
Hierar
hy Theorems for Probabilisti
Polynomial TimeLan
e FortnowDepartment of Computer S
ien
eUniversity of Chi
agoE-mail: fortnow�
s.u
hi
ago.edu Rahul SanthanamDepartment of Computer S
ien
eUniversity of Chi
agoE-mail: rahul�
s.u
hi
ago.eduAbstra
tWe show a hierar
hy for probabilisti
 time with one bit of advi
e, spe
i�
ally weshow that for all real numbers 1 6 � < �, BPTIME(n�)=1 (BPTIME(n�)=1. Thisresult builds on and improves an earlier hierar
hy of Barak using O(log log n) bits ofadvi
e.We also show that for any
onstant d > 0, there is a language L
omputable onaverage in BPP but not on average in BPTIME(nd).We build on Barak's te
hniques by using a di�erent translation argument and by a
areful appli
ation of the fa
t that there is a PSPACE-
omplete problem L su
h thatworst-
ase probabilisti
 algorithms for L take only slightly more time than average-
asealgorithms.1 Introdu
tionCan we solve more problems given more time? This fundamental question has
hallengedmany
omplexity theorists sin
e the �eld started. Hennie and Stearns [HS66℄ improvingon Hartmanis, Lewis and Stearns [SHL65℄ show a tight hierar
hy for time on deterministi
multitape ma
hines: For any reasonable time fun
tions T1 and T2 with T2 log(T2) = o(T1)there is a language
omputable in deterministi
 time T1(n) and not
omputable in timeT2(n). We also have similar results for nondeterministi
 time (see [Coo72, SFM78, �Z�83℄).In this paper we study the question of a time hierar
hy for bounded-error probabilisti
ma
hines. The results for deterministi
 and nondeterministi

omputation have at their
ore a diagonalization against all smaller time ma
hines. We
annot dire
tly do su
h adiagonalization for probabilisti

lasses, sin
e that will break the bounded-error promisewhen we try to simulate a ma
hine for whi
h the promise does not hold.Re
ently Boaz Barak [Bar02℄ found a di�erent atta
k on the probabilisti
 time hierar
hy.He looks at the best probabilisti
 algorithms to
ompute an EXP-
omplete language andusing a translation argument
an build a hierar
hy based on these algorithms. However heneeds some nonuniform advi
e to des
ribe an approximation of the running time of that bestalgorithm. For ea
h
onstant d > 1, Barak shows that there is a language in BPP= log(log(n))1

but not in BPTIME(nd)= log(n), and from this he derives a hierar
hy theorem for probabilisti
polynomial-timema
hines using a(n) bits of advi
e, where log(log(n)) 6 a(n) 6 log(n), usinga standard argument.To prove our �rst main result, we modify Barak's translation argument. By requiringthe pad to
onform to a
ertain format, we
an bring the amount of advi
e required downto one bit, whi
h essentially tells us whether the pad is a good approximation of the timetaken by the optimal algorithm.Theorem 1. For ea
h
onstant d > 1, BPTIME(nd)=1 (BPP=1.Using standard translation arguments, from Theorem 1 it follows that for ea
h 1 6 � < �,BPTIME(n�)=1 (BPTIME(n�)=1.We attempt to eliminate the advi
e using an additional idea: for a
ertain PSPACE-
omplete language L, we
an modify an optimal probabilisti
 algorithm so that the average-
ase time of the algorithm is smaller than the worst-
ase time by at most a polynomial fa
tor.This allows us to estimate the running time, and we
an
ompare this estimate dire
tly withthe pad, rather than needing to refer to the advi
e.There are two obsta
les we run into when we work out his approa
h. The �rst obsta
leis that we do not know how to use the translation argument when the best algorithm for Lruns in polynomial time. However, in this
ase we
an use diagonalization to dire
tly obtaina hierar
hy for average-
ase probabilisti
 polynomial time.The se
ond obsta
le is that sin
e the estimate of the running time we obtain isn't
om-pletely pre
ise, the resulting simulation may not satisfy the bounded-error promise requiredof a BPP ma
hine. We get around this by randomly perturbing the estimate depending onthe input, whi
h ensures that the promise is satis�ed for most inputs. As a
onsequen
e,we again get a hierar
hy for average-
ase probabilisti
 polynomial time in the
ase when thebest algorithm for L does not run in polynomial time. Thus we obtain un
onditionally ahierar
hy theorem whi
h we formalize as:Theorem 2. For ea
h
onstant d > 1, there is a
onstant a > 0 su
h that heur1�n�a �BPTIME(nd) (heur1�n�a � BPP.1.1 Related WorkUn
onditionally, we know very little about probabilisti
 hierar
hies beyond the straightfor-ward observation that BPTIME(o(t)) (BPTIME(2t) for time-
onstru
tible t, whi
h followsfrom the hierar
hy for deterministi
 time and the fa
t that probabilisti
 time t
an be sim-ulated in deterministi
 time 2t. The best-known hierar
hy [KV87℄ uses the above resultand a translation argument to a
hieve slightly stronger parameters. However, we still don'tknow whether there is a language de
idable in probabilisti
 quasi-polynomial time but notin probabilisti
 linear time. Under plausible
omplexity-theoreti
 assumptions, su
h as thatthere is a language in E whi
h does not have subexponential size
ir
uits, or that the de
i-sion version of the Permanent is not in randomized subexponential time, a stri
t hierar
hy
an be shown to exist for probabilisti
 quasi-polynomial time [IW97, IW01, CNS99℄. These
omplexity-theoreti
 assumptions are generally believed to be very hard to prove; it is quitepossible that a hierar
hy theorem for probabilisti
 polynomial time might be mu
h easier.2

Given the la
k of su

ess in establishing a hierar
hy thus far, it is natural to ask aboutthe status of the question in a relativized setting. BPP = P relative to a random ora
le[BG81℄, hen
e there does exist an ora
le relative to whi
h there is a hierar
hy. There hasbeen a lot of work towards
onstru
ting an ora
le relative to whi
h probabilisti
 polynomialtime does not have a hierar
hy (see [FS89, FS97, RV01℄). Sin
e neither Barak's nor ourmethods relativize, this work is not dire
tly relevant to the question of whether our methodshave the potential to a
hieve a hierar
hy for fully uniform probabilisti
 polynomial time.Subsequent to our work, Goldrei
h, Sudan and Trevisan [GST04℄ found a method toderive a hierar
hy theorem with one bit of advi
e dire
tly from a hierar
hy theorem with6 log(n) bits of advi
e under
ertain
onditions. Their method, when used in
onjun
tionwith Barak's result, implies Theorem 1.The organization of the rest of the paper is as follows: First we dis
uss some te
hni
alpreliminaries. Then we give a high-level overview of Barak's proof, and sket
h the ideasbehind our improvements. Finally, we present our modi�
ation of Barak's algorithm andour translation argument.2 Preliminaries2.1 Complexity ClassesWe mostly use standard de�nitions of
omplexity
lasses, whi
h
an be found in [BDG88℄and [BDG90℄. Our de�nition of probabilisti
 time-bounded
lasses is slightly non-standard,however it is equivalent to the standard de�nition for \ni
e" time bounds t, su
h as t = nkfor a �xed
onstant k. We �rst de�ne a notion of what it means for a time bound to be\ni
e".De�nition 3. A fun
tion t : N ! N is said to be time-
onstru
tible if there is a determin-isti
 Turing ma
hine M su
h that on input 1n, M halts within O(t(n)) steps and outputs thevalue t(n).We now pro
eed to our de�nition of bounded-error probabilisti
 time
lasses.De�nition 4. Let L be a language and let t : N ! N be a fun
tion. We say that L 2BPTIME(t) if there is a probabilisti
 Turing ma
hine M su
h that on all inputs x of lengthn, with probability > 2=3, M halts within t(n) steps on input x and outputs L(x).This de�nition is nonstandard in that the ma
hine is only required to halt within t(n)steps with high probability, rather than with probability 1. This will
ome in useful in our
onstru
tion of an optimal algorithm be
ause we will only be able to guarantee that thealgorithm halts with high probability within a
ertain time bound. Note that our de�ni-tion of probabilisti
 time
lasses is equivalent to the standard de�nition when t is a time-
onstru
tible in
reasing fun
tion, as we will be able to use the time-
onstru
tibility of t toimplement a \timeout" me
hanism whi
h
onverts a ma
hine halting with high probabilitywithin time t to a ma
hine that halts with probability 1 within time t.We also need to
larify the notions of advi
e and average-
ase de
idability in the
ontextof probabilisti
 time
lasses. 3

