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Abstract

Given a set X of sequences over a finite alphabet, we investigate the following three
quantities.

(i) The feasible predictability of X is the highest success ratio that a polynomial-
time randomized predictor can achieve on all sequences in X.

(ii) The deterministic feasible predictability of X is the highest success ratio that
a polynomial-time deterministic predictor can achieve on all sequences in X.

(iii) The feasible dimension of X is the polynomial-time effectivization of the clas-
sical Hausdorff dimension (“fractal dimension”) of X.

Predictability is known to be stable in the sense that the feasible predictability of
X ∪ Y is always the minimum of the feasible predictabilities of X and Y . We show
that deterministic predictability also has this property if X and Y are computably
presentable. We show that deterministic predictability coincides with predictability
on singleton sets. Our main theorem states that the feasible dimension of X is
bounded above by the maximum entropy of the predictability of X and bounded
below by the segmented self-information of the predictability of X, and that these
bounds are tight.
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2 This author’s research was supported in part by National Science Foundation
Grants 9988483 and 0344187. Much of the work was done while this author was on
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Fig. 1.1. Prediction-dimension diagrams for k = 2, 3, 4.

1 Introduction

The relationship between prediction and gambling has been investigated for
decades. In the 1950s, Shannon [28] and Kelly [13] studied prediction and gam-
bling, respectively, as alternative means of characterizing information. In the
1960s, Kolmogorov [14] and Loveland [15] introduced a strong notion of unpre-
dictability of infinite binary sequences, now known as Kolmogorov-Loveland
stochasticity. In the early 1970s, Schnorr [26,27] proved that an infinite bi-
nary sequence is random (in the sense of Martin-Löf [19]) if and only if no
constructive gambling strategy (martingale) can accrue unbounded winnings
betting on the successive bits of the sequence. It was immediately evident that
every random sequence is Kolmogorov-Loveland stochastic, but the converse
question remained open until the late 1980s, when Shen′ [29] established the
existence of Kolmogorov-Loveland stochastic sequences that are not random,
i.e., sequences that are unpredictable but on which a constructive gambling
strategy can accrue unbounded winnings. This result gave a clear qualitative
separation between unpredictability and randomness, and hence between pre-
diction and gambling. However, the precise quantitative relationship between
these processes has not been elucidated. Given the obvious significance of
prediction and gambling for computational learning [3,4,32] and information
theory [8,9] this situation should be remedied.

Recently, Lutz [18,16] has defined computational effectivizations of classical
Hausdorff dimension (“fractal dimension”) and used these to investigate ques-
tions in computational complexity and algorithmic information theory. These
effectivizations are based not on Hausdorff’s 1919 definition of dimension
[11,7], but rather on an equivalent formulation in terms of gambling strategies
called gales. These gales (defined precisely in section 4 below) give a conve-
nient way of quantifying the discount rate against which a gambling strategy
can succeed. (The equivalence of the gale formulation with Hausdorff’s orig-
inal definition was proven in [18]. Ryabko [23–25] and Staiger [30,31] have
conducted related investigations of classical Hausdorff dimension in terms of

2



the rate at which a gambling strategy can succeed in the absence of dis-
counting, and the gale characterization of Hausdorff dimension can easily be
reformulated in these terms [16,1].) The feasible dimension dimp(X) of a set
X of sequences is then defined in terms of the maximum discount rate against
which a feasible gambling strategy can succeed.

In this paper we use feasible dimension as a model of feasible gambling, and
we compare dimp(X) quantitatively with the feasible predictability predp(X)
of X, which is the highest success ratio that a polynomial-time randomized
predictor (defined precisely in section 3 below) can achieve on all sequences in
X. Our main theorem, described after this paragraph, gives precise bounds on
the relationship between predp(X) and dimp(X). We also investigate the de-
terministic feasible predictability dpredp(X), in which the predictor is required
to commit to a single outcome. We use the probabilistic method to prove that
dpredp(X) = predp(X) whenever X consists of a single sequence, and we show
that deterministic feasible predictability is stable on computably presentable
sets, i.e., that dpredp(X ∪ Y ) = min{dpredp(X), dpredp(Y )} whenever the
sets X and Y are computably presentable. (Feasible predictability is known
to be stable on arbitrary sets [3].)

To describe our main theorem precisely, we need to define two information-
theoretic functions, namely, the k-adic segmented self-information function Ik

and the k-adic maximum entropy function Hk.

The k-adic self-information of a real number α ∈ (0, 1] is Ik(α) = logk
1
α
.

This is the number of symbols from a k-element alphabet that would be re-
quired to represent each of 1

α
equally probable outcomes (ignoring the fact

that 1
α

may not be an integer). The k-adic segmented self-information func-
tion Ik : [ 1

k
, 1] → [0, 1] is defined by setting Ik(

1
j
) = Ik(

1
j
) for 1 ≤ j ≤ k and

interpolating linearly between these points.

Recall [5] that the k-adic entropy of a probability measure p on a discrete
sample space X is

Hk(p) =
∑

x∈X

p(x) logk

1

p(x)
.

