
Hierarhy Theorems for ProbabilistiPolynomial TimeLane FortnowDepartment of Computer SieneUniversity of ChiagoE-mail: fortnow�s.uhiago.edu Rahul SanthanamDepartment of Computer SieneUniversity of ChiagoE-mail: rahul�s.uhiago.eduAbstratWe show a hierarhy for probabilisti time with one bit of advie, spei�ally weshow that for all real numbers 1 6 � < �, BPTIME(n�)=1 ( BPTIME(n�)=1. Thisresult builds on and improves an earlier hierarhy of Barak using O(log log n) bits ofadvie.We also show that for any onstant d > 0, there is a language L omputable onaverage in BPP but not on average in BPTIME(nd).We build on Barak's tehniques by using a di�erent translation argument and by aareful appliation of the fat that there is a PSPACE-omplete problem L suh thatworst-ase probabilisti algorithms for L take only slightly more time than average-asealgorithms.1 IntrodutionCan we solve more problems given more time? This fundamental question has hallengedmany omplexity theorists sine the �eld started. Hennie and Stearns [HS66℄ improvingon Hartmanis, Lewis and Stearns [SHL65℄ show a tight hierarhy for time on deterministimultitape mahines: For any reasonable time funtions T1 and T2 with T2 log(T2) = o(T1)there is a language omputable in deterministi time T1(n) and not omputable in timeT2(n). We also have similar results for nondeterministi time (see [Coo72, SFM78, �Z�83℄).In this paper we study the question of a time hierarhy for bounded-error probabilistimahines. The results for deterministi and nondeterministi omputation have at theirore a diagonalization against all smaller time mahines. We annot diretly do suh adiagonalization for probabilisti lasses, sine that will break the bounded-error promisewhen we try to simulate a mahine for whih the promise does not hold.Reently Boaz Barak [Bar02℄ found a di�erent attak on the probabilisti time hierarhy.He looks at the best probabilisti algorithms to ompute an EXP-omplete language andusing a translation argument an build a hierarhy based on these algorithms. However heneeds some nonuniform advie to desribe an approximation of the running time of that bestalgorithm. For eah onstant d > 1, Barak shows that there is a language in BPP= log(log(n))1



but not in BPTIME(nd)= log(n), and from this he derives a hierarhy theorem for probabilistipolynomial-timemahines using a(n) bits of advie, where log(log(n)) 6 a(n) 6 log(n), usinga standard argument.To prove our �rst main result, we modify Barak's translation argument. By requiringthe pad to onform to a ertain format, we an bring the amount of advie required downto one bit, whih essentially tells us whether the pad is a good approximation of the timetaken by the optimal algorithm.Theorem 1. For eah onstant d > 1, BPTIME(nd)=1 ( BPP=1.Using standard translation arguments, from Theorem 1 it follows that for eah 1 6 � < �,BPTIME(n�)=1 ( BPTIME(n�)=1.We attempt to eliminate the advie using an additional idea: for a ertain PSPACE-omplete language L, we an modify an optimal probabilisti algorithm so that the average-ase time of the algorithm is smaller than the worst-ase time by at most a polynomial fator.This allows us to estimate the running time, and we an ompare this estimate diretly withthe pad, rather than needing to refer to the advie.There are two obstales we run into when we work out his approah. The �rst obstaleis that we do not know how to use the translation argument when the best algorithm for Lruns in polynomial time. However, in this ase we an use diagonalization to diretly obtaina hierarhy for average-ase probabilisti polynomial time.The seond obstale is that sine the estimate of the running time we obtain isn't om-pletely preise, the resulting simulation may not satisfy the bounded-error promise requiredof a BPP mahine. We get around this by randomly perturbing the estimate depending onthe input, whih ensures that the promise is satis�ed for most inputs. As a onsequene,we again get a hierarhy for average-ase probabilisti polynomial time in the ase when thebest algorithm for L does not run in polynomial time. Thus we obtain unonditionally ahierarhy theorem whih we formalize as:Theorem 2. For eah onstant d > 1, there is a onstant a > 0 suh that heur1�n�a �BPTIME(nd) ( heur1�n�a � BPP.1.1 Related WorkUnonditionally, we know very little about probabilisti hierarhies beyond the straightfor-ward observation that BPTIME(o(t)) ( BPTIME(2t) for time-onstrutible t, whih followsfrom the hierarhy for deterministi time and the fat that probabilisti time t an be sim-ulated in deterministi time 2t. The best-known hierarhy [KV87℄ uses the above resultand a translation argument to ahieve slightly stronger parameters. However, we still don'tknow whether there is a language deidable in probabilisti quasi-polynomial time but notin probabilisti linear time. Under plausible omplexity-theoreti assumptions, suh as thatthere is a language in E whih does not have subexponential size iruits, or that the dei-sion version of the Permanent is not in randomized subexponential time, a strit hierarhyan be shown to exist for probabilisti quasi-polynomial time [IW97, IW01, CNS99℄. Theseomplexity-theoreti assumptions are generally believed to be very hard to prove; it is quitepossible that a hierarhy theorem for probabilisti polynomial time might be muh easier.2