De�nition 5. Given fun
tions s : N ! N and t : N ! N and a language L, L 2BPTIME(t)=s if there is a probabilisti
 Turing ma
hine M and a sequen
e fygn; j yn j6 s(n)of strings su
h that for all inputs x of length n, with probability > 2=3, M halts within t(n)steps on input < x; yjxj > and outputs L(x).BPTIME(t)=s is to be interpreted as the
lass of languages de
ided by bounded-errorprobabilisti
 ma
hines operating in time t and taking advi
e of length s. Note that thebehavior of an advi
e taking ma
hine M on input < x; y > where y 6= yjxj may be arbitrary.Our de�nition is di�erent in this respe
t from the original de�nition of Karp and Lipton[KL82℄, whi
h requires that the advi
e taking ma
hine has a

eptan
e probability boundedaway from 1/2 on all inputs even when the advi
e is in
orre
t. If Theorem 1 were tohold under the Karp-Lipton de�nition of advi
e-taking probabilisti
 ma
hines, a hierar
hytheorem for uniform probabilisti
 time would follow immediately.De�nition 6. Given a fun
tion t : N ! N and a language L, L 2 heurs � BPTIME(t) ifthere is a probabilisti
 Turing ma
hine M su
h that for all input lengths n, for at least afra
tion s of inputs x of length n, with probability > 2=3, M halts on input x within t(n)steps and outputs L(x).heurs�BPTIME(t) is to be interpreted as the
lass of languages de
ided by bounded-errorprobabilisti
 ma
hines in time t on average with parameter s. We use the \heuristi
" notionof average-
ase
omplexity [Imp95℄. The behavior of M on an input not belonging to the\good" set of inputs for whi
h the average-
ase simulation works may be arbitrary.2.2 Ni
e PSPACE-
omplete languageThe proof of our hierar
hy theorems pro
eeds via the
onstru
tion of an optimal algorithm fora PSPACE-
omplete language L, where an optimal algorithm in this
ontext is a probabilisti
algorithm that is at worst polynomially slower than any probabilisti
 algorithm for L. Inorder to
arry through the proof of our result, we require the PSPACE-
omplete language Lto be paddable and instan
e-
he
kable - we de�ne these two notions below.De�nition 7. A language L is said to be paddable is there is a deterministi
 polynomial-time
omputable pro
edure P whi
h given inputs x of length n and 1m where m > n, outputsa string of length m su
h that P (x; 1m) 2 L i� x 2 L.Intuitively, a language is paddable, if given a string x, it is possible to eÆ
iently generatearbitrarily long strings whi
h behave the same as x as far as membership in the language Lis
on
erned.De�nition 8. [BK95℄ A language L is said to be instan
e-
he
kable if there is a probabilisti
polynomial-time ora
le pro
edure I whi
h, given an ora
le P and an input x of length n, hasthe following properties:1. I outputs one of 3 values \0", \1" or \?" at the end of ea
h
omputation path.2. If P de
ides L
orre
tly, I outputs L(x) with probability 1.4

3. I outputs 1� L(x) with probability at most 2�
(n), irrespe
tive of the ora
le P .Intuitively, an instan
e
he
ker for a language L tests whether a program P de
ides L
orre
tly on an input x or not. It follows from the proof of the IP = PSPACE [LFKN92, Sha92℄result that all PSPACE-
omplete problems have instan
e
he
kers, and it follows from theproof of the MIP = NEXP [BFL91℄ that all EXP-
omplete languages have instan
e
he
kers.Thus far, the properties we require of the PSPACE-
omplete language L are similar tothe properties required by Barak of the EXP-
omplete language for whi
h he
onstru
ts anoptimal algorithm. Indeed, the proof of Theorem 1 only uses these properties. For the proofof Theorem 2, we require an additional property, namely that L be worst-
ase to average-
ase redu
ible. Informally, this means that the existen
e of an ma
hine M whi
h for ea
h nde
ides L
orre
tly with high probability over the uniform distribution on inputs of lengthn implies the existen
e of a ma
hine M 0 whi
h is at most polynomially slower than M andde
ides L
orre
tly on all inputs.Building on ideas of Trevisan and Vadhan [TV02℄, we de�ne a PSPACE-
omplete languagesatisfying slightly stronger forms of the properties mentioned above, whi
h are useful in the
onstru
tion of our optimal algorithm and in our proofs of
orre
tness:Theorem 9. There is a PSPACE-
omplete language L 2 DTIME(22n) and a linear-timede
idable set S � f0; 1g� with the following properties:1. (Paddability)(a) There is a deterministi
 linear-time pro
edure P , whi
h given x of length n and1m as inputs, where m > n, produ
es a string P (x; 1m) of length n in S su
h thatx 2 L i� P (x; 1m) 2 L.(b) There is a deterministi
 linear-time pro
edure Prev, whi
h given a string x 2 S oflength n as input, produ
es a string Prev(x) 2 S of length < n su
h that x 2 L i�Prev(x) 2 L.2. (Instan
e-Che
kability) L is instan
e-
he
kable with a
he
ker I that only makes queriesto the ora
le about strings of length n on any input x of length n.3. (Worst-
ase to average-
ase redu
ibility)(a) jS \ f0; 1gnj = 2n�1.(b) There is a polynomial p and polynomial-time pro
edures q and f su
h that forea
h integer n, for ea
h input x 2 S of length n, for ea
h integer 1 6 i 6 p(n)the distribution of q(i; x; r) over
oin tosses r is uniform over S \ f0; 1gn andL(x) = f(x; r; L(q(1; x; r)); L(q(2; x; r)) : : :L(q(p(n); x; r))) with probability at least 1� 2�
(n) over
oin tosses r.Proof. It is impli
it in the work of Trevisan and Vadhan [TV02℄ that there is a PSPACE-
omplete language L0 2 DTIME(22n) with the following properties:1. L0 has a worst-
ase to average-
ase redu
tion, with the queries at length n uniformlydistributed over f0; 1gn. 5

2. L0 is instan
e-
he
kable with an instan
e
he
ker I 0 whi
h, on input of length n, onlymakes queries to its ora
le about strings of length at most n.From L0, we de�ne a language L with the stated properties. L is essentially L0 \withpadding". More pre
isely, for any integer i > 0, 0i1x 2 L0 i� x 2 L.It is not hard to see that Property 1 in the statement of Theorem 9 holds for L0. Theset S in the statement of the theorem
an be taken to be f0i1xji > 1g. Given an x oflength n su
h that x is of the form 0j1x0, The pro
edure P (x; 1m) simply outputs 0j+m�n1x0.Similarly, given a string of the form 0j1x0 as input where j > 1, Prev outputs 1x0.We
an also de�ne an instan
e
he
ker I for L given the instan
e
he
ker I 0 for L0 su
hthat I only makes queries of the same length as its input. Whenever I 0 makes a query toits ora
le, I pads the query up to its input length using the pro
edure P before asking thequery to the ora
le. We also need to ensure that for heavily padded inputs, the probability ofoutputting the wrong answer is exponentially small, but this
an be done by just repeatingthe simulation of I 0 a number of times depending on how heavily padded the input is.As for the average-
ase to worst-
ase
onne
tion, uniform distribution of queries overf0; 1gn for L0 translates dire
tly to uniform distribution of queries over S for inputs in S forL. �Intuitively, pro
edure P in the statement of Theorem 9 is a padding pro
edure, andpro
edure Prev is a \reverse padding" pro
edure, whi
h when given a padded input, re
oversthe original input. S is the set of non-padded inputs. Half the inputs of any given lengthbelong to this set, and the worst-
ase to average-
ase redu
tion works for inputs in this set.3 Overview of te
hniques3.1 Barak's proofBarak's proof represents a
ompletely new approa
h towards proving a hierar
hy theoremfor probabilisti
 polynomial time. We sket
h the ideas behind his proof here.The
riti
al idea of Barak is to �nd a language L with an optimal algorithm. An optimalalgorithm is a probabilisti
 algorithm for L that is only polynomially slower than the \best"probabilisti
 algorithm for L. To be more pre
ise, there is a
onstant
 su
h that if thereis a probabilisti
 algorithm solving L running in time t, then the optimal algorithm runs intime O(t
). Thus if the optimal algorithm runs in time T , L 2 BPTIME(T)�BPTIME(T 1=
0)for all
0 >
. If T were a
onstru
tible time bound, we
ould use a translation argument toshow that an appropriately padded version L0 of L is in BPTIME(n
0) but not in BPTIME(n),whi
h implies a hierar
hy theorem for probabilisti
 polynomial time.The question of how to �nd a language L with an optimal algorithm still needs to beaddressed. Barak observes that any EXP-
omplete language has an optimal algorithm, indeedany language with an instan
e
he
ker has an optimal algorithm, and it follows from the ri
htheory of probabilisti
ally
he
kable proofs that all EXP-
omplete languages have instan
e
he
kers.Let P1; P2 : : : be an e�e
tive enumeration of all probabilisti
 Turing ma
hines (wherethere is no guarantee that a ma
hine in the enumeration is bounded-error). Fix an EXP-6