This is the expected value of Ik(p(x)), i.e., the average number of symbols from
a k-element alphabet that is required to represent outcomes of the experiment
(X, p) reliably. The k-adic maximum entropy function Hk : [0, 1] → [0, 1] is
defined by

Hk(α) = max
p

Hk(p),

where the maximum is taken over all probability measures p on a k-element
alphabet Σ such that p(a) = α for some a ∈ Σ. This maximum is achieved
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when the other k − 1 elements of Σ are equally probable, so

Hk(α) = α logk

1

α
+ (1 − α) logk

k − 1

1 − α
.

Our main theorem says that for every set X ⊆ Σ∞,

Ik(predp(X)) ≤ dimp(X) ≤ Hk(predp(X)).

That is, the feasible dimension of any set of sequences is bounded below
by the k-adic segmented self-information of its feasible predictability and
bounded above by the k-adic maximum entropy of its feasible predictabil-
ity. Graphically, this says that for every set X of sequences, the ordered pair
(predp(X), dimp(X)) lies in the region Rk bounded by the graphs of Ik and
Hk. The regions R2, R3, and R4 are depicted in Figure 1. It will be shown in
the companion paper [10] that these bounds are tight in the strong sense that
for every k ≥ 2 and every point (α, β) ∈ Rk, there is a set X of sequences
over a k-element alphabet such that predp(X) = α and dimp(X) = β. Our
main theorem is thus a precise statement of the quantitative relationship be-
tween feasible predictability and feasible dimension. Since dimension is defined
in terms of the achievable success rates of gambling strategies, this can also
be regarded as a precise statement of the quantitative relationship between
prediction and gambling.

We note that Hitchcock [12] has very recently proven that the feasible di-
mension dimp(X) can be completely characterized in terms of the logarithmic
loss model of prediction. This enabled him to reinterpret our main theorem
as a precise statement of the quantitative relationship between absolute loss
prediction and logarithmic loss prediction. (See [20] for a survey of these pre-
diction models.) We also refer the reader to [22,21] for recent work relating
Hausdorff dimension to prediction.

For brevity and clarity, our results are stated in terms of feasible (i.e., polyn-
omial-time) prediction and dimension. However, our results generalize to other
levels of complexity, ranging from finite-state computation through polynomial-
space and unrestricted algorithmic computation and beyond to prediction by
arbitrary mathematical functions and classical Hausdorff dimension. At the
finite-state level, Feder, Merhav, and Gutman [9] have derived a graph compar-
ing predictability to compressibility for binary sequences. This graph (Figure
3 in [9]) is equivalent to the finite-state version of our k = 2 graph in Figure
1. (This equivalence follows from the recent proof by Dai, Lathrop, Lutz, and
Mayordomo [6] of the equivalence of finite-state dimension and finite-state
compressibility.)
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2 Preliminaries

We work in an arbitrary finite alphabet Σ with cardinality |Σ| ≥ 2. When
convenient, we assume that Σ has the form Σ = {0, 1, . . . , k−1}. A sequence is
an element of Σ∞, i.e., an infinite sequence of elements of Σ. Given a sequence
S ∈ Σ∞ and natural numbers i, j ∈ N with i ≤ j, we write S[i..j] for the string
consisting of the ith through jth symbols of S and S[i] for the ith symbol in
S. (The leftmost symbol of S is S[0].) We say that a string w ∈ Σ∗ is a prefix
of S and we write w ⊑ S, if w = S[0..|w| − 1].

Given a time bound t : N → N, we define the complexity class DTIMEΣ(t(n))
to consist of all sequences S ∈ Σ∞ such that the nth symbol in S can be
computed in O(t(log n)) steps. We are especially interested in the classes
DTIMEΣ(2cn) for fixed c ∈ N and the class EΣ = ∪c∈NDTIMEΣ(2cn). Note
that if S ∈ EΣ, then the time required to compute the nth symbol of S is
exponential in the length of the binary representation of n and polynomial in
the number n itself.

If D is a discrete domain, then a real-valued function f : D → R is polynomial-
time computable if there is a polynomial-time computable, rational-valued
function f̂ : D ×N → Q such that for all x ∈ D and r ∈ N, |f̂(x, r)− f(x)| ≤
2−r.

3 Prediction

Our models of deterministic and randomized prediction are very simple. In
both cases, there is a given alphabet Σ containing two or more symbols. Having
seen a string w ∈ Σ∗ of symbols, a predictor’s task is to predict the next
symbol.

Definition A deterministic predictor on an alphabet Σ is a function

π : Σ∗ → Σ.

Intuitively, π(w) is the symbol that π predicts will follow the string w. This
prediction is well-defined and unambiguous, and it is either correct or in-
correct. In contrast, a randomized predictor is allowed to simply state the
probabilities with which it will predict the various symbols in Σ.