Given the lak of suess in establishing a hierarhy thus far, it is natural to ask aboutthe status of the question in a relativized setting. BPP = P relative to a random orale[BG81℄, hene there does exist an orale relative to whih there is a hierarhy. There hasbeen a lot of work towards onstruting an orale relative to whih probabilisti polynomialtime does not have a hierarhy (see [FS89, FS97, RV01℄). Sine neither Barak's nor ourmethods relativize, this work is not diretly relevant to the question of whether our methodshave the potential to ahieve a hierarhy for fully uniform probabilisti polynomial time.Subsequent to our work, Goldreih, Sudan and Trevisan [GST04℄ found a method toderive a hierarhy theorem with one bit of advie diretly from a hierarhy theorem with6 log(n) bits of advie under ertain onditions. Their method, when used in onjuntionwith Barak's result, implies Theorem 1.The organization of the rest of the paper is as follows: First we disuss some tehnialpreliminaries. Then we give a high-level overview of Barak's proof, and sketh the ideasbehind our improvements. Finally, we present our modi�ation of Barak's algorithm andour translation argument.2 Preliminaries2.1 Complexity ClassesWe mostly use standard de�nitions of omplexity lasses, whih an be found in [BDG88℄and [BDG90℄. Our de�nition of probabilisti time-bounded lasses is slightly non-standard,however it is equivalent to the standard de�nition for \nie" time bounds t, suh as t = nkfor a �xed onstant k. We �rst de�ne a notion of what it means for a time bound to be\nie".De�nition 3. A funtion t : N ! N is said to be time-onstrutible if there is a determin-isti Turing mahine M suh that on input 1n, M halts within O(t(n)) steps and outputs thevalue t(n).We now proeed to our de�nition of bounded-error probabilisti time lasses.De�nition 4. Let L be a language and let t : N ! N be a funtion. We say that L 2BPTIME(t) if there is a probabilisti Turing mahine M suh that on all inputs x of lengthn, with probability > 2=3, M halts within t(n) steps on input x and outputs L(x).This de�nition is nonstandard in that the mahine is only required to halt within t(n)steps with high probability, rather than with probability 1. This will ome in useful in ouronstrution of an optimal algorithm beause we will only be able to guarantee that thealgorithm halts with high probability within a ertain time bound. Note that our de�ni-tion of probabilisti time lasses is equivalent to the standard de�nition when t is a time-onstrutible inreasing funtion, as we will be able to use the time-onstrutibility of t toimplement a \timeout" mehanism whih onverts a mahine halting with high probabilitywithin time t to a mahine that halts with probability 1 within time t.We also need to larify the notions of advie and average-ase deidability in the ontextof probabilisti time lasses. 3



De�nition 5. Given funtions s : N ! N and t : N ! N and a language L, L 2BPTIME(t)=s if there is a probabilisti Turing mahine M and a sequene fygn; j yn j6 s(n)of strings suh that for all inputs x of length n, with probability > 2=3, M halts within t(n)steps on input < x; yjxj > and outputs L(x).BPTIME(t)=s is to be interpreted as the lass of languages deided by bounded-errorprobabilisti mahines operating in time t and taking advie of length s. Note that thebehavior of an advie taking mahine M on input < x; y > where y 6= yjxj may be arbitrary.Our de�nition is di�erent in this respet from the original de�nition of Karp and Lipton[KL82℄, whih requires that the advie taking mahine has aeptane probability boundedaway from 1/2 on all inputs even when the advie is inorret. If Theorem 1 were tohold under the Karp-Lipton de�nition of advie-taking probabilisti mahines, a hierarhytheorem for uniform probabilisti time would follow immediately.De�nition 6. Given a funtion t : N ! N and a language L, L 2 heurs � BPTIME(t) ifthere is a probabilisti Turing mahine M suh that for all input lengths n, for at least afration s of inputs x of length n, with probability > 2=3, M halts on input x within t(n)steps and outputs L(x).heurs�BPTIME(t) is to be