Hierarchy Theorems for Probabilistic
Polynomial Time

Lance Fortnow Rahul Santhanam
Department of Computer Science Department of Computer Science
Unwversity of Chicago University of Chicago
E-mail: fortnow@cs.uchicago.edu E-mail: rahul@cs.uchicago.edu
Abstract

We show a hierarchy for probabilistic time with one bit of advice, specifically we
show that for all real numbers 1 < « < 8, BPTIME(n®)/1 C BPTIMFE(n?)/1. This
result builds on and improves an earlier hierarchy of Barak using O(loglogn) bits of
advice.

We also show that for any constant d > 0, there is a language L computable on
average in BPP but not on average in BPTIME(n?).

We build on Barak’s techniques by using a different translation argument and by a
careful application of the fact that there is a PSPACE-complete problem L such that
worst-case probabilistic algorithms for L take only slightly more time than average-case
algorithms.

1 Introduction

Can we solve more problems given more time? This fundamental question has challenged
many complexity theorists since the field started. Hennie and Stearns [HS66] improving
on Hartmanis, Lewis and Stearns [SHL65] show a tight hierarchy for time on deterministic
multitape machines: For any reasonable time functions 77 and Ty with T;log(T3) = o(T})
there is a language computable in deterministic time 77(n) and not computable in time
Ty(n). We also have similar results for nondeterministic time (see [Coo72, SFM78, Z83]).

In this paper we study the question of a time hierarchy for bounded-error probabilistic
machines. The results for deterministic and nondeterministic computation have at their
core a diagonalization against all smaller time machines. We cannot directly do such a
diagonalization for probabilistic classes, since that will break the bounded-error promise
when we try to simulate a machine for which the promise does not hold.

Recently Boaz Barak [Bar02] found a different attack on the probabilistic time hierarchy.
He looks at the best probabilistic algorithms to compute an EXP-complete language and
using a translation argument can build a hierarchy based on these algorithms. However he
needs some nonuniform advice to describe an approximation of the running time of that best
algorithm. For each constant d > 1, Barak shows that there is a language in BPP/log(log(n))

but not in BPTIME(n?)/ log(n), and from this he derives a hierarchy theorem for probabilistic
polynomial-time machines using a(n) bits of advice, where log(log(n)) < a(n) < log(n), using
a standard argument.

To prove our first main result, we modify Barak’s translation argument. By requiring
the pad to conform to a certain format, we can bring the amount of advice required down
to one bit, which essentially tells us whether the pad is a good approximation of the time
taken by the optimal algorithm.

Theorem 1. For each constant d > 1, BPTIME(n?)/1 C BPP/1.

Using standard translation arguments, from Theorem 1 it follows that for each 1 < a < f3,
BPTIME(n®)/1 C BPTIME(n?)/1.

We attempt to eliminate the advice using an additional idea: for a certain PSPACE-
complete language L, we can modify an optimal probabilistic algorithm so that the average-
case time of the algorithm is smaller than the worst-case time by at most a polynomial factor.
This allows us to estimate the running time, and we can compare this estimate directly with
the pad, rather than needing to refer to the advice.

There are two obstacles we run into when we work out his approach. The first obstacle
is that we do not know how to use the translation argument when the best algorithm for L
runs in polynomial time. However, in this case we can use diagonalization to directly obtain
a hierarchy for average-case probabilistic polynomial time.

The second obstacle is that since the estimate of the running time we obtain isn’t com-
pletely precise, the resulting simulation may not satisfy the bounded-error promise required
of a BPP machine. We get around this by randomly perturbing the estimate depending on
the input, which ensures that the promise is satisfied for most inputs. As a consequence,
we again get a hierarchy for average-case probabilistic polynomial time in the case when the
best algorithm for L does not run in polynomial time. Thus we obtain unconditionally a
hierarchy theorem which we formalize as:

Theorem 2. For each constant d > 1, there is a constant a > 0 such that heur,_,-a« —
BPTIME(n?) C heur,_, - — BPP.

1.1 Related Work

Unconditionally, we know very little about probabilistic hierarchies beyond the straightfor-
ward observation that BPTIME(o(t)) € BPTIME(2") for time-constructible ¢, which follows
from the hierarchy for deterministic time and the fact that probabilistic time ¢ can be sim-
ulated in deterministic time 2'. The best-known hierarchy [KV87] uses the above result
and a translation argument to achieve slightly stronger parameters. However, we still don’t
know whether there is a language decidable in probabilistic quasi-polynomial time but not
in probabilistic linear time. Under plausible complexity-theoretic assumptions, such as that
there is a language in E which does not have subexponential size circuits, or that the deci-
sion version of the Permanent is not in randomized subexponential time, a strict hierarchy
can be shown to exist for probabilistic quasi-polynomial time [IW97, TIW01, CNS99]. These
complexity-theoretic assumptions are generally believed to be very hard to prove; it is quite
possible that a hierarchy theorem for probabilistic polynomial time might be much easier.

Given the lack of success in establishing a hierarchy thus far, it is natural to ask about
the status of the question in a relativized setting. BPP = P relative to a random oracle
[BG81], hence there does exist an oracle relative to which there is a hierarchy. There has
been a lot of work towards constructing an oracle relative to which probabilistic polynomial
time does not have a hierarchy (see [FS89, FS97, RV01]). Since neither Barak’s nor our
methods relativize, this work is not directly relevant to the question of whether our methods
have the potential to achieve a hierarchy for fully uniform probabilistic polynomial time.

Subsequent to our work, Goldreich, Sudan and Trevisan [GST04] found a method to
derive a hierarchy theorem with one bit of advice directly from a hierarchy theorem with
< log(n) bits of advice under certain conditions. Their method, when used in conjunction
with Barak’s result, implies Theorem 1.

The organization of the rest of the paper is as follows: First we discuss some technical
preliminaries. Then we give a high-level overview of Barak’s proof, and sketch the ideas
behind our improvements. Finally, we present our modification of Barak’s algorithm and
our translation argument.

2 Preliminaries

2.1 Complexity Classes

We mostly use standard definitions of complexity classes, which can be found in [BDGS8S]
and [BDG90]. Our definition of probabilistic time-bounded classes is slightly non-standard,
however it is equivalent to the standard definition for “nice” time bounds ¢, such as t = n*
for a fixed constant k. We first define a notion of what it means for a time bound to be
“nice”.

Definition 3. A function t : N — N is said to be time-constructible if there is a determin-
istic Turing machine M such that on input 1", M halts within O(t(n)) steps and outputs the
value t(n).

We now proceed to our definition of bounded-error probabilistic time classes.

Definition 4. Let L be a language and let t : N — N be a function. We say that L €
BPTIME(t) if there is a probabilistic Turing machine M such that on all inputs x of length
n, with probability > 2/3, M halts within t(n) steps on input x and outputs L(x).

This definition is nonstandard in that the machine is only required to halt within #(n)
steps with high probability, rather than with probability 1. This will come in useful in our
construction of an optimal algorithm because we will only be able to guarantee that the
algorithm halts with high probability within a certain time bound. Note that our defini-
tion of probabilistic time classes is equivalent to the standard definition when ¢ is a time-
constructible increasing function, as we will be able to use the time-constructibility of ¢ to
implement a “timeout” mechanism which converts a machine halting with high probability
within time ¢ to a machine that halts with probability 1 within time ¢.