Notation We write ∆(Σ) for the set of all probability measures on Σ, i.e.,
all functions p : Σ → [0, 1] satisfying

∑

a∈Σ p(a) = 1.
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Definition A (randomized) predictor on an alphabet Σ is a function

π : Σ∗ → ∆(Σ).

Intuitively, having seen the string w ∈ Σ∗, a randomized predictor π performs
a random experiment in which each symbol a ∈ Σ occurs with probability
π(w)(a). The outcome of this experiment is the symbol that π predicts will
follow w. It is evident that π will be correct with probability π(w)(a), where
a is the symbol that does in fact follow w.

It is natural to identify each deterministic predictor π on Σ with the random-
ized predictor π′ : Σ∗ → ∆(Σ) defined by

π′(w)(a) =







1 if a = π(w)

0 if a 6= π(w).

Using this identification, a deterministic predictor is merely a special type of
randomized predictor. Thus, in our terminology, a predictor is a randomized
predictor, and a predictor π is deterministic if π(w)(a) ∈ {0, 1} for all w ∈ Σ∗

and a ∈ Σ.

Definition Let π be a predictor on Σ.

(1) The success rate of π on a nonempty string w ∈ Σ+ is

π+(w) =
1

|w|

|w|−1
∑

i=0

π(w[0..i − 1])(w[i]).

(2) The success rate of π on a sequence S ∈ Σ∞ is

π+(S) = lim sup
n→∞

π+(S[0..n − 1]).

(3) The (worst-case) success rate of π on a set X ⊆ Σ∞ is

π+(X) = inf
S∈X

π+(S).

Note that π+(w) is the expected fraction of symbols in w that π predicts
correctly. In particular, if π is deterministic, then π+(w) is the fraction of
symbols in w that π predicts correctly.

We say that a predictor π : Σ∗ → ∆(Σ) is feasible provided that the associated
function π′ : Σ∗ × Σ → [0, 1] defined by π′(w, a) = π(w)(a) is computable in
polynomial time. We say that π is exactly feasible if the values of π′ are rational
and can be computed exactly in polynomial time.
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Definition Let Σ be an alphabet, and let X ⊆ Σ∞.

(1) The (randomized feasible) predictability of X is

predp(X) = sup{π+(X)|π is a feasible predictor on Σ}.

(2) The deterministic (feasible) predictability of X is

dpredp(X) = sup{π+(X)|π is a deterministic feasible predictor on Σ}.

It is clear that

0 ≤ dpredp(X) ≤ predp(X)

and
1

|Σ|
≤ predp(X) ≤ 1

for all X ⊆ Σ∞. As the following example shows, all these inequalities can be
proper.

Example 3.1 If

X =
{

S ∈ {0, 1}∞
∣

∣

∣(∀n)
[

S[2n] = 1 or S[2n + 1] = 1
]}

,

then the reader may verify that

dpredp(X) =
1

2
<

5

8
= predp(X).

It is clear that predictability is monotone in the sense that

X ⊆ Y ⇒ predp(X) ≥ predp(Y )

and

X ⊆ Y ⇒ dpredp(X) ≥ dpredp(Y )

for all X,Y ⊆ Σ∞. Very roughly speaking, the smaller a set of sequences is, the
more predictable it is. The following theorem shows that, for fixed c ∈ N, the
set DTIMEΣ(2cn) is “completely predictable,” while the set EΣ is “completely
unpredictable.”

Theorem 3.2 (1) For each c ∈ N,

dpredp(DTIMEΣ(2cn)) = predp(DTIMEΣ(2cn)) = 1.

(2) dpredp(EΣ) = 0, and predp(EΣ) = 1
|Σ|

.

Proof. (Sketch.)
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(1) For fixed c, there is an nc+1-time-computable function g : N × Σ∗ → Σ
such that DTIMEΣ(2cn) = {S0, S1, . . .}, where g(k, Sk[0..n − 1]) = Sk[n]
for all k, n ∈ N. The deterministic predictor π : Σ∗ → Σ defined by
π(w) = g(kw, w), where

kw = min{k ∈ N|(∀n < |w|)g(k, w[0..n − 1]) = w[n]},

is then computable in polynomial time and satisfies π+(DTIMEΣ(2cn)) =
1.

(2) For any feasible predictor π there is an adversary sequence S ∈ EΣ that
minimizes the value of π+(S[0..n]) at every step n. If π is deterministic,
then π+(S) = 0. In any case, π+(S) ≤ 1

|Σ|
.

¤

Definition If π1 and π2 are predictors on Σ, then the distance between π1

and π2 is

d(π1, π2) = sup
w∈Σ∗

max
a∈Σ

|π1(w)(a) − π2(w)(a)|.

Observation 3.3 If π1 and π2 are predictors on Σ, then for all S ∈ Σ∞,
|π+

1 (S) − π+
2 (S)| ≤ d(π1, π2).

Definition Let π be a predictor on Σ, and let l ∈ N. Then π is l-coarse if
2lπ(w)(a) ∈ N for all w ∈ Σ∗ and a ∈ Σ.