interpreted as the lass of languages deided by bounded-errorprobabilisti mahines in time t on average with parameter s. We use the \heuristi" notionof average-ase omplexity [Imp95℄. The behavior of M on an input not belonging to the\good" set of inputs for whih the average-ase simulation works may be arbitrary.2.2 Nie PSPACE-omplete languageThe proof of our hierarhy theorems proeeds via the onstrution of an optimal algorithm fora PSPACE-omplete language L, where an optimal algorithm in this ontext is a probabilistialgorithm that is at worst polynomially slower than any probabilisti algorithm for L. Inorder to arry through the proof of our result, we require the PSPACE-omplete language Lto be paddable and instane-hekable - we de�ne these two notions below.De�nition 7. A language L is said to be paddable is there is a deterministi polynomial-time omputable proedure P whih given inputs x of length n and 1m where m > n, outputsa string of length m suh that P (x; 1m) 2 L i� x 2 L.Intuitively, a language is paddable, if given a string x, it is possible to eÆiently generatearbitrarily long strings whih behave the same as x as far as membership in the language Lis onerned.De�nition 8. [BK95℄ A language L is said to be instane-hekable if there is a probabilistipolynomial-time orale proedure I whih, given an orale P and an input x of length n, hasthe following properties:1. I outputs one of 3 values \0", \1" or \?" at the end of eah omputation path.2. If P deides L orretly, I outputs L(x) with probability 1.4



3. I outputs 1� L(x) with probability at most 2�
(n), irrespetive of the orale P .Intuitively, an instane heker for a language L tests whether a program P deides Lorretly on an input x or not. It follows from the proof of the IP = PSPACE [LFKN92, Sha92℄result that all PSPACE-omplete problems have instane hekers, and it follows from theproof of the MIP = NEXP [BFL91℄ that all EXP-omplete languages have instane hekers.Thus far, the properties we require of the PSPACE-omplete language L are similar tothe properties required by Barak of the EXP-omplete language for whih he onstruts anoptimal algorithm. Indeed, the proof of Theorem 1 only uses these properties. For the proofof Theorem 2, we require an additional property, namely that L be worst-ase to average-ase reduible. Informally, this means that the existene of an mahine M whih for eah ndeides L orretly with high probability over the uniform distribution on inputs of lengthn implies the existene of a mahine M 0 whih is at most polynomially slower than M anddeides L orretly on all inputs.Building on ideas of Trevisan and Vadhan [TV02℄, we de�ne a PSPACE-omplete languagesatisfying slightly stronger forms of the properties mentioned above, whih are useful in theonstrution of our optimal algorithm and in our proofs of orretness:Theorem 9. There is a PSPACE-omplete language L 2 DTIME(22n) and a linear-timedeidable set S � f0; 1g� with the following properties:1. (Paddability)(a) There is a deterministi linear-time proedure P , whih given x of length n and1m as inputs, where m > n, produes a string P (x; 1m) of length n in S suh thatx 2 L i� P (x; 1m) 2 L.(b) There is a deterministi linear-time proedure Prev, whih given a string x 2 S oflength n as input, produes a string Prev(x) 2 S of length < n suh that x 2 L i�Prev(x) 2 L.2. (Instane-Chekability) L is instane-hekable with a heker I that only makes queriesto the orale about strings of length n on any input x of length n.3. (Worst-ase to average-ase reduibility)(a) jS \ f0; 1gnj = 2n�1.(b) There is a polynomial p and polynomial-time proedures q and f suh that foreah integer n, for eah input x 2 S of length n, for eah integer 1 6 i 6 p(n)the distribution of q(i; x; r) over oin tosses r is uniform over S \ f0; 1gn andL(x) = f(x; r; L(q(1; x; r)); L(q(2; x; r)) : : :L(q(p(n); x; r))) with probability at least 1� 2�
(n) over oin tosses r.Proof. It is impliit in the work of Trevisan and Vadhan [TV02℄ that there is a PSPACE-omplete language L0 2 DTIME(22n) with the following properties:1. L0 has a worst-ase to average-ase redution, with the queries at length n uniformlydistributed over f0; 1gn. 5