We also need to clarify the notions of advice and average-case decidability in the context
of probabilistic time classes.

Definition 5. Given functions s : N — N and t : N — N and a language L, L €
BPTIME(t)/s if there is a probabilistic Turing machine M and a sequence {y},,| y, |< s(n)
of strings such that for all inputs x of length n, with probability > 2/3, M halts within t(n)
steps on input < x, Yy > and outputs L(z).

BPTIME(t)/s is to be interpreted as the class of languages decided by bounded-error
probabilistic machines operating in time ¢ and taking advice of length s. Note that the
behavior of an advice taking machine M on input < x,y > where y # y,) may be arbitrary.
Our definition is different in this respect from the original definition of Karp and Lipton
[KL82|, which requires that the advice taking machine has acceptance probability bounded
away from 1/2 on all inputs even when the advice is incorrect. If Theorem 1 were to
hold under the Karp-Lipton definition of advice-taking probabilistic machines, a hierarchy
theorem for uniform probabilistic time would follow immediately.

Definition 6. Given a functiont : N — N and a language L, L € heury, — BPTIME(t) if
there is a probabilistic Turing machine M such that for all input lengths n, for at least a
fraction s of inputs x of length n, with probability > 2/3, M halts on input x within t(n)
steps and outputs L(z).

heur;—BPTIME(t) is to be interpreted as the class of languages decided by bounded-error
probabilistic machines in time ¢ on average with parameter s. We use the “heuristic” notion
of average-case complexity [Imp95]. The behavior of M on an input not belonging to the
“oood” set of inputs for which the average-case simulation works may be arbitrary.

2.2 Nice PSPACE-complete language

The proof of our hierarchy theorems proceeds via the construction of an optimal algorithm for
a PSPACE-complete language L, where an optimal algorithm in this context is a probabilistic
algorithm that is at worst polynomially slower than any probabilistic algorithm for L. In
order to carry through the proof of our result, we require the PSPACE-complete language L
to be paddable and instance-checkable - we define these two notions below.

Definition 7. A language L is said to be paddable is there is a deterministic polynomial-
time computable procedure P which given inputs x of length n and 1™ where m > n, outputs
a string of length m such that P(x,1™) € L iff x € L.

Intuitively, a language is paddable, if given a string x, it is possible to efficiently generate
arbitrarily long strings which behave the same as x as far as membership in the language L
is concerned.

Definition 8. [BK95] A language L is said to be instance-checkable if there is a probabilistic
polynomial-time oracle procedure I which, given an oracle P and an input x of length n, has
the following properties:

1. I outputs one of 3 values “07, “1” or “?” at the end of each computation path.

2. If P decides L correctly, I outputs L(x) with probability 1.

3. I outputs 1 — L(x) with probability at most 2" irrespective of the oracle P.

Intuitively, an instance checker for a language L tests whether a program P decides L
correctly on an input x or not. It follows from the proof of the IP = PSPACE [LFKN92, Sha92]
result that all PSPACE-complete problems have instance checkers, and it follows from the
proof of the MIP = NEXP [BFLI1] that all EXP-complete languages have instance checkers.

Thus far, the properties we require of the PSPACE-complete language L are similar to
the properties required by Barak of the EXP-complete language for which he constructs an
optimal algorithm. Indeed, the proof of Theorem 1 only uses these properties. For the proof
of Theorem 2, we require an additional property, namely that L be worst-case to average-
case reducible. Informally, this means that the existence of an machine M which for each n
decides L correctly with high probability over the uniform distribution on inputs of length
n implies the existence of a machine M’ which is at most polynomially slower than M and
decides L correctly on all inputs.

Building on ideas of Trevisan and Vadhan [TV02], we define a PSPACE-complete language
satisfying slightly stronger forms of the properties mentioned above, which are useful in the
construction of our optimal algorithm and in our proofs of correctness:

Theorem 9. There is a PSPACE-complete language L € DTIME(2?") and a linear-time
decidable set S C {0,1}* with the following properties:

1. (Paddability)

(a) There is a deterministic linear-time procedure P, which given x of length n and
1™ as inputs, where m > n, produces a string P(x,1™) of length n in S such that
x € L iff P(x,1™) € L.

(b) There is a deterministic linear-time procedure P,,, which given a string x € S of

length n as input, produces a string P,e,(x) € S of length < n such that x € L iff
Pey(z) € L.

2. (Instance-Checkability) L is instance-checkable with a checker I that only makes queries
to the oracle about strings of length n on any input x of length n.

3. (Worst-case to average-case reducibility)

(a) |SN{0,1}" =271

(b) There is a polynomial p and polynomial-time procedures q and f such that for
each integer n, for each input x € S of length n, for each integer 1 < i < p(n)
the distribution of q(i,z,r) over coin tosses r is uniform over S N {0,1}" and
L(z) = f(z,r, L(q(1,2,7)), L(q(2,z,7)) ...
L(q(p(n),z,7))) with probability at least 1 — 27X guver coin tosses r.

Proof. Tt is implicit in the work of Trevisan and Vadhan [TV02] that there is a PSPACE-
complete language L' € DTIME(2*") with the following properties:

1. L' has a worst-case to average-case reduction, with the queries at length n uniformly
distributed over {0, 1}".

2. L' is instance-checkable with an instance checker I' which, on input of length n, only
makes queries to its oracle about strings of length at most n.

From L', we define a language L with the stated properties. L is essentially L' “with
padding”. More precisely, for any integer i > 0, 0’1z € L' iff z € L.

It is not hard to see that Property 1 in the statement of Theorem 9 holds for L'. The
set S in the statement of the theorem can be taken to be {0'1z|i > 1}. Given an z of
length n such that x is of the form 0°12’, The procedure P(x,1™) simply outputs 07+ "1z’
Similarly, given a string of the form 071z’ as input where j > 1, P, outputs 1a'.

We can also define an instance checker I for L given the instance checker I' for L' such
that I only makes queries of the same length as its input. Whenever I’ makes a query to
its oracle, I pads the query up to its input length using the procedure P before asking the
query to the oracle. We also need to ensure that for heavily padded inputs, the probability of
outputting the wrong answer is exponentially small, but this can be done by just repeating
the simulation of I' a number of times depending on how heavily padded the input is.

As for the average-case to worst-case connection, uniform distribution of queries over
{0,1}" for L' translates directly to uniform distribution of queries over S for inputs in S for
L. OJ

Intuitively, procedure P in the statement of Theorem 9 is a padding procedure, and
procedure P,., is a “reverse padding” procedure, which when given a padded input, recovers
the original input. S is the set of non-padded inputs. Half the inputs of any given length
belong to this set, and the worst-case to average-case reduction works for inputs in this set.

3 Overview of techniques

3.1 Barak’s proof

Barak’s proof represents a completely new approach towards proving a hierarchy theorem
for probabilistic polynomial time. We sketch the ideas behind his proof here.

