 1}a → {0, 1}. This is how the user puts
together the information he has received. Say he wants to know xi. If the random string is
ρ ∈ {0, 1}r and the queries are q1, q2, and he gets back a-bit strings b1 and b2 then the user
computes xi = φ(i, ρ, q1, q2, b1, b2). (Note that since q1 and q2 are functions of i, ρ we could
have defined φ to be a function of just (i, ρ, b1, b2); however, making q1, q2 explicit inputs has
notational advantages.)

Assume that (q1, q2, a1, a2, φ) is a 2-server 1-round r-random bit PIR for databases of size n
with m-bit queries and 1-bit answers. Imagine that the user wants to find xi, has random string
ρ, and has found out a1(x, q1(i, ρ)). It is possible that a2(x, q2(i, ρ)) is not needed. This would
happen if a2(x, q2(i, ρ)) = 0 and a2(x, q2(i, ρ)) = 1 yield the same value for xi. If this happens
then we say that i, ρ, a1(x, q1(i, ρ)) set xi. It is also possible that a2(x, q2(i, ρ)) is crucial. In this
case, if the user happened to know xi he could determine a2(x, q2(i, ρ)). In this case we say that
i, ρ, a1(x, q1(i, ρ)) and xi force a2(x, q2(i, ρ)). Either way is a win. The next definition and lemma
formalize this notion.

For the next definition and the two lemmas following it let (q1, q2, a1, a2, φ) be a 2-server 1-round
r-random bit PIR for databases of size n with m-bit queries and 1-bit answers.
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Definition 2.2 Let i ∈ [n], ρ ∈ {0, 1}r, and x ∈ {0, 1}n.

1. The values of i, ρ, a1(x, q1(i, ρ)) set xi if

φ(i, ρ, q1(i, ρ), q2(i, ρ), a1(x, q1(i, ρ)), 0) = φ(i, ρ, q1(i, ρ), q2(i, ρ), a1(x, q1(i, ρ)), 1).

Note that if the user knows i, ρ, and a1(x, q1(i, ρ)) then he knows xi. This is a win. The
values of i, ρ, a2(x, q2(i, ρ)) set xi can be defined similarly.

2. We say the values of i, ρ, a1(x, q1(i, ρ)), and xi force a2(x, q2(i, ρ)) if

φ(i, ρ, q1(i, ρ), q2(i, ρ), a1(x, q1(i, ρ)), 0) 6= φ(i, ρ, q1(i, ρ), q2(i, ρ), a1(x, q1(i, ρ)), 1).

Note that if the user knows i, ρ, a1(x, q1(i, ρ)) and xi then he knows a2(x, q2(i, ρ)). This is
also a win. The values of i, ρ, a2(x, q2(i, ρ)), and xi force a1(x, q1(i, ρ)) is defined similarly.

We need the restriction of 1-bit back answers in order to define set and force. The next Lemma
uses these notions. It is the only place we use that the answers are 1 bit long. Any attempt to
extend our proof to 2 or more bits will have to get around this obstacle.

The following lemma follows from the Definition 2.2

Lemma 2.3 Let i ∈ [n], ρ ∈ {0, 1}r, and x ∈ {0, 1}n. Then both of the following hold:

1. Either i, ρ, a1(x, q1(i, ρ)) set xi or i, ρ, a1(x, q1(i, ρ)), and xi force a2(x, q2(i, ρ)).

2. Either i, ρ, a2(x, q2(i, ρ)) set xi or i, ρ, a2(x, q2(i, ρ)), and xi force a1(x, q1(i, ρ)).

In Lemma 2.5 and Theorem 2.6 we will use the mythical character Alice. Alice is computation-
ally unbounded and knows the protocol but she does not know x. We will be concerned with what
she can and cannot deduce from other information she is given.

Notation 2.4

1. Let ORD1 (ORD2) be a set of ordered pairs of queries to the first (second) server and
the answers to these queries. The phrase ‘Alice can deduce xi from ORD1, ORD2, and i’
means that Alice, who has unlimited power and access to the protocol, can determine a value
b ∈ {0, 1} such that xi = b is consistent with her data while xi 6= b is not.

2. We can define a similar notion of deduce for other information Alice may have. For example,
it is possible that if Alice knows some xi and some query answers she can deduce other query
answers (see Definition 2.2).