2. L0 is instane-hekable with an instane heker I 0 whih, on input of length n, onlymakes queries to its orale about strings of length at most n.From L0, we de�ne a language L with the stated properties. L is essentially L0 \withpadding". More preisely, for any integer i > 0, 0i1x 2 L0 i� x 2 L.It is not hard to see that Property 1 in the statement of Theorem 9 holds for L0. Theset S in the statement of the theorem an be taken to be f0i1xji > 1g. Given an x oflength n suh that x is of the form 0j1x0, The proedure P (x; 1m) simply outputs 0j+m�n1x0.Similarly, given a string of the form 0j1x0 as input where j > 1, Prev outputs 1x0.We an also de�ne an instane heker I for L given the instane heker I 0 for L0 suhthat I only makes queries of the same length as its input. Whenever I 0 makes a query toits orale, I pads the query up to its input length using the proedure P before asking thequery to the orale. We also need to ensure that for heavily padded inputs, the probability ofoutputting the wrong answer is exponentially small, but this an be done by just repeatingthe simulation of I 0 a number of times depending on how heavily padded the input is.As for the average-ase to worst-ase onnetion, uniform distribution of queries overf0; 1gn for L0 translates diretly to uniform distribution of queries over S for inputs in S forL. �Intuitively, proedure P in the statement of Theorem 9 is a padding proedure, andproedure Prev is a \reverse padding" proedure, whih when given a padded input, reoversthe original input. S is the set of non-padded inputs. Half the inputs of any given lengthbelong to this set, and the worst-ase to average-ase redution works for inputs in this set.3 Overview of tehniques3.1 Barak's proofBarak's proof represents a ompletely new approah towards proving a hierarhy theoremfor probabilisti polynomial time. We sketh the ideas behind his proof here.The ritial idea of Barak is to �nd a language L with an optimal algorithm. An optimalalgorithm is a probabilisti algorithm for L that is only polynomially slower than the \best"probabilisti algorithm for L. To be more preise, there is a onstant  suh that if thereis a probabilisti algorithm solving L running in time t, then the optimal algorithm runs intime O(t). Thus if the optimal algorithm runs in time T , L 2 BPTIME(T )�BPTIME(T 1=0)for all 0 > . If T were a onstrutible time bound, we ould use a translation argument toshow that an appropriately padded version L0 of L is in BPTIME(n0) but not in BPTIME(n),whih implies a hierarhy theorem for probabilisti polynomial time.The question of how to �nd a language L with an optimal algorithm still needs to beaddressed. Barak observes that any EXP-omplete language has an optimal algorithm, indeedany language with an instane heker has an optimal algorithm, and it follows from the rihtheory of probabilistially hekable proofs that all EXP-omplete languages have instanehekers.Let P1; P2 : : : be an e�etive enumeration of all probabilisti Turing mahines (wherethere is no guarantee that a mahine in the enumeration is bounded-error). Fix an EXP-6



omplete language L and let I be an instane heker for L. Barak de�nes an optimal algo-rithm A for L as follows: Given an input x, A suessively runs I with orales P1; P2 : : : Pf(n)on x, where f is some polynomially-bounded easily omputable funtion. Whenever I asksan orale query to Pi, A simulates Pi to determine the answer. If IPi returns a Booleanvalue for some i, A outputs that value. If IPi returns \?", A ontinues the simulation withthe next program in the enumeration. We have skirted the issue of how long A simulatesthe mahines Pi - Barak's algorithm atually runs in stages m = 1; 2 : : : , and at a stage m,orale queries to a program Pi are simulated for m steps.Given the properties of an instane heker, it is not hard to show that A is an optimalalgorithm for L. If Pe is a probabilisti bounded-error algorithm for L whih halts with highprobability after t steps, then for large enough n (i.e., for n suh that f(n) > e), Pe will beone of the orales that A uses, and hene at stage m = t, A will halt with the orret answerwith high probability after simulating I with orale Pe. A has used at most t2poly(n) timeup to this stage, whih is still polynomial in t. Any inorret program Q an only ontributean exponentially small error when I is run with Q as orale1, hene A solves L orretly andhalts within poly(t) steps with high probability.As disussed before, an optimal algorithm implies a hierarhy theorem if the time boundof the optimal algorithm is time-onstrutible. However, it seems to be hard to argue thatthis is the ase. Barak's solution is to use an advie string of size log(log(n)) to representan approximation to the time taken by the optimal algorithm, in whih ase the translationargument an be pushed through. We suggest more eÆient solutions to this problem.3.2 Our improvementsWe get our �rst improvement over Barak using a translation argument eÆient with respetto advie. We require that the pads onform to a spei� format, whih ensures that fora given length m, there is at most one input length n suh that inputs of length n an bepadded to length m. If this holds, then just one bit of advie is required to tell whether m isa \good" length, meaning