The critical idea of Barak is to find a language L with an optimal algorithm. An optimal
algorithm is a probabilistic algorithm for L that is only polynomially slower than the “best”
probabilistic algorithm for L. To be more precise, there is a constant ¢ such that if there
is a probabilistic algorithm solving L running in time ¢, then the optimal algorithm runs in
time O(#°). Thus if the optimal algorithm runs in time 7', L € BPTIME(T) — BPTIME(T'/¢)
for all ¢ > ¢. If T" were a constructible time bound, we could use a translation argument to
show that an appropriately padded version L' of L is in BPTIME(n¢') but not in BPTIME(n),
which implies a hierarchy theorem for probabilistic polynomial time.

The question of how to find a language L with an optimal algorithm still needs to be
addressed. Barak observes that any EXP-complete language has an optimal algorithm, indeed
any language with an instance checker has an optimal algorithm, and it follows from the rich
theory of probabilistically checkable proofs that all EXP-complete languages have instance
checkers.

Let Py, P,... be an effective enumeration of all probabilistic Turing machines (where
there is no guarantee that a machine in the enumeration is bounded-error). Fix an EXP-

6

complete language L and let I be an instance checker for L. Barak defines an optimal algo-
rithm A for L as follows: Given an input x, A successively runs I with oracles Py, P, ... Py,
on x, where f is some polynomially-bounded easily computable function. Whenever I asks
an oracle query to P;, A simulates P, to determine the answer. If I” returns a Boolean
value for some i, A outputs that value. If 17 returns “?”, A continues the simulation with
the next program in the enumeration. We have skirted the issue of how long A simulates
the machines P; - Barak’s algorithm actually runs in stages m = 1,2..., and at a stage m,
oracle queries to a program P; are simulated for m steps.

Given the properties of an instance checker, it is not hard to show that A is an optimal
algorithm for L. If P, is a probabilistic bounded-error algorithm for L which halts with high
probability after ¢ steps, then for large enough n (i.e., for n such that f(n) > e), P, will be
one of the oracles that A uses, and hence at stage m = ¢, A will halt with the correct answer
with high probability after simulating I with oracle P,. A has used at most ?poly(n) time
up to this stage, which is still polynomial in . Any incorrect program () can only contribute
an exponentially small error when [is run with () as oracle!, hence A solves L correctly and
halts within poly(t) steps with high probability.

As discussed before, an optimal algorithm implies a hierarchy theorem if the time bound
of the optimal algorithm is time-constructible. However, it seems to be hard to argue that
this is the case. Barak’s solution is to use an advice string of size log(log(n)) to represent
an approximation to the time taken by the optimal algorithm, in which case the translation
argument can be pushed through. We suggest more efficient solutions to this problem.

3.2 Owur improvements

We get our first improvement over Barak using a translation argument efficient with respect
to advice. We require that the pads conform to a specific format, which ensures that for
a given length m, there is at most one input length n such that inputs of length n can be
padded to length m. If this holds, then just one bit of advice is required to tell whether m is
a “good” length, meaning that the simulation of the optimal algorithm on inputs of length n
takes O(poly(m)) time. Of course, we also need to take care that the constraint we impose
on the pads doesn’t make the simulation of the optimal algorithm infeasible, but this isn’t
hard.

We do obtain a hierarchy theorem for probabilistic polynomial time with one bit of advice
using this translation argument. However, the value of the advice bit depends on the time
taken by the optimal algorithm, and it is not clear at all whether this function is easily
computable. For example, it might be the case that the optimal algorithm takes vastly
different times for different inputs of the same length. In such a case, it may not be easy to
estimate the worst-case time on a given input length. We do have some flexibility, though, in
designing our algorithm. It is well-known that there are PSPACE-complete problems? with

LA subtle but critical point is that we are now considering the probability over coin tosses of @ as well,
and () may not be bounded-error. However we may interpret () as a probability distribution over oracles each
of which causes I to output a wrong answer with exponentially small probability, and hence this property is
preserved when we take into account the coin tosses of () as well.

2For technical reasons, we use a PSPACE-complete language rather than an EXP-complete language as in

a worst-case to average-case connection, i.e., they are just as hard to solve in the average
case as in the worst case. This suggests that the average-case running time of an optimal
algorithm for a PSPACE-complete problem may be polynomially related to its worst-case
running time. We do not know if Barak’s algorithm has this property but we are able to
modify his optimal algorithm and impose some structure on it so that we obtain a version of
the worst-case to average-case connection. Specifically, we are able to design a probabilistic
polynomial-time procedure that produces a rough estimate of the worst-case running time
from estimates of a different but related quantity for random inputs.

However, it is still not clear whether this gains us anything since the estimate we obtain
is quite rough, and is moreover obtained probabilistically. We need another idea, which
involves the use of the randomness in the input itself to disambiguate the computation and
maintain the bounded-error promise with high probability in the case when the estimate
is too close to the length of the pad. Using the estimation procedure and this idea in
conjunction with our translation argument, we derive a hierarchy theorem for average-case
probabilistic polynomial time if the optimal algorithm does not run in polynomial time.

If the optimal algorithm runs in polynomial time, the fact that our problem is PSPACE-
complete implies that we can use a diagonalization technique to directly obtain a hierarchy
for average-case probabilistic polynomial time. Thus an average-case hierarchy theorem
holds for probabilistic polynomial time unconditionally.

4 QOur Results

4.1 An Optimal Algorithm

Let L be a PSPACE-complete language as in the statement of Theorem 9. Let [be an
instance checker for L and let ¢ and f be polynomial-time procedures implementing a worst-
case to average-case reduction for L, such that I and f both have error probability at most
274 on inputs of length n. We describe an optimal algorithm for L. The algorithm runs in
stages m = 1,2.... At stage m, for each machine M of description length 3loglog(m) (note
that there are at most (log(m))® such machines), we check to see if M™, i.e., M restricted
to m steps, is a good candidate for deciding L by running the worst-case to average-case
reduction for L on top of the instance checker. If M™ were indeed a good candidate, the
instance checker I would return a non-"7?” value with high probability on all instances of
length n and the worst-case to average-case reduction would give a correct answer with high
probability as well. If M™ is not a good candidate, we know by the properties of I that a
wrong answer is produced with very small probability, hence the bad candidate cannot affect
the performance of the algorithm by very much.

We describe the algorithm in Table 1.

For each n, let T'(n) be the minimum number ¢ such that for each i, 1 < 7 < n and for each
input of length i, with probability at least 1 —1/7, Algorithm OPTIMAL halts and produces
the correct answer within ¢ steps. Then L € BPTIME(T(n)). In order for the definition of
T'(n) to make sense, we need to ensure that such a number ¢ exists. For any x € S of length

[Bar02].

Algorithm OPTIMAL:
Input: String x of length n

1. Ifx & S, < Pey(r)

2. If |x| < log(n), run the natural deterministic exponential time
algorithm for L on z and exit.

3. Form=1,2... do:
4. For each probabilistic Turing machine M of size 3loglog(m) do:

(a) For j =1...log(n) do:
i. Run ¢ on = with randomly chosen r to generate queries
q(1,2,7),q(2,2,7) .. .q(|z|*, 2, 7).
ii. Fori=1...|z/F do:
A. Run I on ¢(i,z,r) with oracle M™, and if an answer

val is returned, guess(q(i,z,r)) < wval, otherwise
guess(i, x,r) is undefined.

iii. If guess(i,z,r) is defined for all i,1 < 7 < |z|, set
fi < f(z,r, guess(q(1,z,7)) ... guess(q(|z|*, z,1)))
(b) If f; is defined for all 1 < j < log(n), output the majority
value of the f;’s and exit all loops, else continue.