That is, a predictor π is l-coarse if every probability π(w)(a) is of the form m
2l

for some m ∈ N. Note that every l-coarse predictor is (l + 1)-coarse and that
a predictor is deterministic if and only if it is 0-coarse.

Lemma 3.4 (Coarse Approximation Lemma) For every feasible predictor π

on Σ and every l ∈ N, there is an exactly feasible l-coarse predictor π′ such
that d(π′, π) ≤ 21−l.

Proof. Let π be a feasible predictor, and let l ∈ N. Let c = 1 + ⌊log k⌋, where
Σ = {0, 1, . . . , k − 1}. Since π is feasible, there is a function π̂ : Σ∗ ×Σ×N →
Q ∩ [0, 1] such that π̂ is computable in polynomial time and, for all w ∈ Σ∗,
a ∈ Σ, and r ∈ N, |π̂(w, a, r) − π(w)(a)| ≤ 2−r. For each w ∈ Σ∗ and a ∈ Σ,
let

mw(a) = max{m ∈ N|m · 2−l ≤ π̂(w, a, l + c)},

and define π′ : Σ∗ → ∆(Σ) by

π′(w)(a) =







2−l[mw(a) + 1] if a +
∑

b∈Σ mw(b) < 2l

2−lmw(a) if a +
∑

b∈Σ mw(b) ≥ 2l.
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It is clear that π′ is exactly feasible and l-coarse, provided that it is a predictor.
Also, for all w ∈ Σ∗ and a ∈ Σ,

2−lmw(a) ≤ π̂(w, a, l + c) ≤ 2−l[mw(a) + 1],

so

|π′(w)(a) − π̂(w, a, l + c)| ≤ 2−l,

so

|π′(w)(a) − π(w)(a)| ≤ 2−l + |π̂(w, a, l + c) − π(w)(a)|

≤ 2−l + 2−(l+c)

< 21−l.

It follows that d(π′, π) ≤ 21−l.

To see that π′ is a predictor, let w ∈ Σ∗. A straightforward inspection of the
definition of π′ shows that

∑

a∈Σ

π′(w)(a) = 2−l

[

∑

a∈Σ

mw(a) + min

{

k, 2l −
∑

a∈Σ

mw(a)

}]

.

This is clearly 1 if

2l − k ≤
∑

a∈Σ

mw(a) ≤ 2l, (3.1)

so it suffices to establish (3.1).

By the definition of mw(a) and our choice of c,

∑

a∈Σ

mw(a) ≤ 2l
∑

a∈Σ

π̂(w, a, l + c)

≤ 2l
∑

a∈Σ

[π(w)(a) + 2−(l+c)]

= 2l + k2−c

< 2l + 1.

Since each mw(a) is an integer, this establishes the right-hand inequality in
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(3.1). By the maximality of each mw(a),

∑

a∈Σ

mw(a) >
∑

a∈Σ

[2lπ̂(w, a, l + c) − 1]

= 2l
∑

a∈σ

π̂(w, a, l + c) − k

≥ 2l
∑

a∈Σ

[π(w)(a) − 2−(l+c)] − k

= 2l − k2−c − k

> 2l − (k + 1).

Since each mw(a) is an integer, this implies the first inequality in (3.1). ¤

We now use the probabilistic method to show that deterministic predictability
coincides with predictability on singleton sets.

Theorem 3.5 For all S ∈ Σ∞, dpredp({S}) = predp({S}).

Proof. Let S ∈ Σ∞, and let α < predp({S}). It suffices to show that
dpredp({S}) > α.

Let ǫ =
pred

p
({S})−α

2
, and choose l ∈ N such that 21−l < ǫ. Since α + ǫ <

predp({S}), there is a feasible predictor π′ such that π′+(S) > α + ǫ. By the
Coarse Approximation Lemma, there is an exactly feasible l-coarse predictor
π such that d(π, π′) ≤ 21−l < ǫ. It follows by Observation 3.3 that π+(S) > α.

For each w ∈ Σ∗ and a ∈ Σ, define an interval I(w, a) = [xa, xa+1) ⊆ [0, 1) by
the recursion

xa = 0, xa+1 = xa + π(w)(a).

Given ρ ∈ [0, 1), define a deterministic predictor πρ on Σ by

πρ(w)(a) =







1 if ρ ∈ I(w, a)

0 if ρ 6∈ I(w, a).

Since π is l-coarse, we have

⌊2lρ⌋ = ⌊2lρ′⌋ ⇒ πρ = πρ′ (3.2)

for all ρ ∈ [0, 1). If we choose ρ probabilistically according to the uniform
probability measure on [0,1) and Eρ denotes the expectation with respect to
this experiment, then Fatou’s lemma tells us that (writing wi = S[0..i − 1])
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Eρπ
+
ρ (S) = Eρ lim sup

n→∞
π+

ρ (wn)

≥ lim sup
n→∞

Eρπ
+
ρ (wn)

= lim sup
n→∞

1

n

n−1
∑

i=0

Eρπρ(wi)(S[i])

= lim sup
n→∞

1

n

n−1
∑

i=0

Pr
ρ

[πρ(wi)(S[i]) = 1]

= lim sup
n→∞

1

n

n−1
∑

i=0

length(I(wi, S[i]))

= lim sup
n→∞

1

n

n−1
∑

i=0

π(wi)(S[i])

= lim sup
n→∞

π+(wn)

= π+(S).