that the simulation of the optimal algorithm on inputs of length ntakes O(poly(m)) time. Of ourse, we also need to take are that the onstraint we imposeon the pads doesn't make the simulation of the optimal algorithm infeasible, but this isn'thard.We do obtain a hierarhy theorem for probabilisti polynomial time with one bit of advieusing this translation argument. However, the value of the advie bit depends on the timetaken by the optimal algorithm, and it is not lear at all whether this funtion is easilyomputable. For example, it might be the ase that the optimal algorithm takes vastlydi�erent times for di�erent inputs of the same length. In suh a ase, it may not be easy toestimate the worst-ase time on a given input length. We do have some exibility, though, indesigning our algorithm. It is well-known that there are PSPACE-omplete problems2 with1A subtle but ritial point is that we are now onsidering the probability over oin tosses of Q as well,and Q may not be bounded-error. However we may interpret Q as a probability distribution over orales eahof whih auses I to output a wrong answer with exponentially small probability, and hene this property ispreserved when we take into aount the oin tosses of Q as well.2For tehnial reasons, we use a PSPACE-omplete language rather than an EXP-omplete language as in7



a worst-ase to average-ase onnetion, i.e., they are just as hard to solve in the averagease as in the worst ase. This suggests that the average-ase running time of an optimalalgorithm for a PSPACE-omplete problem may be polynomially related to its worst-aserunning time. We do not know if Barak's algorithm has this property but we are able tomodify his optimal algorithm and impose some struture on it so that we obtain a version ofthe worst-ase to average-ase onnetion. Spei�ally, we are able to design a probabilistipolynomial-time proedure that produes a rough estimate of the worst-ase running timefrom estimates of a di�erent but related quantity for random inputs.However, it is still not lear whether this gains us anything sine the estimate we obtainis quite rough, and is moreover obtained probabilistially. We need another idea, whihinvolves the use of the randomness in the input itself to disambiguate the omputation andmaintain the bounded-error promise with high probability in the ase when the estimateis too lose to the length of the pad. Using the estimation proedure and this idea inonjuntion with our translation argument, we derive a hierarhy theorem for average-aseprobabilisti polynomial time if the optimal algorithm does not run in polynomial time.If the optimal algorithm runs in polynomial time, the fat that our problem is PSPACE-omplete implies that we an use a diagonalization tehnique to diretly obtain a hierarhyfor average-ase probabilisti polynomial time. Thus an average-ase hierarhy theoremholds for probabilisti polynomial time unonditionally.4 Our Results4.1 An Optimal AlgorithmLet L be a PSPACE-omplete language as in the statement of Theorem 9. Let I be aninstane heker for L and let q and f be polynomial-time proedures implementing a worst-ase to average-ase redution for L, suh that I and f both have error probability at most2�4n on inputs of length n. We desribe an optimal algorithm for L. The algorithm runs instages m = 1; 2 : : : . At stage m, for eah mahine M of desription length 3 log log(m) (notethat there are at most (log(m))3 suh mahines), we hek to see if Mm, i.e., M restritedto m steps, is a good andidate for deiding L by running the worst-ase to average-aseredution for L on top of the instane heker. If Mm were indeed a good andidate, theinstane heker I would return a non-"?" value with high probability on all instanes oflength n and the worst-ase to average-ase redution would give a orret answer with highprobability as well. If Mm is not a good andidate, we know by the properties of I that awrong answer is produed with very small probability, hene the bad andidate annot a�etthe performane of the algorithm by very muh.We desribe the algorithm in Table 1.For eah n, let T (n) be the minimum number t suh that for eah i; 1 6 i 6 n and for eahinput of length i, with probability at least 1�1=i, Algorithm OPTIMAL halts and produesthe orret answer within t steps. Then L 2 BPTIME(T (n)). In order for the de�nition ofT (n) to make sense, we need to ensure that suh a number t exists. For any x 2 S of length[Bar02℄. 8