Table 1: Optimal Algorithm

i, such a number ¢ exists because a deterministic linear exponential-time machine deciding
L will eventually be tried by Algorithm OPTIMAL and OPTIMAL will return an answer
with high probability when it tries this machine. Moreover, the probability that a wrong
answer is output before this stage is exponentially small, since both the instance checker I
and the worst-case to average-case reduction f produce wrong answers with exponentially
small probability. Any z ¢ S of length ¢ is transformed to ' = P,.,(x) of length i’ < i.
Now the same argument as for x € S works and the fact that the worst-case to average-case
reduction is run log(i) times independently ensures that the probability of halting is at least
1 — 1/i. Indeed, since L € DTIME(2?"), this argument yields an explicit upper bound of 2"
for T

Now, we will consider two cases. The first is that T'(n) is polynomially bounded. We
will dispose of this case with a diagonalization argument. The other case is that T'(n)
is superpolynomial infinitely often. In this case, firstly we will show that OPTIMAL is
an optimal algorithm and hence there is a constant ¢ > 0 such that L € BPTIME(T) —
BPTIME(T)/2loglog(T). Next, we will show how to define, for each constant d, a padded
version of L that is decidable in BPP with just one bit of advice but is not in BPTIME(n?/ loglog(n)).
This will yield our Theorem 1.

4.2 The case L € BPP

First, note that by the PSPACE-completeness of L, if L can be decided in BPP, so can every
language in PSPACE.

Proposition 10. If L. € BPP, then PSPACE = BPP.

Next, we argue that if PSPACE = BPP, we obtain hierarchy theorems for probabilistic
polynomial time with one bit of advice and for average-case probabilistic polynomial time.
These arguments use the technique of diagonalization. The first argument is a straight-
forward diagonalization, where we observe that a “universal” language L, for probabilistic
polynomial-time machines is in PSPACE and that we can diagonalize in PSPACE, and hence
by assumption in BPP, against this language.

Lemma 11. Let d > 1 be a constant. If PSPACE = BPP, then BPP ¢ BPTIME(n?)/log(n).

Proof. We assume an enumeration of probabilistic machines for which the description
length of a machine M can be padded to any larger input length - it is not hard to guarantee
this property. Now we define L, as follows: the code < M > of a machine M belongs
to L, iff M accepts with probability < 1/2 when run for |[< M >|%*! steps on input <
M >. Given the paddability of description lengths, it is clear that for each language L' €
BPTIME(n?)/log(n), for large enough n, there is an input (namely, the code of the BPTIME
machine together with the advice padded to length n) on which L, differs from L'. Thus
L, ¢ i.0.BPTIME(n?)/log(n). On the other hand, it is not hard to see that L, € PSPACE,
and hence by assumption, L, € BPP. O

The second diagonalization argument, due to Wilber [Wil83] gives an average-case hier-
archy for BPP under the assumption PSPACE = BPP.

Lemma 12. Letd > 1 be a constant. If PSPACE = BPP, then BPP € heury/;—BPTIME(n?).

Proof. 1t is known [Wil83] that for every d > 1, there is a language L, such that L, €
DSPACE(n®"') and L4 ¢ heurs;s — DSPACE(n?). By assumption, L, € BPP and since
heury s — BPTIME(n®) C heury; — DSPACE(n?), Ly € heursy;; — DSPACE(n?), proving the
theorem. 0

4.3 Proof of Optimality

We need to show that Algorithm OPTIMAL is no worse than polynomially slower than
any probabilistic algorithm for L. The idea behind the proof is that if M is a probabilistic
algorithm for L which with high probability halts and outputs the correct answer within ¢
steps, then the instance checker I when run on oracle M* would output the correct value for
an instance with high probability, and the worst-case to average-case reduction would also
work with high probability. Thus, the time required for A to output an answer with high
probability is bounded above by the time required to get to the simulation of M" in stage t,
which is bounded above by some polynomial in ¢.

We actually need to show that Algorithm OPTIMAL is no worse than polynomially
slower than any probabilistic algorithm taking a small amount of advice, but this does not
introduce too many additional complications.

10

Lemma 13. If L ¢ BPP, there is a constant ¢ > 0 such that for each constant b > 0,
L ¢ BPTIME(n® 4+ T¢)/21oglog(T).

Proof. Fix b. We pick ¢ = 1/4. Let M be a probabilistic machine of description size
2loglog(T) + O(1) which, for each input = of length n, with probability at least 1 — 1/n
halts and outputs the correct answer L(x) within T 4+ n® steps. We derive a contradiction
for our value of e.

Since L ¢ BPP, there is an infinite set .J of input lengths such that for all n € J, T'(n) >
nbte 4 pe/(0=29) where o« > 0 is a constant to be specified later. We shall show that
M cannot satisfy our assumption for inputs with input length in J. Consider an input
x of length n € J. We can assume without loss of generality that z € S (otherwise we
use the same argument with © < P,,(z)). By running the machine M 221981 times
independently and taking the majority vote, we can define a machine M; with description
length 2loglog(7T) + loglog(n) + O(1) < 3loglog(T¢) which within T¢n? + n®*? steps, halts
and outputs the correct answer with high probability. Thus, when Algorithm OPTIMAL
reaches stage T°n? + n’*2? and runs the worst-case to average-case reduction on top of the
instance-checking routine I with oracle M1T6”2+”b+2, it halts and outputs the correct answer
with probability at least 1 — 273" (since the probability of I outputting a wrong value or “?”
on any of the n* instances of length n queried by I and the probability that the function f
will return the wrong value are both at most 2-*"). Also, the probability that Algorithm
OPTIMAL has output a wrong value before this stage is at most 272", hence we have
that Algorithm OPTIMAL halts and outputs the correct answer with probability at least
1—2"">1—1/n within time (7% + n®)n® for some constant c. We have a contradiction
since (T +n’)n* < Tifn € J. O

4.4 Proof of Theorem 1

In this section, we prove Theorem 1. We define a padded version L,,4 of the language L,
where the pad represents the running time of algorithm OPTIMAL on the underlying input,
such that L,,q € BPP/1 but L,.q & BPTIME(n?)/loglog(n). Let € be a constant as in the
statement of Lemma 13.

Lypag = {x#1Y|y = 2% for some 2,2 € L,y > |z|,y + |z| + 1 > T(|z])/**}

First, we show L,,s € BPP/1. The basic idea is that by requiring the pads to conform
to a specified structure, we make do with one bit of advice to tell us whether the length of
the pad is sufficient to carry out the simulation of Algorithm OPTIMAL.