omplete language L and let I be an instan
e
he
ker for L. Barak de�nes an optimal algo-rithm A for L as follows: Given an input x, A su

essively runs I with ora
les P1; P2 : : : Pf(n)on x, where f is some polynomially-bounded easily
omputable fun
tion. Whenever I asksan ora
le query to Pi, A simulates Pi to determine the answer. If IPi returns a Booleanvalue for some i, A outputs that value. If IPi returns \?", A
ontinues the simulation withthe next program in the enumeration. We have skirted the issue of how long A simulatesthe ma
hines Pi - Barak's algorithm a
tually runs in stages m = 1; 2 : : : , and at a stage m,ora
le queries to a program Pi are simulated for m steps.Given the properties of an instan
e
he
ker, it is not hard to show that A is an optimalalgorithm for L. If Pe is a probabilisti
 bounded-error algorithm for L whi
h halts with highprobability after t steps, then for large enough n (i.e., for n su
h that f(n) > e), Pe will beone of the ora
les that A uses, and hen
e at stage m = t, A will halt with the
orre
t answerwith high probability after simulating I with ora
le Pe. A has used at most t2poly(n) timeup to this stage, whi
h is still polynomial in t. Any in
orre
t program Q
an only
ontributean exponentially small error when I is run with Q as ora
le1, hen
e A solves L
orre
tly andhalts within poly(t) steps with high probability.As dis
ussed before, an optimal algorithm implies a hierar
hy theorem if the time boundof the optimal algorithm is time-
onstru
tible. However, it seems to be hard to argue thatthis is the
ase. Barak's solution is to use an advi
e string of size log(log(n)) to representan approximation to the time taken by the optimal algorithm, in whi
h
ase the translationargument
an be pushed through. We suggest more eÆ
ient solutions to this problem.3.2 Our improvementsWe get our �rst improvement over Barak using a translation argument eÆ
ient with respe
tto advi
e. We require that the pads
onform to a spe
i�
 format, whi
h ensures that fora given length m, there is at most one input length n su
h that inputs of length n
an bepadded to length m. If this holds, then just one bit of advi
e is required to tell whether m isa \good" length, meaning that the simulation of the optimal algorithm on inputs of length ntakes O(poly(m)) time. Of
ourse, we also need to take
are that the
onstraint we imposeon the pads doesn't make the simulation of the optimal algorithm infeasible, but this isn'thard.We do obtain a hierar
hy theorem for probabilisti
 polynomial time with one bit of advi
eusing this translation argument. However, the value of the advi
e bit depends on the timetaken by the optimal algorithm, and it is not
lear at all whether this fun
tion is easily
omputable. For example, it might be the
ase that the optimal algorithm takes vastlydi�erent times for di�erent inputs of the same length. In su
h a
ase, it may not be easy toestimate the worst-
ase time on a given input length. We do have some
exibility, though, indesigning our algorithm. It is well-known that there are PSPACE-
omplete problems2 with1A subtle but
riti
al point is that we are now
onsidering the probability over
oin tosses of Q as well,and Q may not be bounded-error. However we may interpret Q as a probability distribution over ora
les ea
hof whi
h
auses I to output a wrong answer with exponentially small probability, and hen
e this property ispreserved when we take into a

ount the
oin tosses of Q as well.2For te
hni
al reasons, we use a PSPACE-
omplete language rather than an EXP-
omplete language as in7

a worst-
ase to average-
ase
onne
tion, i.e., they are just as hard to solve in the average
ase as in the worst
ase. This suggests that the average-
ase running time of an optimalalgorithm for a PSPACE-
omplete problem may be polynomially related to its worst-
aserunning time. We do not know if Barak's algorithm has this property but we are able tomodify his optimal algorithm and impose some stru
ture on it so that we obtain a version ofthe worst-
ase to average-
ase
onne
tion. Spe
i�
ally, we are able to design a probabilisti
polynomial-time pro
edure that produ
es a rough estimate of the worst-
ase running timefrom estimates of a di�erent but related quantity for random inputs.However, it is still not
lear whether this gains us anything sin
e the estimate we obtainis quite rough, and is moreover obtained probabilisti
ally. We need another idea, whi
hinvolves the use of the randomness in the input itself to disambiguate the
omputation andmaintain the bounded-error promise with high probability in the
ase when the estimateis too
lose to the length of the pad. Using the estimation pro
edure and this idea in
onjun
tion with our translation argument, we derive a hierar
hy theorem for average-
aseprobabilisti
 polynomial time if the optimal algorithm does not run in polynomial time.If the optimal algorithm runs in polynomial time, the fa
t that our problem is PSPACE-
omplete implies that we
an use a diagonalization te
hnique to dire
tly obtain a hierar
hyfor average-
ase probabilisti
 polynomial time. Thus an average-
ase hierar
hy theoremholds for probabilisti
 polynomial time un
onditionally.4 Our Results4.1 An Optimal AlgorithmLet L be a PSPACE-
omplete language as in the statement of Theorem 9. Let I be aninstan
e
he
ker for L and let q and f be polynomial-time pro
edures implementing a worst-
ase to average-
ase redu
tion for L, su
h that I and f both have error probability at most2�4n on inputs of length n. We des
ribe an optimal algorithm for L. The algorithm runs instages m = 1; 2 : : : . At stage m, for ea
h ma
hine M of des
ription length 3 log log(m) (notethat there are at most (log(m))3 su
h ma
hines), we
he
k to see if Mm, i.e., M restri
tedto m steps, is a good
andidate for de
iding L by running the worst-
ase to average-
aseredu
tion for L on top of the instan
e
he
ker. If Mm were indeed a good
andidate, theinstan
e
he
ker I would return a non-"?" value with high probability on all instan
es oflength n and the worst-
ase to average-
ase redu
tion would give a
orre
t answer with highprobability as well. If Mm is not a good
andidate, we know by the properties of I that awrong answer is produ
ed with very small probability, hen
e the bad
andidate
annot a�e
tthe performan
e of the algorithm by very mu
h.We des
ribe the algorithm in Table 1.For ea
h n, let T (n) be the minimum number t su
h that for ea
h i; 1 6 i 6 n and for ea
hinput of length i, with probability at least 1�1=i, Algorithm OPTIMAL halts and produ
esthe
orre
t answer within t steps. Then L 2 BPTIME(T (n)). In order for the de�nition ofT (n) to make sense, we need to ensure that su
h a number t exists. For any x 2 S of length[Bar02℄. 8