Algorithm OPTIMAL:Input: String x of length n1. If x 62 S, x Prev(x)2. If jxj 6 log(n), run the natural deterministi exponential timealgorithm for L on x and exit.3. For m = 1; 2 : : : do:4. For eah probabilisti Turing mahine M of size 3 log log(m) do:(a) For j = 1 : : : log(n) do:i. Run q on x with randomly hosen r to generate queriesq(1; x; r); q(2; x; r) : : : q(jxjk; x; r).ii. For i = 1 : : : jxjk do:A. Run I on q(i; x; r) with oraleMm, and if an answerval is returned, guess(q(i; x; r))  val, otherwiseguess(i; x; r) is unde�ned.iii. If guess(i; x; r) is de�ned for all i; 1 6 i 6 jxjk, setfj  f(x; r; guess(q(1; x; r)) : : : guess(q(jxjk; x; r)))(b) If fj is de�ned for all 1 6 j 6 log(n), output the majorityvalue of the fj's and exit all loops, else ontinue.Table 1: Optimal Algorithmi, suh a number t exists beause a deterministi linear exponential-time mahine deidingL will eventually be tried by Algorithm OPTIMAL and OPTIMAL will return an answerwith high probability when it tries this mahine. Moreover, the probability that a wronganswer is output before this stage is exponentially small, sine both the instane heker Iand the worst-ase to average-ase redution f produe wrong answers with exponentiallysmall probability. Any x 62 S of length i is transformed to x0 = Prev(x) of length i0 < i.Now the same argument as for x 2 S works and the fat that the worst-ase to average-aseredution is run log(i) times independently ensures that the probability of halting is at least1� 1=i. Indeed, sine L 2 DTIME(22n), this argument yields an expliit upper bound of 26nfor T .Now, we will onsider two ases. The �rst is that T (n) is polynomially bounded. Wewill dispose of this ase with a diagonalization argument. The other ase is that T (n)is superpolynomial in�nitely often. In this ase, �rstly we will show that OPTIMAL isan optimal algorithm and hene there is a onstant � > 0 suh that L 2 BPTIME(T ) �BPTIME(T �)=2 log log(T ). Next, we will show how to de�ne, for eah onstant d, a paddedversion of L that is deidable in BPPwith just one bit of advie but is not in BPTIME(nd= log log(n)).This will yield our Theorem 1. 9



4.2 The ase L 2 BPPFirst, note that by the PSPACE-ompleteness of L, if L an be deided in BPP, so an everylanguage in PSPACE.Proposition 10. If L 2 BPP, then PSPACE = BPP.Next, we argue that if PSPACE = BPP, we obtain hierarhy theorems for probabilistipolynomial time with one bit of advie and for average-ase probabilisti polynomial time.These arguments use the tehnique of diagonalization. The �rst argument is a straight-forward diagonalization, where we observe that a \universal" language Lu for probabilistipolynomial-time mahines is in PSPACE and that we an diagonalize in PSPACE, and heneby assumption in BPP, against this language.Lemma 11. Let d > 1 be a onstant. If PSPACE = BPP, then BPP 6� BPTIME(nd)= log(n).Proof. We assume an enumeration of probabilisti mahines for whih the desriptionlength of a mahineM an be padded to any larger input length - it is not hard to guaranteethis property. Now we de�ne Lu as follows: the ode < M > of a mahine M belongsto Lu i� M aepts with probability < 1=2 when run for j< M >jd+1 steps on input <M >. Given the paddability of desription lengths, it is lear that for eah language L0 2BPTIME(nd)= log(n), for large enough n, there is an input (namely, the ode of the BPTIMEmahine together with the advie padded to length n) on whih Lu di�ers from L0. ThusLu 62 i:o:BPTIME(nd)= log(n). On the other hand, it is not hard to see that Lu 2 PSPACE,and hene by assumption, Lu 2 BPP. �The seond diagonalization argument, due to Wilber [Wil83℄ gives an average-ase hier-arhy for BPP under the assumption PSPACE = BPP.Lemma 12. Let d > 1 be a onstant. If PSPACE = BPP, then BPP 6� heur2=3�BPTIME(nd).Proof. It is known [Wil83℄ that for every d > 1, there is a language Ld suh that Ld 2DSPACE(nd+1) and Ld 62 heur2=3 � DSPACE(nd). By assumption, Ld 2 BPP and sineheur2=3 � BPTIME(nd) � heur2=3 � DSPACE(nd), Ld 62 heur2=3 � DSPACE(nd), proving thetheorem. �4.3 Proof of OptimalityWe need to show that Algorithm OPTIMAL is no worse than polynomially slower thanany probabilisti algorithm for L. The idea behind the proof is that if M is a probabilistialgorithm for L whih with high probability halts and outputs the orret answer within tsteps, then the instane heker I when run on orale M t would output the orret value foran instane with high probability, and the worst-ase to average-ase redution would alsowork with high probability. Thus, the time required for A to output an answer with highprobability is bounded above by the time required to get to the simulation of M t in stage t,whih is bounded above by some polynomial in t.We atually need to show that Algorithm OPTIMAL is no worse than polynomiallyslower than any probabilisti algorithm taking a small amount of advie, but this does notintrodue too many additional ompliations.10