It follows that there exists ρ ∈ [0, 1) such that π+
ρ (S) ≥ π+(S) > α. Hence by

(3.2) there is a rational ρ′ ∈ [0, 1) for which π+
ρ′(S) > α. Since πρ′ is a feasible

deterministic predictor, this implies that dpredp({S}) > α. ¤

An important property of predictability is its stability, which is the fact that
the predictability of a union of two sets is always the minimum of the pre-
dictabilities of the sets. (The term “stability” here is taken from the analo-
gous property of dimension [7].) The stability of predictability follows from
the (much stronger) main theorem of Cesa-Bianchi, Freund, Helmhold, Haus-
sler, Schapire, and Warmuth [3]. For deterministic predictability, we have the
following partial result.

Recall [2] that a set X ⊆ Σ∞ is computably presentable if X = ∅ or there
is a computable function f : N → N such that X = {L(Mf(i))|i ∈ N},
where M0,M1, . . . is a standard enumeration of all Turing machines over the
alphabet Σ and Mf(i) decides the sequence L(Mf(i)) for all i ∈ N. Deterministic
predictability is stable on sets that are computably presentable.

Theorem 3.6 For all computably presentable sets X,Y ⊆ Σ∞,

dpredp(X ∪ Y ) = min{dpredp(X), dpredp(Y )}.

Proof. Let X,Y ⊆ Σ∞ be computably presentable. Then there exist com-
putable functions f, g : N → Σ such that if we let Sk[n] = f(k, n) and Tk[n] =
g(k, n) for all k, n ∈ N, then X = {S0, S1, S2, . . .} and Y = {T0, T1, T2, . . .}.
Fix arbitrary reals α < dpredp(X) and β < dpredp(Y ). It suffices to show
that

dpredp(X ∪ Y ) > min{α, β}. (3.3)
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By our choice of α and β, there exist deterministic feasible predictors πX and
πY such that for all S ∈ Σ∞,

S ∈ X ⇒ π+
X(S) > α (3.4)

and
S ∈ Y ⇒ π+

Y (S) > β. (3.5)

To prove (3.3) it suffices to construct a deterministic feasible predictor π such
that for all S ∈ Σ∞,

S ∈ X ∪ Y ⇒ π+(S) > min{α, β}. (3.6)

The idea of the construction of π is simple. Given a prefix w of a sequence
S ∈ Σ∞, π attempts to predict the next symbol of S. For each such w, π has
a working hypothesis concerning the identity of S. This working hypothesis
is formally a nonnegative integer h(w). Intuitively, the working hypothesis
“S = Sk” is represented by the condition h(w) = 2k, while the working
hypothesis “S = Tk” is represented by the condition h(w) = 2k + 1. Our
predictor π is then defined by

π(w) =







πX(w) if h(w) is even

πY (w) if h(w) is odd.
(3.7)

We define h so that
h is feasible (3.8)

and for all S ∈ Σ∞,

S ∈ X ∪ Y ⇒











for every sufficiently long prefix w ⊑ S,

h(w) is the least correct working hypothesis.
(3.9)

It is clear that (3.7) and (3.8) imply that π is feasible. It is also clear that
(3.7), (3.9), (3.4), and (3.5) imply (3.6). Thus it suffices to define h so that
(3.8) and (3.9) hold.

The function h is computed by the following “sudden death” algorithm.

input w ∈ Σ∗;
h(w) := 0;
for |w| computation steps do

while true do

begin

φ := if h(w) is even then f else g;

k :=
⌊

h(w)
2

⌋

;

if (∃n ∈ N)φ(k, n) 6= w[n]
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then h(w) := h(w) + 1;
end;

output h(w).

A few remarks on this algorithm are in order. The while-loop would be non-
terminating were it not for the “sudden death condition” that its execution is
terminated after a total |w| computation steps. Typically this sudden death
termination occurs part of the way through a computation of some value of
φ(k, n). In any event, the value of h(w) at the time of this sudden death
termination is the final output.

We stipulate that the if-test is evaluated by checking successive values of
n (starting at 0 during each iteration of the while-loop) until either the if-
condition is determined to be true or the sudden death termination occurs. If
the if-test is true, then the working hypothesis h(w) is incorrect (because w ⊑
S) and is thus incremented. The final output h(w) is thus the least working
hypothesis that is not discovered to be incorrect within |w| computation steps.