Algorithm OPTIMAL:Input: String x of length n1. If x 62 S, x Prev(x)2. If jxj 6 log(n), run the natural deterministi
 exponential timealgorithm for L on x and exit.3. For m = 1; 2 : : : do:4. For ea
h probabilisti
 Turing ma
hine M of size 3 log log(m) do:(a) For j = 1 : : : log(n) do:i. Run q on x with randomly
hosen r to generate queriesq(1; x; r); q(2; x; r) : : : q(jxjk; x; r).ii. For i = 1 : : : jxjk do:A. Run I on q(i; x; r) with ora
leMm, and if an answerval is returned, guess(q(i; x; r)) val, otherwiseguess(i; x; r) is unde�ned.iii. If guess(i; x; r) is de�ned for all i; 1 6 i 6 jxjk, setfj f(x; r; guess(q(1; x; r)) : : : guess(q(jxjk; x; r)))(b) If fj is de�ned for all 1 6 j 6 log(n), output the majorityvalue of the fj's and exit all loops, else
ontinue.Table 1: Optimal Algorithmi, su
h a number t exists be
ause a deterministi
 linear exponential-time ma
hine de
idingL will eventually be tried by Algorithm OPTIMAL and OPTIMAL will return an answerwith high probability when it tries this ma
hine. Moreover, the probability that a wronganswer is output before this stage is exponentially small, sin
e both the instan
e
he
ker Iand the worst-
ase to average-
ase redu
tion f produ
e wrong answers with exponentiallysmall probability. Any x 62 S of length i is transformed to x0 = Prev(x) of length i0 < i.Now the same argument as for x 2 S works and the fa
t that the worst-
ase to average-
aseredu
tion is run log(i) times independently ensures that the probability of halting is at least1� 1=i. Indeed, sin
e L 2 DTIME(22n), this argument yields an expli
it upper bound of 26nfor T .Now, we will
onsider two
ases. The �rst is that T (n) is polynomially bounded. Wewill dispose of this
ase with a diagonalization argument. The other
ase is that T (n)is superpolynomial in�nitely often. In this
ase, �rstly we will show that OPTIMAL isan optimal algorithm and hen
e there is a
onstant � > 0 su
h that L 2 BPTIME(T) �BPTIME(T �)=2 log log(T). Next, we will show how to de�ne, for ea
h
onstant d, a paddedversion of L that is de
idable in BPPwith just one bit of advi
e but is not in BPTIME(nd= log log(n)).This will yield our Theorem 1. 9

4.2 The
ase L 2 BPPFirst, note that by the PSPACE-
ompleteness of L, if L
an be de
ided in BPP, so
an everylanguage in PSPACE.Proposition 10. If L 2 BPP, then PSPACE = BPP.Next, we argue that if PSPACE = BPP, we obtain hierar
hy theorems for probabilisti
polynomial time with one bit of advi
e and for average-
ase probabilisti
 polynomial time.These arguments use the te
hnique of diagonalization. The �rst argument is a straight-forward diagonalization, where we observe that a \universal" language Lu for probabilisti
polynomial-time ma
hines is in PSPACE and that we
an diagonalize in PSPACE, and hen
eby assumption in BPP, against this language.Lemma 11. Let d > 1 be a
onstant. If PSPACE = BPP, then BPP 6� BPTIME(nd)= log(n).Proof. We assume an enumeration of probabilisti
 ma
hines for whi
h the des
riptionlength of a ma
hineM
an be padded to any larger input length - it is not hard to guaranteethis property. Now we de�ne Lu as follows: the
ode < M > of a ma
hine M belongsto Lu i� M a

epts with probability < 1=2 when run for j< M >jd+1 steps on input <M >. Given the paddability of des
ription lengths, it is
lear that for ea
h language L0 2BPTIME(nd)= log(n), for large enough n, there is an input (namely, the
ode of the BPTIMEma
hine together with the advi
e padded to length n) on whi
h Lu di�ers from L0. ThusLu 62 i:o:BPTIME(nd)= log(n). On the other hand, it is not hard to see that Lu 2 PSPACE,and hen
e by assumption, Lu 2 BPP. �The se
ond diagonalization argument, due to Wilber [Wil83℄ gives an average-
ase hier-ar
hy for BPP under the assumption PSPACE = BPP.Lemma 12. Let d > 1 be a
onstant. If PSPACE = BPP, then BPP 6� heur2=3�BPTIME(nd).Proof. It is known [Wil83℄ that for every d > 1, there is a language Ld su
h that Ld 2DSPACE(nd+1) and Ld 62 heur2=3 � DSPACE(nd). By assumption, Ld 2 BPP and sin
eheur2=3 � BPTIME(nd) � heur2=3 � DSPACE(nd), Ld 62 heur2=3 � DSPACE(nd), proving thetheorem. �4.3 Proof of OptimalityWe need to show that Algorithm OPTIMAL is no worse than polynomially slower thanany probabilisti
 algorithm for L. The idea behind the proof is that if M is a probabilisti
algorithm for L whi
h with high probability halts and outputs the
orre
t answer within tsteps, then the instan
e
he
ker I when run on ora
le M t would output the
orre
t value foran instan
e with high probability, and the worst-
ase to average-
ase redu
tion would alsowork with high probability. Thus, the time required for A to output an answer with highprobability is bounded above by the time required to get to the simulation of M t in stage t,whi
h is bounded above by some polynomial in t.We a
tually need to show that Algorithm OPTIMAL is no worse than polynomiallyslower than any probabilisti
 algorithm taking a small amount of advi
e, but this does notintrodu
e too many additional
ompli
ations.10

Lemma 13. If L 62 BPP, there is a
onstant � > 0 su
h that for ea
h
onstant b > 0,L 62 BPTIME(nb + T �)=2 log log(T).Proof. Fix b. We pi
k � = 1=4. Let M be a probabilisti
 ma
hine of des
ription size2 log log(T) + O(1) whi
h, for ea
h input x of length n, with probability at least 1 � 1=nhalts and outputs the
orre
t answer L(x) within T � + nb steps. We derive a
ontradi
tionfor our value of �.Sin
e L 62 BPP, there is an in�nite set J of input lengths su
h that for all n 2 J; T (n) >nb+� + n�=(1�2�), where � > 0 is a
onstant to be spe
i�ed later. We shall show thatM
annot satisfy our assumption for inputs with input length in J . Consider an inputx of length n 2 J . We
an assume without loss of generality that x 2 S (otherwise weuse the same argument with x Prev(x)). By running the ma
hine M 2d2 log(n)e timesindependently and taking the majority vote, we
an de�ne a ma
hine M1 with des
riptionlength 2 log log(T) + log log(n) +O(1) 6 3 log log(T �) whi
h within T �n2 + nb+2 steps, haltsand outputs the
orre
t answer with high probability. Thus, when Algorithm OPTIMALrea
hes stage T �n2 + nb+2 and runs the worst-
ase to average-
ase redu
tion on top of theinstan
e-
he
king routine I with ora
le MT �n2+nb+21 , it halts and outputs the
orre
t answerwith probability at least 1� 2�3n(sin
e the probability of I outputting a wrong value or \?"on any of the nk instan
es of length n queried by I and the probability that the fun
tion fwill return the wrong value are both at most 2�4n). Also, the probability that AlgorithmOPTIMAL has output a wrong value before this stage is at most 2�2n, hen
e we havethat Algorithm OPTIMAL halts and outputs the
orre
t answer with probability at least1� 2�n > 1� 1=n within time (T 2� + nb)n� for some
onstant �. We have a
ontradi
tionsin
e (T 2� + nb)n� < T if n 2 J . �4.4 Proof of Theorem 1In this se
tion, we prove Theorem 1. We de�ne a padded version Lpad of the language L,where the pad represents the running time of algorithm OPTIMAL on the underlying input,su
h that Lpad 2 BPP=1 but Lpad 62 BPTIME(nd)= log log(n). Let � be a
onstant as in thestatement of Lemma 13.Lpad = fx#1yjy = 22z for some z; x 2 L; y > jxj; y + jxj+ 1 > T (jxj)�=3dgFirst, we show Lpad 2 BPP=1. The basi
 idea is that by requiring the pads to
onformto a spe
i�ed stru
ture, we make do with one bit of advi
e to tell us whether the length ofthe pad is suÆ
ient to
arry out the simulation of Algorithm OPTIMAL.Lemma 14. Lpad 2 BPTIME(n3d=�)=1Proof. We
onstru
t a probabilisti
 polynomial-time ma
hine M operating in time n3d=�and taking one bit of advi
e whi
h a