Lemma 13. If L 62 BPP, there is a onstant � > 0 suh that for eah onstant b > 0,L 62 BPTIME(nb + T �)=2 log log(T ).Proof. Fix b. We pik � = 1=4. Let M be a probabilisti mahine of desription size2 log log(T ) + O(1) whih, for eah input x of length n, with probability at least 1 � 1=nhalts and outputs the orret answer L(x) within T � + nb steps. We derive a ontraditionfor our value of �.Sine L 62 BPP, there is an in�nite set J of input lengths suh that for all n 2 J; T (n) >nb+� + n�=(1�2�), where � > 0 is a onstant to be spei�ed later. We shall show thatM annot satisfy our assumption for inputs with input length in J . Consider an inputx of length n 2 J . We an assume without loss of generality that x 2 S (otherwise weuse the same argument with x  Prev(x)). By running the mahine M 2d2 log(n)e timesindependently and taking the majority vote, we an de�ne a mahine M1 with desriptionlength 2 log log(T ) + log log(n) +O(1) 6 3 log log(T �) whih within T �n2 + nb+2 steps, haltsand outputs the orret answer with high probability. Thus, when Algorithm OPTIMALreahes stage T �n2 + nb+2 and runs the worst-ase to average-ase redution on top of theinstane-heking routine I with orale MT �n2+nb+21 , it halts and outputs the orret answerwith probability at least 1� 2�3n(sine the probability of I outputting a wrong value or \?"on any of the nk instanes of length n queried by I and the probability that the funtion fwill return the wrong value are both at most 2�4n). Also, the probability that AlgorithmOPTIMAL has output a wrong value before this stage is at most 2�2n, hene we havethat Algorithm OPTIMAL halts and outputs the orret answer with probability at least1� 2�n > 1� 1=n within time (T 2� + nb)n� for some onstant �. We have a ontraditionsine (T 2� + nb)n� < T if n 2 J . �4.4 Proof of Theorem 1In this setion, we prove Theorem 1. We de�ne a padded version Lpad of the language L,where the pad represents the running time of algorithm OPTIMAL on the underlying input,suh that Lpad 2 BPP=1 but Lpad 62 BPTIME(nd)= log log(n). Let � be a onstant as in thestatement of Lemma 13.Lpad = fx#1yjy = 22z for some z; x 2 L; y > jxj; y + jxj+ 1 > T (jxj)�=3dgFirst, we show Lpad 2 BPP=1. The basi idea is that by requiring the pads to onformto a spei�ed struture, we make do with one bit of advie to tell us whether the length ofthe pad is suÆient to arry out the simulation of Algorithm OPTIMAL.Lemma 14. Lpad 2 BPTIME(n3d=�)=1Proof. We onstrut a probabilisti polynomial-time mahine M operating in time n3d=�and taking one bit of advie whih aepts Lpad. The basi idea is that given an input of theform x#1y with jxj + 1 + y = m, M �rst heks if the input has a valid form. This an bedone in quasilinear time. If the input does not have a valid form, M rejets. Otherwise, letbm be the advie bit for M at length m. M aepts i� bm = 1 and Algorithm OPTIMALhalts and aepts on x within n3d=� time steps.11



First we speify what sequene of advie bits bi; i = 1 : : :1 M reeives and then weshow that for any m and for any x0 of length m, x0 2 Lpad i� M aepts x0 with advie bm.Consider any input length m. Call m \good" if m = nm + ym + 1 for some nm; ym > 0 suhthat ym = 22zm for some zm > 0 and ym > nm + 1. Thus ym > m=2. If m is good, then nmand ym are determined uniquely. For suppose not, and let n0m 6= nm and y0m be suh thatn0m + y0m = nm + ym, y0m = 22z0m for some z0m > 0 and y0m > n0m. Without loss of generalityy0m > ym. We have that m > y0m > y2m > m2=4, whih is a ontradition for m > 4.Let T 0(nm) = T (nm)�=3d. Now we speify the advie bits. If m is not good, bm = 0. If mis good, bm = 1 i� m > T 0(nm).Next we �x an m and show that for x0 of length m, x0 2 Lpad i� M aepts x0. Theforward diretion follows immediately from the spei�ation of the advie bits. For thereverse diretion, we show that if x0 62 Lpad for input x0 of length m, then M halts withinthe required time bound and rejets x0 with probability lose to 1. If x0 is not of the formx#1y for some y of the form 22z suh that y > jxj, M rejets with probability 1 sine thedeterministi test that the input has a valid form fails. Otherwise, let x0 be of the formx#1ym , where x is of length n, ym = 22zm for some integer zm > 0, and y > jxj. There aretwo ases: (1) T 0(n) > m, and (2) T 0(n) 6 m. In ase (1), the advie bit b is 0 and hene Mrejets with probability 1. In ase (2), M has enough time to simulate Algorithm OPTIMALon x and hene rejets with high probability when x 62 L. �Next, we show Lpad 62 BPTIME(nd)= log log(n) if the optimal algorithm for L does not runin polynomial time. The idea here is that if Lpad 2 BPTIME(nd)= log log(n) via an advie-taking probabilisti mahine M , we an solve L in time T � + poly(n) with a small amountof advie. The advie is interpreted as oming in two parts. The �rst part of the adviesuggests