It is clear that (3.8) holds. To see that (3.9) holds, let S ∈ X∪Y . Then S ∈ X

or S ∈ Y , so there exists a working hypothesis “S = Sk” or “S = Tk” that is
correct. Let m ∈ N be the least correct working hypothesis. Then there is a
prefix w0 ⊑ S such that every working hypothesis m′ < m is discovered to be
incorrect within |w0| computation steps. Since m is correct, it follows that for
all w such that w0 ⊑ w ⊑ S, we have h(w) = m. Thus (3.9) holds. ¤

An earlier draft of this paper conjectured, but did not prove, that deterministic
predictability is not stable on arbitrary sets. We thank an anonymous referee
for proving this conjecture via the following simple example.

Example 3.7 For each a ∈ Σ, let πa be the deterministic predictor that always
predicts a, and let

Xa = {S ∈ Σ∞|π+(S) ≥
1

k
}.

Then each dpredp(Xa) = 1
k
, but

dpredp

(

⋃

a∈Σ

Xa

)

= dpredp(Σ
∞) = 0

by Theorem 3.2.

4 Dimension

In this section we sketch the elements of feasible dimension in Σ∞, where Σ
is a finite alphabet. Without loss of generality, we let Σ = {0, 1, . . . , k − 1},
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where k ≥ 2.

Definition Let s ∈ [0,∞).

(1) An s-gale over Σ is a function d : Σ∗ → [0,∞) that satisfies the condition

d(w) = k−s
∑

a∈Σ

d(wa) (4.1)

for all w ∈ Σ∗.
(2) An s-gale d succeeds on a sequence S ∈ Σ∞, and we write S ∈ S∞[d], if

lim sup
n→∞

d(S[0..n − 1]) = ∞.

(3) An s-gale is feasible if it is computable in polynomial time.
(4) An s-gale is exactly feasible if its values are rational and can be computed

exactly in polynomial time.
(5) For X ⊆ Σ∞, we let

G(X) = {s | there is an s-gale d such that X ⊆ S∞[d]} ,

Gp(X) = {s | there is a feasible s-gale d such that X ⊆ S∞[d]} .

The gale characterization of classical Hausdorff dimension [18] shows that
the classical Hausdorff dimension dimH(X) of a set X ⊆ Σ∞ is given by the
equation

dimH(X) = inf G(X).

This motivates the following.

Definition The feasible dimension of a set X ⊆ Σ∞ is

dimp(X) = inf Gp(X).

It is easy to see that 0 ≤ dimH(X) ≤ dimp(X) ≤ 1 for all X ⊆ Σ∞ and that
feasible dimension is monotone in the sense that X ⊆ Y implies dimp(X) ⊆
dimp(Y ) for all X,Y ⊆ Σ∞. It is shown in [18] that feasible dimension is stable
in the sense that

dimp(X ∪ Y ) = max{dimp(X), dimp(Y )}

for all X,Y ⊆ Σ∞. The following result is the dimension-theoretic analog of
Theorem 3.2.

Theorem 4.1 ([18])

(1) For each c ∈ N, dimp(DTIMEΣ(2cn)) = 0.

14



(2) dimp(EΣ) = 1

The following example establishes the existence of sets of arbitrary feasible
dimension between 0 and 1.

Example 4.2 ([18]) Let q be a feasible probability measure on Σ, and let
FREQ(q) be the set of all sequences S ∈ Σ∞ such that each a ∈ Σ has asymp-
totic frequency q(a) in S. Then

dimp(FREQ(q)) = Hk(q).

5 Prediction versus Dimension

This section develops our main theorem, which gives precise quantitative
bounds on the relationship between predictability and dimension. As before,
let Σ = {0, 1, . . . , k − 1} be an alphabet with k ≥ 2. Recall the k-adic seg-
mented self-information function Ik and the k-adic maximum entropy function
Hk defined in section 1.

Theorem 5.1 (Main Theorem) For all X ⊆ Σ∞,

Ik(predp(X)) ≤ dimp(X) ≤ Hk(predp(X)).

The rest of this section is devoted to proving Theorem 5.1.

Construction 5.2 Given an alphabet Σ with |Σ| = k ≥ 2, a predictor π on
Σ, and rational numbers β, s ∈ ( 1

k
, 1), we define an s-gale

d = d(π, β, s) : Σ∗ → [0,∞)

by the recursion

d(λ) = 1,

d(wa) = ksbetw(a)d(w),

where betw(a), the amount that d bets on a having seen w, is defined as follows.
If π were to deterministically predict b (i.e., π(w)(b) = 1), then the amount
that d would bet on a is

γ(a, b) =







β if a = b
1−β

k−1
if a 6= b.

However, π is a randomized predictor that predicts various b according to the
probability measure π(w), so d instead uses the quantity

15



γw(a) =
∏

b∈Σ

γ(a, b)π(w)(b)

= βπ(w)(a)

(

1 − β

k − 1

)1−π(w)(a)

,

which is the geometric mean of the bets γ(a, b), weighted according to the prob-
ability measure π(w). The amount that d bets on a is then the normalization

betw(a) =
γw(a)

σw

,

where

σw =
∑

a∈Σ

γw(a).

Observation 5.3 In Construction 5.2, 0 < σw ≤ 1 for all w ∈ Σ∗.