epts Lpad. The basi
 idea is that given an input of theform x#1y with jxj + 1 + y = m, M �rst
he
ks if the input has a valid form. This
an bedone in quasilinear time. If the input does not have a valid form, M reje
ts. Otherwise, letbm be the advi
e bit for M at length m. M a

epts i� bm = 1 and Algorithm OPTIMALhalts and a

epts on x within n3d=� time steps.11

First we spe
ify what sequen
e of advi
e bits bi; i = 1 : : :1 M re
eives and then weshow that for any m and for any x0 of length m, x0 2 Lpad i� M a

epts x0 with advi
e bm.Consider any input length m. Call m \good" if m = nm + ym + 1 for some nm; ym > 0 su
hthat ym = 22zm for some zm > 0 and ym > nm + 1. Thus ym > m=2. If m is good, then nmand ym are determined uniquely. For suppose not, and let n0m 6= nm and y0m be su
h thatn0m + y0m = nm + ym, y0m = 22z0m for some z0m > 0 and y0m > n0m. Without loss of generalityy0m > ym. We have that m > y0m > y2m > m2=4, whi
h is a
ontradi
tion for m > 4.Let T 0(nm) = T (nm)�=3d. Now we spe
ify the advi
e bits. If m is not good, bm = 0. If mis good, bm = 1 i� m > T 0(nm).Next we �x an m and show that for x0 of length m, x0 2 Lpad i� M a

epts x0. Theforward dire
tion follows immediately from the spe
i�
ation of the advi
e bits. For thereverse dire
tion, we show that if x0 62 Lpad for input x0 of length m, then M halts withinthe required time bound and reje
ts x0 with probability
lose to 1. If x0 is not of the formx#1y for some y of the form 22z su
h that y > jxj, M reje
ts with probability 1 sin
e thedeterministi
 test that the input has a valid form fails. Otherwise, let x0 be of the formx#1ym , where x is of length n, ym = 22zm for some integer zm > 0, and y > jxj. There aretwo
ases: (1) T 0(n) > m, and (2) T 0(n) 6 m. In
ase (1), the advi
e bit b is 0 and hen
e Mreje
ts with probability 1. In
ase (2), M has enough time to simulate Algorithm OPTIMALon x and hen
e reje
ts with high probability when x 62 L. �Next, we show Lpad 62 BPTIME(nd)= log log(n) if the optimal algorithm for L does not runin polynomial time. The idea here is that if Lpad 2 BPTIME(nd)= log log(n) via an advi
e-taking probabilisti
 ma
hine M , we
an solve L in time T � + poly(n) with a small amountof advi
e. The advi
e is interpreted as
oming in two parts. The �rst part of the advi
esuggests a \good" input length m to whi
h we pad the input, and we then simulate M onthe padded input using the se
ond part of the advi
e as advi
e to M . The total amount ofadvi
e used is < 2 log log(T), and thus we obtain a
ontradi
tion to Lemma 13.Lemma 15. If L 62 BPP, Lpad 62 BPTIME(nd)= log log(n).Proof. The proof is by
ontradi
tion. Assume Lpad 2 BPTIME(nd)= log log(n). Let M bean advi
e-taking probabilisti
 ma
hine running in time nd and a

epting Lpad. We
onstru
tan advi
e-taking probabilisti
 ma
hine M 0 running in time n3d+T (n)� with 2 log log(T) bitsof advi
e and a

epting L, whi
h is a
ontradi
tion to Lemma 13.M 0 a
ts as follows: given an input x of length n, it interprets the �rst log log(n) bits ofits advi
e as an en
oding of the smallest z su
h that 22z > n and 22z + n + 1 > T (n)�=3d. Itthen pads its input x with 122z and runs M on the padded input x0 = x#122z , interpretingthe se
ond part of its advi
e as the
orre
t advi
e string for M on the padded length. Itoutputs the result of the simulation of M on x0. Note that jx0j 6 max(n3; T �). Thus M 0uses time at most n3d + T (n)� on x. Also, if both parts of the advi
e string are
orre
t, thesimulation has enough time to run, and hen
e M 0 de
ides
orre
tly whether x is in L. �If L 2 BPP, Proposition 10 and Lemma 11 imply Theorem 1. If L 62 BPP, Lemma 14 andLemma 15 together imply Theorem 1. Thus Theorem 1 holds un
onditionally. The existen
eof a hierar
hy theorem for probabilisti
 polynomial time with one bit of advi
e follows fromTheorem 1 by a standard translation argument.12

4.5 Estimation of Running TimeIn this subse
tion, we show that there is an eÆ
ient pro
edure estimating the running timeof Algorithm OPTIMAL to within a polynomial fa
tor with high probability. This is wherewe reap the advantage of running a worst-
ase to average-
ase redu
tion on top of theinstan
e
he
king. Intuitively, we
an get a rough estimate of the time required to de
ideL by estimating the probability that the instan
e
he
ker I returns a non-"?" value. Theworst-
ase to average-
ase redu
tion ensures that if for some ma
hine M there is some inputx of length n su
h that there is a signi�
ant (i.e., at least inverse polynomial) probabilityof not getting an answer for x within time t after running I with M t=poly(n) as ora
le andthen running the worst-
ase to average-
ase redu
tion on top, then for at least a polynomialfra
tion of the inputs of length n, there is a signi�
ant
han
e that the instan
e
he
ker willreturn a \?" value when it is given M t=poly(n) as ora
le.The proof of
orre
tness of our estimation pro
edure requires standard Cherno� bounds([AS92℄) as stated below:Proposition 16. Let Y1 : : : Yn be independent random variables with Pr(Yi = 1) = p andPr(Yi = 0) = 1 � p for ea
h i. Let Y = Pni=1 Yi. Then Pr(Y > np + a) < e�2a2=n andPr(Y < np� a) < e�a2=2pn.Lemma 17. There is a probabilisti
 pro
edure ESTIMATE and
onstants a and
 su
h thatESTIMATE, when given an integer n as input, with probability at least 1�1=2n2, halts withinT (n)n
 steps and outputs a number Test su
h that T (n)=na 6 Test 6 T (n)na. Moreover, thereis at most one number Tmid su
h that jPr(Test < Tmid)� Pr(Test > Tmid)j < 1=4Tna.Proof. We de�ne some notation that will be used in the proof of
orre
tness of the pro
edurefor estimation of the running time. Fix an input length n. An exe
ution is a pair (m;M)
onsisting of a running time m and a ma
hine M of des
ription length 6 3 log log(m). Aninput x of length n is said to be (m,M)-good if the probability that IMm returns a \?" valueon x is at most 1=nk+2. The exe
ution (m;M) is said to be n-good if at least a fra
tion1� 1=(nk+2) of the inputs of length n are (m;M)-good.Let the running times of pro
edures I; q and f in Algorithm OPTIMAL be bounded bynr1 ; nr2 and nr3 respe
tively. Let a = 3(k + r1 + r2 + e), and
 = 16k + 3r1 + 3r2 + 8.The pro
edure ESTIMATE works as follows: It runs the following pro
ess 2n2 timesindependently. In the rth run, 1 6 r 6 2n2, it �rst sets m = 2. For ea
h ma
hine M ofdes
ription length 6 3 log log(m), for ea
h log(n) 6 i 6 n, it estimates whether the exe
ution(m;M) is i-good by generating i8k+2 random strings x1 : : : xi8k+2 of length i and estimatingwhether at least i8k+2 � i7k=2 of these strings are (m;M)-good. For estimating whether astring xj of length i is (m;M)-good, it runs IMm on xj i8k+2 times independently and
he
kswhether at least i8k+2 � i7k=2 of these runs yield a value that is not \?". If there is anM of des
ription length 6 3 log log(m) su
h that (m;M) is estimated to be i-good for alllog(n) 6 i 6 n, ESTIMATE sets tr mna=2 and begins the r+ 1th run. If there is no su
hM , ESTIMATE sets m 2m and repeats the estimation pro
ess within the rth run.Let T1 be the median of the values tr; r = 1 6 2n2. ESTIMATE outputs Test, where Testis an integer
hosen uniformly at random in [T1n�2a=3; T1n2a=3℄13