Lemma 14. L,,4 € BPTIME(n3¥/¢)/1

Proof. We construct a probabilistic polynomial-time machine M operating in time n3%

and taking one bit of advice which accepts L,,q. The basic idea is that given an input of the
form x#1Y with |z| + 1+ y = m, M first checks if the input has a valid form. This can be
done in quasilinear time. If the input does not have a valid form, M rejects. Otherwise, let
b, be the advice bit for M at length m. M accepts iff b,, = 1 and Algorithm OPTIMAL
halts and accepts on z within n*¥¢ time steps.

11

First we specify what sequence of advice bits b;,7 = 1...00 M receives and then we
show that for any m and for any 2’ of length m, 2" € L4 iff M accepts 2’ with advice b,,.
Consider any input length m. Call m “good” if m = n,,, + y,,, + 1 for some n,,, y,, > 0 such
that y,, = 2™ for some z,, > 0 and y,, > n,, + 1. Thus y,, > m/2. If m is good, then n,,
and y,,, are determined uniquely. For suppose not, and let n,, # n,, and y/, be such that
nA Y = N+ Y, Yl = 92 for some z/ > 0andy, >n! . Without loss of generality
Yl > ym. We have that m >y > y% > m?/4, which is a contradiction for m > 4.

Let T'(ny,) = T (nm)*?. Now we specify the advice bits. If m is not good, b, = 0. If m
is good, b, = 1 iff m > T"(n,,).

Next we fix an m and show that for 2’ of length m, 2’ € L,,q iff M accepts z'. The
forward direction follows immediately from the specification of the advice bits. For the
reverse direction, we show that if 2/ ¢ L,.4 for input 2’ of length m, then M halts within
the required time bound and rejects z’' with probability close to 1. If 2’ is not of the form
x41Y for some y of the form 22" such that y > |z|, M rejects with probability 1 since the
deterministic test that the input has a valid form fails. Otherwise, let x' be of the form
219, where x is of length n, y,, = 22" for some integer 2, > 0, and y > |z|. There are
two cases: (1) T"(n) > m, and (2) T'(n) < m. In case (1), the advice bit b is 0 and hence M
rejects with probability 1. In case (2), M has enough time to simulate Algorithm OPTIMAL
on x and hence rejects with high probability when x & L. 0

Next, we show Ly.q & BPTIME(n?)/loglog(n) if the optimal algorithm for L does not run
in polynomial time. The idea here is that if L,,q € BPTIME(n?)/loglog(n) via an advice-
taking probabilistic machine M, we can solve L in time T + poly(n) with a small amount
of advice. The advice is interpreted as coming in two parts. The first part of the advice
suggests a “good” input length m to which we pad the input, and we then simulate M on
the padded input using the second part of the advice as advice to M. The total amount of
advice used is < 2loglog(T’), and thus we obtain a contradiction to Lemma 13.

Lemma 15. If L. & BPP, L,,q ¢ BPTIME(n?)/loglog(n).

Proof. The proof is by contradiction. Assume L,,q € BPTIME(n?)/loglog(n). Let M be
an advice-taking probabilistic machine running in time n¢ and accepting Ly,q. We construct
an advice-taking probabilistic machine M’ running in time n3¢ +T(n)¢ with 2loglog(T) bits
of advice and accepting L, which is a contradiction to Lemma 13.

M’ acts as follows: given an input x of length n, it interprets the first loglog(n) bits of
its advice as an encoding of the smallest z such that 22° > n and 2% +n +1 > T(n)"/3¢. It
then pads its input x with 12 and runs M on the padded input 2’ = x#lﬂ, interpreting
the second part of its advice as the correct advice string for M on the padded length. It
outputs the result of the simulation of M on z’. Note that |2'| < maxz(n®,T¢). Thus M’
uses time at most n3¢ + T'(n) on x. Also, if both parts of the advice string are correct, the
simulation has enough time to run, and hence M’ decides correctly whether z isin L. [

If L € BPP, Proposition 10 and Lemma 11 imply Theorem 1. If L ¢ BPP, Lemma 14 and
Lemma 15 together imply Theorem 1. Thus Theorem 1 holds unconditionally. The existence
of a hierarchy theorem for probabilistic polynomial time with one bit of advice follows from
Theorem 1 by a standard translation argument.

12

4.5 Estimation of Running Time

In this subsection, we show that there is an efficient procedure estimating the running time
of Algorithm OPTIMAL to within a polynomial factor with high probability. This is where
we reap the advantage of running a worst-case to average-case reduction on top of the
instance checking. Intuitively, we can get a rough estimate of the time required to decide
L by estimating the probability that the instance checker I returns a non-"?” value. The
worst-case to average-case reduction ensures that if for some machine M there is some input
x of length n such that there is a significant (i.e., at least inverse polynomial) probability
of not getting an answer for z within time ¢ after running I with M¥P°%(™) as oracle and
then running the worst-case to average-case reduction on top, then for at least a polynomial
fraction of the inputs of length n, there is a significant chance that the instance checker will
return a “?” value when it is given M¥P°%(") as oracle.

The proof of correctness of our estimation procedure requires standard Chernoff bounds
([AS92]) as stated below:

Proposition 16. Let Y;...Y,, be independent random variables with Pr(Y; = 1) = p and
Pr(Y; =0) =1—p for eachi. LetY =Y.' | Y;. Then Pr(Y > np+a) < e—20*/n o
Pr(Y <np —a) < e @12,

Lemma 17. There is a probabilistic procedure ESTIMATE and constants a and ¢ such that
ESTIMATE, when given an integer n as input, with probability at least 1— 1/2”2, halts within
T(n)n® steps and outputs a number Tog such that T'(n)/n® < Tog < T(n)n®. Moreover, there
is at most one number T4 such that |Pr(Tes < Thia) — Pr(Tesy = Thia)| < 1/4Tn.

Proof. We define some notation that will be used in the proof of correctness of the procedure
for estimation of the running time. Fix an input length n. An ezecution is a pair (m, M)
consisting of a running time m and a machine M of description length < 3loglog(m). An
input x of length n is said to be (m,M)-good if the probability that IM" returns a “?” value
on x is at most 1/nf™2. The execution (m, M) is said to be n-good if at least a fraction
1 — 1/(n**?) of the inputs of length n are (m, M)-good.

Let the running times of procedures I, q and f in Algorithm OPTIMAL be bounded by
n™,n" and n'? respectively. Let a = 3(k +r1 + 2 + €), and ¢ = 16k + 3ry + 3ry + 8.

The procedure ESTIMATE works as follows: It runs the following process 2n? times
independently. In the rth run, 1 < r < 2n?, it first sets m = 2. For each machine M of
description length < 3loglog(m), for each log(n) < i < n, it estimates whether the execution
(m, M) is i-good by generating i***2 random strings z; ... x;sk+2 of length ¢ and estimating
whether at least i%¥+2 — "% /2 of these strings are (m, M)-good. For estimating whether a
string z; of length 7 is (m, M)-good, it runs I™" on x; ***? times independently and checks
whether at least i%*2 — j7% /2 of these runs yield a value that is not “?”. If there is an
M of description length < 3loglog(m) such that (m, M) is estimated to be i-good for all
log(n) < i < n, ESTIMATE sets t, < mn®? and begins the r + 1th run. If there is no such
M, ESTIMATE sets m < 2m and repeats the estimation process within the rth run.