Lemma 2.5 Let x ∈ {0, 1}n. Let S1, S2 be multisets of {0, 1}m. Assume that, for every q1 ∈ S1

Alice knows a1(x, q1); and, for every q2 ∈ S2 Alice knows a2(x, q2). Let
INFO = {(q1, a1(x, q1)) | q1 ∈ S1} ∪ {(q2, a2(x, q2)) | q2 ∈ S2}
Note that Alice knows the set INFO. Assume that i0 is such that Alice cannot deduce xi0 from

io and INFO. Let T 1 and T 2 be the following multisets.

T 1 = {q1(i0, ρ)) | q2(i0, ρ) ∈ S2}
T 2 = {q2(i0, ρ)) | q1(i0, ρ) ∈ S1}.

Then
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1. Assume xi0 and INFO are known to Alice. For every q1 ∈ T1 Alice can deduce a1(x, q1); and,
for every q2 ∈ T2 Alice can deduce a2(x, q2).

2. |T 1| = |S2| and |T 2| = |S1|.

3. |(S1 ∪ T 1) ∪ (S2 ∪ T 2)| = 2|S1 ∪ S2|. (These are multisets.)

Proof:
1) Let q1(i0, ρ) ∈ T 1. By Lemma 2.3 either i0, ρ, a2(x, q2(i0, ρ)) set xi0 or i0, ρ, a2(x, q2(i0, ρ)), and
xi0 force a1(x, q1(i0, ρ)). Since q2(i0, ρ) ∈ S2 and Alice cannot deduce xi0 from the information, the
former cannot happen. Hence the later happens. Hence, knowing xi0 and the information Alice
can deduce a1(x, q1(i0, ρ)). A similar proof holds for q2(i0, ρ) ∈ T 2.
2) There is a bijection between the multiset S2 and the multiset T 1: map q2(i0, ρ) to q1(i0, ρ).
Hence |T 1| = |S2|. Similar for |T 2| = |S1|.
3) This follows from part 2.

Theorem 2.6 Any 2-server 1-round r-random bit PIR for databases of size n with m-bit queries
and 1-bit answers must have m ≥ n− 2.

Proof:
The following theorem was originally proven using Kolmogorov Complexity; however, we have

rephrased the proof in terms of simple combinatorics.
Let (q1, q2, a1, a2, φ) be a 2-server 1-round r-random bit PIR for databases of length n with

m-bit queries and 1-bit answers.
Let M1 and M2 be the following multisets of {0, 1}m.

M1 = {q1(1, ρ) | ρ ∈ {0, 1}r}
M2 = {q2(1, ρ) | ρ ∈ {0, 1}r}.

By privacy, for all i,

M1 = {q1(i, ρ) | ρ ∈ {0, 1}r}
M2 = {q2(i, ρ) | ρ ∈ {0, 1}r}.

Fix ρ. For every i ∈ [n] there exists ρ′, ρ′′ such that q1(1, ρ) = q1(i, ρ′) and q2(1, ρ) = q2(i, ρ′′).
We exhibit an injection f : {0, 1}n → {0, 1}m+2, hence we obtain n ≤ m+2, so m ≥ n−2. The

proof that f is an injection will follow easily from the fact that from f(x) and the protocol Alice
can reconstruct x.

Since |M1| = 2r and the total number of distinct strings is at most 2m there must be a string
that occurs with multiplicity 2r−m. Let µ0 be such a string. For notational convenience we assume

µ0 = q1(1, ρ1) = q1(1, ρ2) = · · · = q1(1, ρ2r−m).

We describe a process for generating a (short) string we call ADV ICE that will begin with
a1(x, µ0) but then have several bits of x. From ADV ICE we will be able to reconstruct the entire
string x. We will end up taking f(x) to be ADV ICE padded with 0’s to make it the right length.
Intuition: At the end of stage ` we will have the following.

1. A set I` ⊆ [n].
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2. A string ADV ICE` which is the concatentaion of xi for i ∈ I`. The ideas is that sometimes
we will use the bits in ADV ICE` to deduce answers to queries, and sometimes we will use
answers to queries to deduce values xj where j /∈ I`.

3. A multiset S1
` ⊆ M1, and a multiset S2

` ⊆ M2.

4. Given ADV ICE`, the protocol, and the construction so far, Alice will be able to deduce the
following.

(a) For every q1 ∈ S1
` , a1(x, q1).