We need to show that with high probability, ESTIMATE halts within T (n)n
 steps andneither overestimates nor underestimates T (n) by more than a na fa
tor. First we show thatfor ea
h r; 1 6 r 6 2n2, with probability at least 1 � 1=2n, tr 6 T (n)na=3. This impliesthat with probability at least 1 � 2n2+1, T1 6 T (n)na=3 whi
h implies Test 6 T (n)na. Fixr su
h that 1 6 r 6 2n2. Let M be a ma
hine implementing algorithm OPTIMAL. De�nea modi�ed version Mn of M whi
h runs M 2d2 log(n)e times independently for 2dlog(T (n)e)steps and outputs the majority value of these runs if at least one of these runs produ
esa value, otherwise it outputs an arbitrary value. The des
ription length of Mn is at mostjM j + log log(T (n)) + log log(n) + O(1), whi
h is at most 3 log log(T (n)), sin
e T (n) > n.By applying the bounds of Proposition 16, we see that the su

ess probability of Mn on anystring of length at most n is at least 1� 2�n, and hen
e the probability that IM2dT (n)e+d2 log(n)enprodu
es a non-"?" value is at least 2�n+1. Again by applying the bounds of Proposition16, for any given i > log(n) the probability that the exe
ution X = (2dlog(T (n))e+d2 log(n)e;Mn)passes all the tests of the rth run of pro
edure ESTIMATE is at least 1� 1=n3. By a unionbound, the exe
ution X passes all the tests for all log(n) 6 i 6 n with probability at least1� 1=n2. Thus tr 6 2T (n)nr1+k + nr2+k + ne 6 T (n)nr1+r2+e+k = T (n)na=3 with probabilityat least 1 � 1=n2. Also note that the time spent by pro
edure ESTIMATE in the rth rununtil it �nishes all tests for exe
ution X is at most T (n)n16k+r1+r2+e+5, and thus the totaltime for all runs is at most T (n)n
.The argument that ESTIMATE does not underestimate T (n) is more
ompli
ated. Again�x an r su
h that 1 6 r 6 2n2. We show that with probability at least 1 � 1=2n,tr > T (n)n�a=3, whi
h implies T1 > T (n)n�a=3 with probability at least 1�1=2n2+1 and hen
eTest > T (n)n�a with at least that probability. De�ne l(n) = T (n)=na=3. Assume for the pur-pose of
ontradi
tion that with probability greater than 1=2n, tr 6 l(n) = T (n)=nr1+r2+e+k.There are at most n4 exe
utions (m;M) tried by the pro
edure ESTIMATE in the rthrun(sin
e only values of m whi
h are powers of 2 are tried, and for ea
h su
h value m, atmost (log(m))3 ma
hines M are
onsidered), hen
e there is an exe
ution (m;M) su
h thatm < l(n) and (m;M) is i-good for all log(n) 6 i 6 n with probability at least 1=2n5 overthe
oin tosses of ESTIMATE. Fix su
h an exe
ution (m;M).We �rst show that the probability that an input of length i is (m;M)-good is at least1 � 1=ik+2 for ea
h log(n) 6 i 6 n. Assume, to the
ontrary, that this probability is lessthan 1 � 1=ik+2. We show that then the probability that ESTIMATE estimates (m;M) tobe i-good is less than 1=2n5. By the Cherno� bounds of Proposition 16, the probabilitythat a string of length i is estimated to be (m;M)-good if it is not (m;M)-good is at most1=n6 if i > log(n). Again by Proposition 16, the probability that (m;M) is estimated to bei-good when the fra
tion of strings of length i that are (m;M)-good is less than 1� 1=ik+2is at most 1=n6. Hen
e the probability that ESTIMATE estimates (m;M) to be i-good isat most 2=n6 < 1=2n5 for n large enough , whi
h is a
ontradi
tion.Let m0 = mnr1+k + nr2+k + ne. Next we show that if the probability that an input oflength i is (m;M)-good is at least 1�1=ik+2 for ea
h log(n) 6 i 6 n, then T (n) 6 m0, whi
his a
ontradi
tion if m < l(n). We need to show that under the assumption, AlgorithmOPTIMAL takes at most time m0 on every input of length at most n. Let x of length i bethe input of length 6 n on whi
h Algorithm OPTIMAL takes maximum time. It
annotbe the
ase that i < log(n), sin
e Algorithm OPTIMAL takes at most time n on inputs14

of length 6 log(n). We
an assume without loss of generality that x 2 S (sin
e if x 62 S,Algorithm OPTIMAL runs instead on an equivalent input in S whi
h is
omputed from xin linear time). Sin
e S \ f0; 1gi = 2i�1 by Theorem 9, the probability that an input oflength i in S is (m;M)-good is at least 1 � 1=2ik+1. Consider the behavior of algorithmOPTIMAL during exe
ution (m;M) on input x. It follows from the form of the average-
aseto worst-
ase
onne
tion for L stated in Theorem 9 that queries whi
h are not (m;M)-goodappear on at most a fra
tion 1=2i of
omputation paths. For
omputation paths on whi
honly (m;M)-good queries appear, with probability at least 1 � 1=2i over the
oin tosses ofI, the
orre
t answer is output within time mir1+k + ir2+k + ie 6 m0 sin
e i 6 n. Thus withprobability at least 1� 1=i, Algorithm OPTIMAL halts and outputs the
orre
t answer onx, whi
h implies T (n) 6 m0, and hen
e a
ontradi
tion.Now that we have established that ESTIMATE outputs a good approximation to T withhigh probability, we need to show that the distribution of values output by ESTIMATE is\smooth". The smoothness property we require, roughly speaking, is that the distributionhas at most one median - this will
ome in useful in our proof of Theorem 2.Let Tmid be the least number su
h that jPr(Test < Tmid) � Pr(Test > Tmid)j 6 1=4Tna.We show that in this
ase, Pr(Test = Tmid) > 1=4Tna, whi
h implies that there is no othernumber T 0 su
h that jPr(Test < T 0 � Pr(Test > T 0)j 6 1=4Tna.Note that the fa
t that ESTIMATE is a good approximator of T with high probabilityimplies that Tmid 2 [T=na; Tna℄. We
onsider 3
ases - (1) Tmid 2 [T=na=3; Tna=3℄, (2) Tmid 2[Tna=3; Tna℄, and (3) Tmid 2 [T=na; T=na=3℄. In
ase (1), Pr(T1 2 [T=na=3; Tna=3℄ > 1�1=2n2as established before, and Pr(Test = TmidjT1 2 [T=na=3; Tna=3℄) > 1=Tna by the de�nition ofESTIMATE and the assumption on the range of Tmid, hen
e Pr(T = Tmid) > 1=2Tna.Now we turn to
ase (2), and the proof for
ase (3) will follow by a symmetri
al argument.Pr(Test > Tmid) = Pr(Test > TmidjT1 > Tna=3)Pr(T1 > Tna=3) + Pr(Test > TmidjT1 <Tna=3)Pr(T1 < Tna=3) 6 1=2n2 + Pr(Test = Tmid)Tna, whi
h implies Pr(Test = Tmid) >(1=2� 1=2n2)1=Tna, and thus Pr(Test = Tmid) > 1=4Tna when n > 4. �4.6 Proof of Theorem 2In this se
tion, we outline a proof of Theorem 2. The proof relies on the ability to estimatethe running time of Algorithm OPTIMAL on inputs of length n, as guaranteed by Lemma17, as well as the translation argument with pads of a �xed stru
ture utilised in the proofof Theorem 1.As in the proof of Theorem 1, we
onsider 2
ases. In the
ase that L 2 BPP, Proposition10 and Lemma 12 imply Theorem 2 .Lemma 18. If L 2 BPP, then BPP 6� heur2=3 � BPTIME(nd).In the
ase that L 62 BPP, we �rst need a stronger version of Lemma 13. The proof ofthe stronger version is identi
al to the proof of Lemma 13, ex
ept that we additionally usethe fa
t that L has a worst-
ase to average-
ase redu
tion.Lemma 19. If L 62 BPP, there are
onstants � > 0 and a > 0 su
h that for all b > 0,L 62 heur1�n�a � BPTIME(nb + T �)=2 log log(T).15