Let T be the median of the values ¢,,7 = 1 < 2n?. ESTIMATE outputs 7., where T,

is an integer chosen uniformly at random in [Tyn—2a/3, Tyn?*/3]

13

We need to show that with high probability, ESTIMATE halts within 7'(n)n® steps and
neither overestimates nor underestimates 7'(n) by more than a n® factor. First we show that
for each r,1 < 7 < 2n?, with probability at least 1 — 1/2n, t, < T(n)n®?. This implies
that with probability at least 1 — 27"+, Ty < T'(n)n®?® which implies T,y < T(n)n®. Fix
r such that 1 <7 < 2n?. Let M be a machine implementing algorithm OPTIMAL. Define
a modified version M, of M which runs M 2/?"°¢™1 times independently for 2/
steps and outputs the majority value of these runs if at least one of these runs produces
a value, otherwise it outputs an arbitrary value. The description length of M, is at most
|M| + loglog(T'(n)) + loglog(n) + O(1), which is at most 3loglog(7'(n)), since T'(n) > n.

By applying the bounds of Proposition 16, we see that the success probability of M,, on any
[T(n)]+[2log(n)]
string of length at most n is at least 1 —27", and hence the probability that M)

produces a non-"?" value is at least 2 "*!. Again by applying the bounds of Proposition
16, for any given i > log(n) the probability that the execution X = (2/18(T(m)I+[2log(n)] "pp
passes all the tests of the rth run of procedure ESTIMATE is at least 1 — 1/n?. By a union
bound, the execution X passes all the tests for all log(n) < i < n with probability at least
1—1/n2 Thus t, < 27 (n)n"+* 4 pr2tk 4 pe < T(n)pm1Hr2terk = T(n)n®/? with probability
at least 1 — 1/n?. Also note that the time spent by procedure ESTIMATE in the rth run
until it finishes all tests for execution X is at most T'(n)n'6k+ritr2tets and thus the total
time for all runs is at most T'(n)n®.

The argument that ESTIMATE does not underestimate 7'(n) is more complicated. Again
fix an r such that 1 < r < 2n% We show that with probability at least 1 — 1/2n,
ty = T(n)n~*3, which implies Ty > T'(n)n %3 with probability at least 1—1/2""+! and hence
T, > T(n)n~? with at least that probability. Define I(n) = T'(n)/n%/3. Assume for the pur-
pose of contradiction that with probability greater than 1/2n, t, < I(n) = T(n)/nmHr2tetk,
There are at most n* executions (m, M) tried by the procedure ESTIMATE in the rth
run(since only values of m which are powers of 2 are tried, and for each such value m, at
most (log(m))? machines M are considered), hence there is an execution (m, M) such that
m < I(n) and (m, M) is i-good for all log(n) < i < n with probability at least 1/2n° over
the coin tosses of ESTIMATE. Fix such an execution (m, M).

We first show that the probability that an input of length i is (m, M)-good is at least
1 — 1/i**2 for each log(n) < i < n. Assume, to the contrary, that this probability is less
than 1 — 1/i**2. We show that then the probability that ESTIMATE estimates (m, M) to
be i-good is less than 1/2n°. By the Chernoff bounds of Proposition 16, the probability
that a string of length i is estimated to be (m, M)-good if it is not (m, M)-good is at most
1/n% if i > log(n). Again by Proposition 16, the probability that (m, M) is estimated to be
i-good when the fraction of strings of length 4 that are (m, M)-good is less than 1 — 1/ik*2
is at most 1/n6. Hence the probability that ESTIMATE estimates (m, M) to be i-good is
at most 2/n% < 1/2n® for n large enough , which is a contradiction.

Let m' = mn"t* 4 nm2+k 4+ ne. Next we show that if the probability that an input of
length 4 is (m, M)-good is at least 1 —1/i¥+2 for each log(n) < i < n, then T'(n) < m/, which
is a contradiction if m < I(n). We need to show that under the assumption, Algorithm
OPTIMAL takes at most time m' on every input of length at most n. Let x of length i be
the input of length < n on which Algorithm OPTIMAL takes maximum time. It cannot
be the case that i < log(n), since Algorithm OPTIMAL takes at most time n on inputs

14

of length < log(n). We can assume without loss of generality that = € S (since if x € S,
Algorithm OPTIMAL runs instead on an equivalent input in S which is computed from =z
in linear time). Since S N {0,1}* = 2'°! by Theorem 9, the probability that an input of
length i in S is (m, M)-good is at least 1 — 1/2i*T'. Consider the behavior of algorithm
OPTIMAL during execution (m, M) on input z. It follows from the form of the average-case
to worst-case connection for L stated in Theorem 9 that queries which are not (m, M)-good
appear on at most a fraction 1/2i of computation paths. For computation paths on which
only (m, M)-good queries appear, with probability at least 1 — 1/2i over the coin tosses of
I, the correct answer is output within time mi" % 4+ ¢"2% 4 ¢ < m' since ¢ < n. Thus with
probability at least 1 — 1/i, Algorithm OPTIMAL halts and outputs the correct answer on
x, which implies T'(n) < m’, and hence a contradiction.

Now that we have established that ESTIMATE outputs a good approximation to T with
high probability, we need to show that the distribution of values output by ESTIMATE is
“smooth”. The smoothness property we require, roughly speaking, is that the distribution
has at most one median - this will come in useful in our proof of Theorem 2.

Let T,,iq be the least number such that |Pr(Tes; < Trnig) — Pr(Test = Timia)| < 1/4Tn".
We show that in this case, Pr(T.s = Tynia) > 1/4Tn%, which implies that there is no other
number 7" such that |Pr(T.y < T" — Pr(T.s > T")| < 1/4Tn".

Note that the fact that ESTIMATE is a good approximator of 7" with high probability
implies that T,,;4 € [T/n®, Tn®]. We consider 3 cases - (1) Tiq € [T/n%3, Tn3], (2) Tyia €
[Tn®3, Tn?), and (3) Tyig € [T/n® T/n®?]. In case (1), Pr(Ty € [T/n®3,Tn*?] > 1-1/2"
as established before, and Pr(T., = Tpuia|Ty € [T/n%3,Tn%/3]) > 1/Tn® by the definition of
ESTIMATE and the assumption on the range of T},;4, hence Pr(T = T,,4) > 1/2Tn".

Now we turn to case (2), and the proof for case (3) will follow by a symmetrical argument.
Pr(Test > Tmzd) - Pr(Test > Tmid|T1 2 Tna/3)P7"(T1 > Tna/S) + Pr(Test 2 Tmid‘Tl <
Tn3)Pr(Ty < Tn*?) < 1/2% 4 Pr(Toy = Tmia)Tn®, which implies Pr(Thy = Tinia) >
(1/2 — 1/2%)1/Tn®, and thus Pr(T.y = Tmiq) > 1/4Tn® when n > 4. O

4.6 Proof of Theorem 2

In this section, we outline a proof of Theorem 2. The proof relies on the ability to estimate
the running time of Algorithm OPTIMAL on inputs of length n, as guaranteed by Lemma
17, as well as the translation argument with pads of a fixed structure utilised in the proof
of Theorem 1.