Observation 5.4 In Construction 5.2, d is an s-gale, and d is p-computable
if π is feasible.

Lemma 5.5 In Construction 5.2,

logk d(w) ≥ |w|

(

s + logk

1 − β

k − 1
+ π+(w) logk

β(k − 1)

1 − β

)

for all w ∈ Σ∗.

Proof. Let w ∈ Σ∗, and let n = |w|. For each 0 ≤ i < n, write πi =
π(w[0..i − 1])(w[i]). By the construction of d and Observation 5.3,

d(w) = ksn
n−1
∏

i=0

betw[0..i−1](w[i])

= ksn
n−1
∏

i=0

γw[0..i−1](w[i])

σw[0..i−1]

≥ ksn
n−1
∏

i=0

γw[0..i−1](w[i])

= ksn
n−1
∏

i=0

βπi

(

1 − β

k − 1

)1−πi

.

It follows that
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logk d(w)≥ sn +
n−1
∑

i=0

[

πi logk β + (1 − πi) logk

1 − β

k − 1

]

= n

(

s + logk

1 − β

k − 1

)

+ logk

β(k − 1)

1 − β

n−1
∑

i=0

πi

= n

(

s + logk

1 − β

k − 1
+ π+(w) logk

β(k − 1)

1 − β

)

.

¤

We can now prove an upper bound on dimension in terms of predictability.

Theorem 5.6 If Σ is an alphabet with |Σ| = k ≥ 2, then for all X ⊆ Σ∞,

dimp(X) ≤ Hk(predp(X)).

Proof. Let X ⊆ Σ∞, and let α = predp(X). If Hk(α) = 1 then the result

holds trivially, so assume that Hk(α) < 1, i.e., α ∈
(

1
k
, 1

]

. Choose a rational

number s ∈ (Hk(α), 1]. It suffices to show that dimp(X) ≤ s.

By our choice of s, there is a rational number β ∈
(

1
k
, α

)

such that Hk(β) ∈

(Hk(α), s). Since β < α, there is a feasible predictor π such that π+(X) > β.
Let d = d(π, β, s) be the s-gale of Construction 5.2. By Observation 5.4, it
suffices to show that X ⊆ S∞[d]. To this end, let S ∈ X. For each n ∈ N, let
wn = S[0..n − 1]. Then the set

J = {n ∈ Z+|π+(wn) ≥ βn}

is infinite, and Lemma 5.5 tells us that for each n ∈ J ,

logk d(wn)≥n

(

s + logk

1 − β

k − 1
+ π+(wn) logk

β(k − 1)

1 − β

)

≥n

(

s + logk

1 − β

k − 1
+ β logk

β(k − 1)

1 − β

)

= n(s −Hk(β)).

Since s > Hk(β), this implies that S ∈ S∞[d]. ¤

The lower bound on dimension is a function of predictability whose graph is
not a smooth curve. It is thus instructive to derive this bound rather than to
simply assert and prove it. As before, let Σ be an alphabet with |Σ| ≥ 2.

It is easiest to first derive a lower bound on predictability in terms of dimen-
sion, since this can be achieved by using an s-gale to construct a predictor.
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So let s be a positive rational, and let d be a p-computable s-gale over Σ
with d(λ) > 0. The most natural predictor to construct from d is the function
π0 : Σ∗ → ∆(Σ) defined by

π0(w)(a) = betd(wa) (5.1)

for all w ∈ Σ∗ and a ∈ Σ. This is indeed a predictor, and it is clearly feasible.
For all w ∈ Σ∗, we have

d(w) = d(λ)ks|w|
|w|−1
∏

i=0

betd(wa)

≤ d(λ)ks|w|





1

|w|

|w|−1
∑

i=0

betd(wa)





|w|

= d(λ)
(

ksπ+
0 (w)

)|w|

(because the geometric mean is at most the arithmetic mean), so if S ∈ S∞[d]
there must be infinitely many prefixes w ⊑ S for which π+

0 (w) > k−s. Thus
this very simple predictor π0 testifies that

predp(S
∞[d]) ≥ k−s. (5.2)

This establishes the following preliminary bound.

Lemma 5.7 For all X ⊆ Σ∞,

dimp(X) ≥ Ik(predp(X)).

Proof. The above argument shows that

predp(X) ≥ k−dimp(X),

whence the lemma follows immediately. ¤

If we suspect that Lemma 5.7 can be improved, how might we proceed? One
approach is as follows. The predictor π0 achieved (5.2) via the prediction
probability (5.1), which is equivalent to

π0(w)(a) = k−Ik(betd(wa)). (5.3)

To improve on (5.2), let f(s) = u − vs be a function whose graph is a line
intersecting k−s at two points given by s0, s1 ∈ [0, 1]. We would like to improve
(5.2) to

predp(S
∞[d]) ≥ f(s). (5.4)

For what values of s0 and s1 can we establish (5.4)?