Proof. The proof is by
ontradi
tion, and is almost identi
al to the proof of Lemma 13.The only
hange is that given a ma
hine of size 2 log log(T)+O(1) de
iding L on average oninputs of length n in time T �,we �rst transform it into a ma
hine of size 2 log log(T) +O(1)operating in time T �poly(n) and de
iding L
orre
tly on all inputs of length n, using theworst-
ase to average-
ase redu
tion for L. It is suÆ
ient to pi
k a as in the statement ofLemma 17 to derive a
ontradi
tion (where, as before, nk is the number of queries made bythe worst-
ase to average-
ase redu
tion for L on inputs of length n). �Let a be as in the statement of Lemma 17. We de�ne a language Lpad0 whi
h is apadded version of L su
h that Lpad0 2 heur1�n�a � BPP � heur1�n�a � BPTIME(nd). Firstwe require some notation. Given an integer m, there is at most one integer n < m=2 su
hthat m = n + 22z for some integer z. Call m \good" if su
h an integer exists; denotethe
orresponding integer by nm and the
orresponding z by zm. For ea
h good m, letHm : f0; 1gm ! f0; 1gnm be the fun
tion mapping ea
h string of length m to the nm-bitpre�x of the string. Intuitively, what we are doing here is trying to use Hm to de�ne apadded language so that for any \good" length, there are no \irrelevant" strings, unlikein the proof of Theorem 1 where any string not in the spe
i�ed format was irrelevant and
ould be reje
ted. Interpreting u 2 f0; 1gm as the integer in [1; 2m℄ whi
h is its position inthe lexi
ographi
al order of m-bit strings, we de�ne shift(u) = bu(m4a� � m�)=2m
. Let� = 6(d+1)=�. Let Tmid(nm) be the median of the distribution of estimates for the runningtime indu
ed by the pro
edure ESTIMATE in the statement of Lemma 17.Now we are ready to de�ne Lpad0 :Lpad0 = fuj juj is good, Hjuj(u) 2 L; juj� + shift(u) > Tmid(njuj)gThe de�nition of Lpad0 is a little
ompli
ated, so we try to give some intuition for it. Thede�nition is similar to the de�nition of Lpad in Se
tion 4.4, in that the length of the pad is
ompared to a quantity based on the running time of the optimal algorithm. The di�eren
ein the present
ase is that this quantity depends on the input and not just on the inputlength - essentially, it is a random perturbation of the
orresponding quantity in Se
tion4.4, where the randomness is derived from the input itself. The reason we add the randomperturbation is that we probabilisti
ally
ompute an approximation to the quantity ourself(unlike in the proof of Theorem 1 where the advi
e bit told us if the pad was good), and theapproximations
omputed on di�erent probabilisti
 paths may be evenly spread about thelength of the pad, resulting in the BPP-promise being destroyed. Sin
e we add a di�erentrandom perturbation to the quantity for ea
h input and then
ompare to the length of thepad, for most of the inputs, the approximations of the randomized quantity will not be evenlyspread about the length of the pad, and hen
e for most inputs the BPP-promise will notbe destroyed. The probabilisti
 approximation of the quantity is done using the pro
edureESTIMATE in the proof of Lemma 17. On
e we know the pad is good, we simulate theoptimal algorithm to de
ide whether to a

ept or reje
t the input.Lemma 20. If L 62 BPP, then Lpad0 2 heur1�n�a�BPP but Lpad0 62 heur1�n�a�BPTIME(nd).Proof. We show that Lpad0 2 heur1�m�a � BPTIME(m3a�+3a+
+4) but Lpad0 62 heur1�m�a �BPTIME(md).We show the positive in
lusion �rst. We de�ne a probabilisti
 Turing ma
hine M a
-
epting Lpad0 in time m3a�+3a+
+4 on average. Given u of length m, M �rst determines if m16

is good. This
he
k
an be done in linear time. If m is not good, M reje
ts. Otherwise, Mdetermines nm and x = Hm(u). If nm < log(m)=3, M runs Algorithm OPTIMAL on x anda

epts if and only if OPTIMAL a

epts within the allotted time. If nm > log(m)=3,M runsthe pro
edure ESTIMATE in the proof of Lemma 17 f(m) = m2a�+2a+4 times independentlyon input nm. If there is a run on whi
h ESTIMATE does not halt within time ma�+a+
, Mreje
ts. Otherwise, let Test;i be the value output by ESTIMATE on run i; 1 6 i 6 f(m). M
arries out the Estimate Comparison Test - it
omputes m� + shift(u) and
he
ks if thisvalue is at least the median of the values Test;i; i = 1 : : : f(m). If this test fails, it reje
ts,otherwise it simulates Algorithm OPTIMAL for Test time steps on x and a

epts if and onlyif OPTIMAL does.We need to prove that for at least a fra
tion 1�m�a of strings of length m, M a

eptsu i� u 2 Lpad0 . First note that if m is not good, then M reje
ts on all strings of length m,hen
e we only need to
onsider the
ase when m is good.Let T = T (nm) and Tmid = Tmid(nm). If nm < log(m)=3, sin
e T < 26 log(nm) < m2, thereis enough time for M to simulate OPTIMAL and thus for ea
h u of length m, M a

epts ui� u 2 Lpad0 .Now assume nm > log(m)=3. By Lemma 17, with probability at least 1 � 1=2n2m >1� 1=mlog(m)=9, ESTIMATE halts in time Tn
m and outputs a value Test su
h that T=nam <Test < Tnam. We
onsider 2
ases - (1) T > ma�+a, and (2) T 6 ma�+a.If
ase (1) holds, for ea
h u of length m, m�+ shift(u) 6 ma� < T=ma < Tmid, and thusu 62 Lpad0 . We show that for ea
h u of length m, M reje
ts u. If there is an i, 1 6 i 6 f(m)su
h that Test;i is not de�ned, then M reje
ts by de�nition. Conditional on Test;i beingde�ned for all 1 6 i 6 f(m), the Estimate Comparison Test fails with probability at least1 � 1=m
(log(m)), and hen
e M reje
ts with probability at least 2=3, assuming m is largeenough.Now assume that
ase (2) holds. In this
ase, with probability at least 1 � m
(log(m)),Test;i is de�ned for all 1 6 i 6 f(m). Given that all the Test;i are de�ned, by Lemma 17and the Cherno� bounds of Proposition 16, with probability at least 1 � m�a over stringsof length m, the Estimate Comparison Test a

epts with probability at least 1 � e�m ifm�+ shift(u) > Tmid and reje
ts with probability at least 1� e�m if m�+ shift(u) < Tmid.If the Estimate Comparison Test a

epts with probability at least 1�e�m, by the assumptionon T , there is enough time to simulate Algorithm OPTIMAL on input x = Hm(u), and hen
eM a

epts with probability at least 2=3 if x 2 L and reje
ts with probability at least 2=3 ifx 62 L. If the Estimate Comparison Test reje
ts with probability at least 1� e�m, M reje
tswith probability at least 2=3. In either
ase M a

epts u i� u 2 Lpad0 . Thus we have shownthat with probability at least 1�m�a over strings u of length m, M a

epts u i� u 2 Lpad0 .The proof of the negative in
lusion is similar to the proof of Lemma 15. We assume Lpad0 2heur1�m�a � BPTIME(md) and show that it follows that L 2 heur1�n�a � BPTIME(T � +n2(d+1) + n2(d+1)a=�)=2 log log(T), whi
h is a
ontradi
tion to Lemma 19. Let M be a proba-bilisti
 Turing ma
hine de
iding Lpad0 on average in time md+1 with error probability 2�
(m).We de�ne a probabilisti
 advi
e-taking ma
hine M 0 taking < 2 log log(T) bits of advi
e,operating within time T � and a

epting L on average. Given an input x of length n, M 0uses its advi
e to determine a good length m su
h that m� > Tna > Tmid. This requires atmost 2 log(log(T)) bits to spe
ify. It then generates a random string u of length m su
h that17