As in the proof of Theorem 1, we consider 2 cases. In the case that L € BPP, Proposition
10 and Lemma 12 imply Theorem 2 .

Lemma 18. If L € BPP, then BPP ¢ heury/; — BPTIME(n?).

In the case that L ¢ BPP, we first need a stronger version of Lemma 13. The proof of
the stronger version is identical to the proof of Lemma 13, except that we additionally use
the fact that L has a worst-case to average-case reduction.

Lemma 19. If L ¢ BPP, there are constants € > 0 and a > 0 such that for all b > 0,
L & heur,_,-« — BPTIME(n” + T¢)/2loglog(T).

15

Proof. The proof is by contradiction, and is almost identical to the proof of Lemma 13.
The only change is that given a machine of size 2loglog(T") + O(1) deciding L on average on
inputs of length n in time T ,we first transform it into a machine of size 2 loglog(T) + O(1)
operating in time T“poly(n) and deciding L correctly on all inputs of length n, using the
worst-case to average-case reduction for L. It is sufficient to pick a as in the statement of
Lemma 17 to derive a contradiction (where, as before, n* is the number of queries made by
the worst-case to average-case reduction for L on inputs of length n). 0

Let a be as in the statement of Lemma 17. We define a language L,y which is a
padded version of L such that Ly,s € heury ,-o — BPP — heur; ,-« — BPTIME(n?). First
we require some notation. Given an integer m, there is at most one integer n < m/2 such
that m = n + 22" for some integer z. Call m “good” if such an integer exists; denote
the corresponding integer by n,, and the corresponding z by z,. For each good m, let
H,, : {0,1}™ — {0,1}"" be the function mapping each string of length m to the n,,-bit
prefix of the string. Intuitively, what we are doing here is trying to use H,, to define a
padded language so that for any “good” length, there are no “irrelevant” strings, unlike
in the proof of Theorem 1 where any string not in the specified format was irrelevant and
could be rejected. Interpreting u € {0,1}™ as the integer in [1,2™] which is its position in
the lexicographical order of m-bit strings, we define shift(u) = [u(m*® — m®)/2™|. Let
a =6(d+1)/e. Let Tpia(n,y,) be the median of the distribution of estimates for the running
time induced by the procedure ESTIMATE in the statement of Lemma 17.

Now we are ready to define L,,q:

Lyear = {u| |u| is good, H,(u) € L, |u|* + shift(u) = Thnia(nju)}

The definition of L,,q is a little complicated, so we try to give some intuition for it. The
definition is similar to the definition of L,,4 in Section 4.4, in that the length of the pad is
compared to a quantity based on the running time of the optimal algorithm. The difference
in the present case is that this quantity depends on the input and not just on the input
length - essentially, it is a random perturbation of the corresponding quantity in Section
4.4, where the randomness is derived from the input itself. The reason we add the random
perturbation is that we probabilistically compute an approximation to the quantity ourself
(unlike in the proof of Theorem 1 where the advice bit told us if the pad was good), and the
approximations computed on different probabilistic paths may be evenly spread about the
length of the pad, resulting in the BPP-promise being destroyed. Since we add a different
random perturbation to the quantity for each input and then compare to the length of the
pad, for most of the inputs, the approximations of the randomized quantity will not be evenly
spread about the length of the pad, and hence for most inputs the BPP-promise will not
be destroyed. The probabilistic approximation of the quantity is done using the procedure
ESTIMATE in the proof of Lemma 17. Once we know the pad is good, we simulate the
optimal algorithm to decide whether to accept or reject the input.

Lemma 20. If L. & BPP, then Ly,a € heury ,—«—BPP but Lyys & heur; ,-«—BPTIME(n?).

Proof. We show that Lya € heur; ,,—a — BPTIME(m3et3etet) but L0 & heury p,-a —
BPTIME(1m%).

We show the positive inclusion first. We define a probabilistic Turing machine M ac-
cepting Ly, in time m3e@t3e+e4 on average. Given u of length m, M first determines if m

16

is good. This check can be done in linear time. If m is not good, M rejects. Otherwise, M
determines n,, and x = H,,(u). If n,, <log(m)/3, M runs Algorithm OPTIMAL on z and
accepts if and only if OPTIMAL accepts within the allotted time. If n,, > log(m)/3, M runs
the procedure ESTIMATE in the proof of Lemma 17 f(m) = m?®*2¢+1 times independently
on input n,,. If there is a run on which ESTIMATE does not halt within time m®*tetc M
rejects. Otherwise, let T,y ; be the value output by ESTIMATE on run i,1 < ¢ < f(m). M
carries out the Estimate Comparison Test - it computes m® + shift(u) and checks if this
value is at least the median of the values Tpy;,7 = 1... f(m). If this test fails, it rejects,
otherwise it simulates Algorithm OPTIMAL for T, time steps on x and accepts if and only
if OPTIMAL does.

We need to prove that for at least a fraction 1 — m™ of strings of length m, M accepts
u iff u € Lyee. First note that if m is not good, then M rejects on all strings of length m,
hence we only need to consider the case when m is good.

Let T = T(ny,) and Tyig = Toia(nm). If ny, < log(m)/3, since T' < 26198("m) < 2 there
is enough time for M to simulate OPTIMAL and thus for each u of length m, M accepts u
iff ue Lpad’-

Now assume n,, > log(m)/3. By Lemma 17, with probability at least 1 — 1/2"n >
1-— 1/m10g(m)/g, ESTIMATE halts in time Tn¢, and outputs a value T, such that T/n? <
Test < Tnf . We consider 2 cases - (1) T'> m®** and (2) T' < m***e,

If case (1) holds, for each u of length m, m® + shift(u) < m* < T/m* < T4, and thus
u & Ly,a. We show that for each u of length m, M rejects u. If there is an i, 1 < i < f(m)
such that Tis,; is not defined, then M rejects by definition. Conditional on T¢; being
defined for all 1 < i < f(m), the Estimate Comparison Test fails with probability at least
1 — 1/mSoe(m) “and hence M rejects with probability at least 2/3, assuming m is large
enough.

Now assume that case (2) holds. In this case, with probability at least 1 — mStlos(m)
Testi is defined for all 1 < ¢ < f(m). Given that all the T, ; are defined, by Lemma 17
and the Chernoff bounds of Proposition 16, with probability at least 1 — m™ over strings
of length m, the Estimate Comparison Test accepts with probability at least 1 — e™™ if
m* + shift(u) > Tyiq and rejects with probability at least 1 — e ™ if m® + shift(u) < Thia-
If the Estimate Comparison Test accepts with probability at least 1 —e~"", by the assumption
on T, there is enough time to simulate Algorithm OPTIMAL on input « = H,,(u), and hence
M accepts with probability at least 2/3 if x € L and rejects with probability at least 2/3 if
x ¢ L. If the Estimate Comparison Test rejects with probability at least 1 —e™™, M rejects
with probability at least 2/3. In either case M accepts u iff u € L,q0. Thus we have shown
that with probability at least 1 —m™“ over strings u of length m, M accepts w iff u € L.