18



Guided by (5.3), we set

π1(w)(a) = max{0, f(Ik(betd(wa)))}

for all w ∈ Σ∗ and a ∈ Σ. The function π1 may not be a predictor because the
function σ : Σ∗ → [0,∞) defined by

σ(w) =
∑

a∈Σ

π1(w)(a)

may not be identically 1. However, it is clear that σ(w) > 0 for all w ∈ Σ∗, so
if we set

π(w)(a) =
π1(w)(a)

σ(w)

for all w ∈ Σ∗ and a ∈ Σ, then π is a predictor. For all w ∈ Σ+ we have

π+
1 (w)≥

1

|w|

|w|−1
∑

i=0

(u − vIk(betd(w[0..i])))

= u +
v

|w|

|w|−1
∑

i=0

logk(betd(w[0..i]))

= u +
v

|w|
logk

|w|−1
∏

i=0

betd(w[0..i])

= u +
v

|w|
logk

(

d(w)

ks|w|d(λ)

)

= u − vs +
1

|w|
logk

d(w)

d(λ)
,

so if σ(w) ≤ 1 and d(w) > d(λ), then

π+(w) > u − vs = f(s).

Thus if s0 and s1 are chosen so that σ(w) ≤ 1 for all w ∈ Σ∗, then for all
S ∈ S∞[d] there exist infinitely many prefixes w ⊑ S for which π+(w) > f(s).
This implies that (5.4) holds (provided that π is feasible). Thus the question
is how to choose s0 and s1 so that σ(w) ≤ 1 for all w ∈ Σ∗.

If we let

Bw = {a|f(Ik(betd(wa))) > 0},

then for all w ∈ Σ∗,
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σ(w) =
∑

a∈Bw

f(Ik(betd(wa)))

= u|Bw| + v
∑

a∈Bw

logk betd(wa)

= u|Bw| + v logk

∏

a∈Bw

betd(wa)

≤u|Bw| + v logk





1

|Bw|

∑

a∈Bw

betd(wa)





|Bw|

≤ |Bw|(u − v logk |Bw|)

= g(|Bw|),

where

g(x) = xf(logk(x)).

Since |Bw| ≤ k for all w ∈ Σ∗, it thus suffices to choose s0 and s1 so that

g(j) ≤ 1 (5.5)

for all 1 ≤ j ≤ k. Of course we want our lower bound f , and hence the function
g, to be as large as possible while satisfying (5.5). Since

g′(x) = u − v

(

1

ln k
+ logk x

)

is positive to the left of some point (namely, x = k
u
v

e
) and negative to the right

of this point, (5.5) can be achieved by arranging things so that

g(i) = g(i + 1) = 1 (5.6)

for some (any!) 1 ≤ i < k. Now (5.6) is equivalent to the conditions

f(logk i) =
1

i
, f(logk(i + 1)) =

1

i + 1
,

which simply say that

s0 = logk i, s1 = logk(i + 1). (5.7)

For 1 ≤ i < k, the predictor π determined by the choice of (5.7) is feasible
and thus establishes (5.4). This argument yields the following improvement of
Lemma 5.7.

Theorem 5.8 For all X ⊆ Σ∞,

dimp(X) ≥ Ik(predp(X)).
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Proof. For each 1 ≤ i < k, if we let fi(s) = ui − vis be the function that
agrees with k−s at logk i and logk(i + 1), then the above argument shows that

predp(X) ≥ fi(dimp(X)),

whence

dimp(X) ≥ f−1
i (predp(X)).

Since predp(X) ≥ 1
k

in any case and f−1
i agrees with Ik on [ 1

i+1
, 1

i
], this

establishes the theorem. ¤

For each k ≥ 2, let Rk be the set of all α, β ∈ [0, 1] satisfying α ≥ 1
k

and
Ik(α) ≤ β ≤ Hk(α). Thus R2, R3, and R4 are the shaded regions depicted
in Figure 1, and Theorem 5.1 says that (predp(X), dimp(X)) ∈ Rk for all
k ≥ 2 and X ⊆ Σ∞. In fact, Theorem 5.1 is tight in the strong sense that
for each (α, β) ∈ Rk there is a set X ⊆ EΣ such that predp(X) = α and
dimp(X) = β. (A proof using the techniques of the present paper is lengthy
and cumbersome. A better proof, using more recent techniques, will appear
in the companion paper [10].) Thus Rk is precisely the set of all points of the
form (predp(X), dimp(X)) for X ⊆ Σ∞ (or, equivalently, for X ⊆ EΣ).

Let R∞ be the limit of the regions Rk, in the sense that R∞ consists of all
(α, β) ∈ [0, 1]2 such that for every ǫ > 0, for every sufficiently large k, there
exists (α′, β′) ∈ Rk such that (α − α′)2 + (β − β′)2 < ǫ. Then it is interesting
to note that R∞ is the triangular region given by the inequalities α ≥ 0, β ≥
0, α+β ≤ 1. Thus if the alphabet Σ is very large, then the primary constraint is
simply that a set’s predictability cannot be significantly greater than 1 minus
its dimension.
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