(b) For every q2 ∈ S2
` , a2(x, q2).

(c) For every i ∈ I, xi.

These answers will enable Alice to deduce some values of xi. If xi0 cannot be deduced then
adding xi0 to the advice will double the number of strings in M1 ∪M2 for which Alice can deduce
the answers and thus get |S1

`+1 ∪ S2
`+1| = 2|S1

` ∪ S2
` |.

We now give the formal construction.

1. Let ADV ICE0 = a1(x, µ0). Throughout the construction ADV ICE` ∈ {0, 1}∗ will be
a1(x, µ0) followed by a string of bits that represent particular xi values. We do not need to
put i’s into the advice as they will be deduced from the construction.

2. Let S1
0 be the multiset {µ0, . . . , µ0} (2r−m µ0’s). Formally we define the multiset S1

0 as

S1
0 = {q1(1, ρ1), q1(1, ρ2), . . . , q1(1, ρ2r−m)}.

Let S2
0 = ∅.

3. Let I0 = ∅. Throughout the construction I` ⊆ [n] will be the set of indices i such that Alice
can deduce xi from knowing the answers to the queries in S1

` ∪ S2
` .

4. Assume S1
` , S2

` have been constructed and I` 6= [n]. Let i0 be the least element of [n]− I`.

(a)
ADV ICE`+1 = ADV ICE` · xi0 .

(b) We will now add strings to S1
` (S2

` ) to obtain S1
`+1 (S2

`+1). When adding strings to a
multiset you need to be careful. We will use the notation q(i, ρ) /∈ S1

` . This may be
true even if the string q(i, ρ) is in S1

` . What we mean is that it was never put into S1
`

explicitly as q(i, ρ). For example, if q(2, 0010) = q(7, 1101) then we may have earlier put
q(7, 1101) into S1

` ; however we would still say q(2, 0010) /∈ S1
` .

S1
`+1 = S1

` ∪ {q1(i0, ρ) | q1(i0, ρ) /∈ S1
` ∧ q2(i0, ρ) ∈ S2

` }
S2

`+1 = S2
` ∪ {q2(i0, ρ) | q2(i0, ρ) /∈ S2

` ∧ q1(i0, ρ) ∈ S1
` }

By Lemma 2.5 |S1
`+1 ∪ S2

`+1| = 2|S1
` ∪ S2

` |.
(c)

I`+1 = I` ∪
{j | (∃ρ)[q1(j, ρ) ∈ S1

`+1 ∧ j, ρ, a1(x, q1(j, ρ)), xj force a2(x, q2(j, ρ))} ∪
{j | (∃ρ)]q2(j, ρ) ∈ S2

`+1 ∧ j, ρ, a2(x, q2(j, ρ)), xj force a1(x, q2(j, ρ))}.
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5. If I` = [n] then terminate. If I` 6= [n] then set ` = ` + 1 and goto step 4. Note that if
S1

` ∪ S2
` = M1 ∪M2 then I` = [n] and the construction will terminate.

Since |S1
0 ∪ S2

0 | = 2r−m and this union doubles with every stage, |S1
` ∪ S2

` | = 2r−m+`. Let `′

be the final value of `. Since |M1 ∪ M2| = 2r+1 and S1
` ∪ S2

` ⊆ M1 ∪ M2, r − m + `′ ≤ r + 1 so
`′ ≤ m+1. Since ADV ICE began with one additional bit, |ADV ICE| ≤ `′ +1 ≤ m+2. Let f(x)
be ADV ICE followed by enough 0’s to pad it out to length m + 2. This padding does not affect
the reconstruction of x from f(x) since the advice produced for different x’s is prefix free.

3 Open Problems

Chor, Kushilevitz, Goldreich and Sudan [4] showed that, there is a 2-server 1-round n-random bit
PIR for databases of size n with n − 1 bit queries and 1-bit answers. By combining this with a
general communication balancing technique (also from [4]) one can obtain the following:

Theorem 3.1 Fix n ∈ N. Let a be such that a < n. There exists a 2-server 1-round (dn/ae − 1)-
random bit PIR for databases of size n with (dn/ae − 1)-bit queries and a-bit answers.

Our lower bound showed that this upper bound is tight in the a = 1 case up to an additive
constant. It is an open question to show this for all constant a or even for a = 2.
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