Hm(u) = x, and outputs the majority value of n independent runs of M on u. The timetaken by M 0 is at most T 3(d+1)=�n3(d+1)a=� + n3(d+1) 6 T � + n3(d+1) + n6(d+1)a=�.We need to show that M 0 de
ides L
orre
tly on at least a 1� n�a fra
tion of inputs oflength n. For ea
h x of length n, let px be the fra
tion of inputs u of length m su
h thatx = Hm(u) and M de
ides
orre
tly whether u 2 Lpad0 . By the
hoi
e of the advi
e string,Px2f0;1gn px=2n > 1 � m�a, whi
h implies that for at least a 1 � 4=ma fra
tion of stringsx of length n, px > 3=4. Sin
e m > 2n, this means that for at least a 1 � n�a fra
tion ofstrings x of length n, M 0 a

epts x with probability at least 2=3 if x 2 L and reje
ts x withprobability at least 2=3 if x 62 L. �From Lemma 18 and Lemma 20, we obtain Theorem 2 un
onditionally.5 Open problemsThe primary open problem, of
ourse, is to prove a hierar
hy theorem for
ompletely uniformprobabilisti
 polynomial time. But there are numerous other questions, su
h as obtainingan \almost-everywhere" version of our hierar
hy theorem for probabilisti
 polynomial timewith advi
e, or proving an analogous theorem for zero-error probabilisti

lasses.It would be interesting to see whether similar ideas
ould be useful in understandingother promise
lasses, su
h as MA or NP \
oNP.On a more general note, there are perhaps further interesting
onne
tions between thetheory of randomness, the theory of average-
ase
omplexity, and the theory of proof systems,whi
h
ould lead to new insights and te
hniques.6 A
knowledgmentsWe thank Dieter van Melkebeek for several enlightening dis
ussions and Nanda Raghunathanfor helpful
omments on an earlier version of the paper. We also thank Madhu Sudan fortelling us about his result with Goldrei
h and Trevisan [GST04℄, and Adam Klivans for auseful dis
ussion.Referen
es[AS92℄ Noga Alon and Joel H. Spen
er. The Probabilisti
 Method, with an appendix onopen problems by Paul Erd�os. John Wiley & Sons, 1992.[Bar02℄ Boaz Barak. A probabilisti
-time hierar
hy theorem for \Slightly Non-uniform"algorithms. Le
ture Notes in Computer S
ien
e, 2483:194{208, 2002.[BDG88℄ Jos�e Luis Bal
�azar, Josep D��az, and Joaquim Gabarr�o. Stru
tural Complexity 1.Springer-Verlag, New York, NY, 1988.18

[BDG90℄ Jos�e Luis Bal
�azar, Josep D��az, and Joaquim Gabarr�o. Stru
tural Complexity 2.Springer-Verlag, New York, NY, 1990.[BFL91℄ L�aszl�o Babai, Lan
e Fortnow, and Carsten Lund. Non-deterministi
 exponentialtime has two-prover intera
tive proto
ols. Computational Complexity, 1:3{40,1991.[BG81℄ Charles Bennett and John Gill. Relative to a random ora
le A; PA 6= NPA 6=
oNPA with probability 1. SIAM Journal on Computing, 10, 1981.[BK95℄ Manuel Blum and Sampath Kannan. Designing programs that
he
k their work.Journal of the Asso
iation for Computing Ma
hinery, 42:269{291, 1995.[CNS99℄ Jin-Yi Cai, Ajay Nerurkar, and D. Sivakumar. Hardness and hierar
hy theoremsfor probabilisti
 quasi-polynomial time. In Pro
eedings of the Thirty-First AnnualACM Symposium on Theory of Computing (STOC'99), pages 726{735, New York,May 1999. Asso
iation for Computing Ma
hinery.[Coo72℄ Stephen A. Cook. A hierar
hy for nondeterministi
 time
omplexity. In Confer-en
e Re
ord, Fourth Annual ACM Symposium on Theory of Computing, pages187{192, Denver, Colorado, 1{3 May 1972.[FS89℄ Lan
e Fortnow and Mi
hael Sipser. Probabilisti

omputation and linear time.In Pro
eedings of the Twenty-First Annual ACM Symposium on Theory of Com-puting, pages 148{156, 1989.[FS97℄ Lan
e Fortnow and Mi
hael Sipser. Retra
tion of \Probabilisti

omputation andlinear time". In Pro
eedings of the Twenty-Ninth Annual ACM Symposium onTheory of Computing, page 750, 1997.[GST04℄ Oded Goldrei
h, Madhu Sudan, and Lu
a Trevisan. Personal
ommuni
ation.2004.[HS66℄ F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape Turing ma-
hines. Journal of the ACM, 13(4):533{546, O
tober 1966.[Imp95℄ Russell Impagliazzo. A personal view of average-
ase
omplexity. In Pro
eedingsof the 10th Annual Conferen
e on Stru
ture in Complexity Theory, pages 134{147,1995.[IW97℄ Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential
ir
uits: Derandomizing the XOR lemma. In Pro
eedings of the 29th AnnualACM Symposium on the Theory of Computing, pages 220{229, 1997.[IW01℄ Russell Impagliazzo and Avi Wigderson. Randomness vs time: derandomiza-tion under a uniform assumption. Journal of Computer and System S
ien
es,63(4):672{688, 2001. 19

[KL82℄ Ri
hard Karp and Ri
hard Lipton. Turing ma
hines that take advi
e.L'Enseignement Math�ematique, 28(2):191{209, 1982.[KV87℄ Marek Karpinski and Rutger Verbeek. On the monte
arlo spa
e
onstru
tiblefun
tions and separation results for probabilisti

omplexity
lasses. Informationand Computation, 75, 1987.[LFKN92℄ Carsten Lund, Lan
e Fortnow, Howard Karlo�, and Noam Nisan. Algebrai
methods for intera
tive proof systems. Journal of the Asso
iation for ComputingMa
hinery, 39(4):859{868, 1992.[RV01℄ Robert Rettinger and Rutger Verbeek. Monte-
arlo polynomial versus linear time{ the truth-table
ase. Fundamentals of Computation Theory, 13, 2001.[SFM78℄ Joel I. Seiferas, Mi
hael J. Fis
her, and Albert R. Meyer. Separating nondeter-ministi
 time
omplexity
lasses. Journal of the ACM, 25(1):146{167, January1978.[Sha92℄ Adi Shamir. IP = PSPACE. Journal of the Asso
iation for Computing Ma
hin-ery, 39(4):869{877, 1992.[SHL65℄ R. E. Stearns, J. Hartmanis, and P. M. Lewis II. Hierar
hies of memory lim-ited
omputations. In Pro
eedings of the Sixth Annual Symposium on Swit
hingCir
uit Theory and Logi
al Design, pages 179{190. IEEE, 1965.[TV02℄ Lu
a Trevisan and Salil Vadhan. Pseudorandomness and average-
ase
omplexityvia uniform redu
tions. In Pro
eedings of the 17th Annual IEEE Conferen
e onComputational Complexity, volume 17, 2002.[Wil83℄ Robert E. Wilber. Randomness and the density of hard problems. In 24th AnnualSymposium on Foundations of Computer S
ien
e, pages 335{342, 1983.[�Z�83℄ S. �Z�ak. A Turing ma
hine time hierar
hy. Theoreti
al Computer S
ien
e,26(3):327{333, O
tober 1983.

20