The proof of the negative inclusion is similar to the proof of Lemma 15. We assume L,,¢ €
heur,_,,-« — BPTIME(m?) and show that it follows that L € heur;_, -« — BPTIME(T* +
n2d+1) 4 p2(d+alay /9 1oglog(T), which is a contradiction to Lemma 19. Let M be a proba-
bilistic Turing machine deciding L,.s on average in time m?*! with error probability 9~ m)
We define a probabilistic advice-taking machine M’ taking < 2loglog(T") bits of advice,
operating within time 7 and accepting L on average. Given an input z of length n, M’
uses its advice to determine a good length m such that m® > Tn® > T,,;4. This requires at
most 2 log(log(T")) bits to specify. It then generates a random string u of length m such that

17

H,,(u) = z, and outputs the majority value of n independent runs of M on u. The time
taken by M' is at most T3@+1)/ap3dtlala 4 p3d+1l) e 4 p3ld+l) 4 pbld+i)a/a
We need to show that M’ decides L correctly on at least a 1 — n™=“ fraction of inputs of
length n. For each z of length n, let p, be the fraction of inputs u of length m such that
x = H,,(u) and M decides correctly whether u € L,,». By the choice of the advice string,
> sefoayn P=/2" 21— m~%, which implies that for at least a 1 — 4/m” fraction of strings
x of length n, p, > 3/4. Since m > 2n, this means that for at least a 1 — n~“ fraction of
strings x of length n, M" accepts = with probability at least 2/3 if x € L and rejects x with
probability at least 2/3 if x ¢ L.
OJ

From Lemma 18 and Lemma 20, we obtain Theorem 2 unconditionally.

5 Open problems

The primary open problem, of course, is to prove a hierarchy theorem for completely uniform
probabilistic polynomial time. But there are numerous other questions, such as obtaining
an “almost-everywhere” version of our hierarchy theorem for probabilistic polynomial time
with advice, or proving an analogous theorem for zero-error probabilistic classes.

It would be interesting to see whether similar ideas could be useful in understanding
other promise classes, such as MA or NP N coNP.

On a more general note, there are perhaps further interesting connections between the
theory of randomness, the theory of average-case complexity, and the theory of proof systems,
which could lead to new insights and techniques.

6 Acknowledgments

We thank Dieter van Melkebeek for several enlightening discussions and Nanda Raghunathan
for helpful comments on an earlier version of the paper. We also thank Madhu Sudan for
telling us about his result with Goldreich and Trevisan [GST04], and Adam Klivans for a
useful discussion.

References

[AS92] Noga Alon and Joel H. Spencer. The Probabilistic Method, with an appendiz on
open problems by Paul Erdos. John Wiley & Sons, 1992.

[Bar02] Boaz Barak. A probabilistic-time hierarchy theorem for “Slightly Non-uniform”
algorithms. Lecture Notes in Computer Science, 2483:194 208, 2002.

[BDGS88] José Luis Balcazar, Josep Diaz, and Joaquim Gabarrd. Structural Complezity 1.
Springer-Verlag, New York, NY, 1988.

18

[BDGO]

[BFLI1]

[BGS1]

[BK95]

[CNS99]

[CooT2]

[FS89]

[FS97]

[GST04]

[HS66]

[Imp95]

[TW97]

[TWO1]

José Luis Balcazar, Josep Diaz, and Joaquim Gabarrd. Structural Complexity 2.
Springer-Verlag, New York, NY, 1990.

Laszlé Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential
time has two-prover interactive protocols. Computational Complexity, 1:3-40,
1991.

Charles Bennett and John Gill. Relative to a random oracle A, P4 # NP4 +#
coN P4 with probability 1. SIAM Journal on Computing, 10, 1981.

Manuel Blum and Sampath Kannan. Designing programs that check their work.
Journal of the Association for Computing Machinery, 42:269-291, 1995.

Jin-Yi Cai, Ajay Nerurkar, and D. Sivakumar. Hardness and hierarchy theorems
for probabilistic quasi-polynomial time. In Proceedings of the Thirty-First Annual
ACM Symposium on Theory of Computing (STOC’99), pages 726735, New York,
May 1999. Association for Computing Machinery.

Stephen A. Cook. A hierarchy for nondeterministic time complexity. In Confer-
ence Record, Fourth Annual ACM Symposium on Theory of Computing, pages
187-192, Denver, Colorado, 1-3 May 1972.

Lance Fortnow and Michael Sipser. Probabilistic computation and linear time.
In Proceedings of the Twenty-First Annual ACM Symposium on Theory of Com-
puting, pages 148 156, 1989.

Lance Fortnow and Michael Sipser. Retraction of “Probabilistic computation and
linear time”. In Proceedings of the Twenty-Ninth Annual ACM Symposium on
Theory of Computing, page 750, 1997.

Oded Goldreich, Madhu Sudan, and Luca Trevisan. Personal communication.
2004.

F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape Turing ma-
chines. Journal of the ACM, 13(4):533-546, October 1966.

Russell Impagliazzo. A personal view of average-case complexity. In Proceedings
of the 10th Annual Conference on Structure in Complexity Theory, pages 134-147,
1995.

Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential
circuits: Derandomizing the XOR lemma. In Proceedings of the 29th Annual
ACM Symposium on the Theory of Computing, pages 220 229, 1997.

Russell Impagliazzo and Avi Wigderson. Randomness vs time: derandomiza-
tion under a uniform assumption. Journal of Computer and System Sciences,
63(4):672 688, 2001.

19

[KL82|

[KV87]

[LFKN92]

[RVO01]

[SFM78]

[Sha92]

[SHL65]

[TV02]

Richard Karp and Richard Lipton. Turing machines that take advice.
L’Enseignement Mathématique, 28(2):191-209, 1982.

Marek Karpinski and Rutger Verbeek. On the monte carlo space constructible
functions and separation results for probabilistic complexity classes. Information
and Computation, 75, 1987.

Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic

methods for interactive proof systems. Journal of the Association for Computing
Machinery, 39(4):859-868, 1992.

Robert Rettinger and Rutger Verbeek. Monte-carlo polynomial versus linear time
— the truth-table case. Fundamentals of Computation Theory, 13, 2001.

Joel 1. Seiferas, Michael J. Fischer, and Albert R. Meyer. Separating nondeter-
ministic time complexity classes. Journal of the ACM, 25(1):146-167, January
1978.

Adi Shamir. IP = PSPACE. Journal of the Association for Computing Machin-
ery, 39(4):869-877, 1992.

R. E. Stearns, J. Hartmanis, and P. M. Lewis II. Hierarchies of memory lim-
ited computations. In Proceedings of the Sizth Annual Symposium on Switching
Circuit Theory and Logical Design, pages 179-190. IEEE, 1965.

Luca Trevisan and Salil Vadhan. Pseudorandomness and average-case complexity
via uniform reductions. In Proceedings of the 17th Annual IEEE Conference on
Computational Complexity, volume 17, 2002.

Robert E. Wilber. Randomness and the density of hard problems. In 24th Annual
Symposium on Foundations of Computer Science, pages 335-342, 1983.

S. Zak. A Turing machine time hierarchy. Theoretical Computer Science,
26(3):327-333, October 1983.

20