a \good" input length m to whih we pad the input, and we then simulate M onthe padded input using the seond part of the advie as advie to M . The total amount ofadvie used is < 2 log log(T ), and thus we obtain a ontradition to Lemma 13.Lemma 15. If L 62 BPP, Lpad 62 BPTIME(nd)= log log(n).Proof. The proof is by ontradition. Assume Lpad 2 BPTIME(nd)= log log(n). Let M bean advie-taking probabilisti mahine running in time nd and aepting Lpad. We onstrutan advie-taking probabilisti mahine M 0 running in time n3d+T (n)� with 2 log log(T ) bitsof advie and aepting L, whih is a ontradition to Lemma 13.M 0 ats as follows: given an input x of length n, it interprets the �rst log log(n) bits ofits advie as an enoding of the smallest z suh that 22z > n and 22z + n + 1 > T (n)�=3d. Itthen pads its input x with 122z and runs M on the padded input x0 = x#122z , interpretingthe seond part of its advie as the orret advie string for M on the padded length. Itoutputs the result of the simulation of M on x0. Note that jx0j 6 max(n3; T �). Thus M 0uses time at most n3d + T (n)� on x. Also, if both parts of the advie string are orret, thesimulation has enough time to run, and hene M 0 deides orretly whether x is in L. �If L 2 BPP, Proposition 10 and Lemma 11 imply Theorem 1. If L 62 BPP, Lemma 14 andLemma 15 together imply Theorem 1. Thus Theorem 1 holds unonditionally. The existeneof a hierarhy theorem for probabilisti polynomial time with one bit of advie follows fromTheorem 1 by a standard translation argument.12



4.5 Estimation of Running TimeIn this subsetion, we show that there is an eÆient proedure estimating the running timeof Algorithm OPTIMAL to within a polynomial fator with high probability. This is wherewe reap the advantage of running a worst-ase to average-ase redution on top of theinstane heking. Intuitively, we an get a rough estimate of the time required to deideL by estimating the probability that the instane heker I returns a non-"?" value. Theworst-ase to average-ase redution ensures that if for some mahine M there is some inputx of length n suh that there is a signi�ant (i.e., at least inverse polynomial) probabilityof not getting an answer for x within time t after running I with M t=poly(n) as orale andthen running the worst-ase to average-ase redution on top, then for at least a polynomialfration of the inputs of length n, there is a signi�ant hane that the instane heker willreturn a \?" value when it is given M t=poly(n) as orale.The proof of orretness of our estimation proedure requires standard Cherno� bounds([AS92℄) as stated below:Proposition 16. Let Y1 : : : Yn be independent random variables with Pr(Yi = 1) = p andPr(Yi = 0) = 1 � p for eah i. Let Y = Pni=1 Yi. Then Pr(Y > np + a) < e�2a2=n andPr(Y < np� a) < e�a2=2pn.Lemma 17. There is a probabilisti proedure ESTIMATE and onstants a and  suh thatESTIMATE, when given an integer n as input, with probability at least 1�1=2n2, halts withinT (n)n steps and outputs a number Test suh that T (n)=na 6 Test 6 T (n)na. Moreover, thereis at most one number Tmid suh that jPr(Test < Tmid)� Pr(Test > Tmid)j < 1=4Tna.Proof. We de�ne some notation that will be used in the proof of orretness of the proedurefor estimation of the running time. Fix an input length n. An exeution is a pair (m;M)onsisting of a running time m and a mahine M of desription length 6 3 log log(m). Aninput x of length n is said to be (m,M)-good if the probability that IMm returns a \?" valueon x is at most 1=nk+2. The exeution (m;M) is said to be n-good if at least a fration1� 1=(nk+2) of the inputs of length n are (m;M)-good.Let the running times of proedures I; q and f in Algorithm OPTIMAL be bounded bynr1 ; nr2 and nr3 respetively. Let a = 3(k + r1 + r2 + e), and  = 16k + 3r1 + 3r2 + 8.The proedure ESTIMATE works as follows: It runs the following proess 2n2 timesindependently. In the rth run, 1 6 r 6 2n2, it �rst sets m = 2. For eah mahine M ofdesription length 6 3 log log(m), for eah log(n) 6 i 6 n, it estimates whether the exeution(m;M) is i-good by generating i8k+2 random strings x1 : : : xi8k+2 of length i and estimatingwhether at least i8k+2 � i7k=2 of these strings are (m;M)-good. For estimating whether astring xj of length i is (m;M)-good, it runs IMm on xj i8k+2 times independently and hekswhether at least i8k+2 � i7k=2 of these runs yield a value that is not \?". If there is anM of desription length 6 3 log log(m) suh that (m;M) is estimated to be i-good for alllog(n) 6 i 6 n, ESTIMATE sets tr  mna=2 and begins the r+ 1th run. If there is no suhM , ESTIMATE sets m 2m and repeats the estimation proess within the rth run.Let T1 be the median of the values tr; r = 1 6 2n2. ESTIMATE outputs Test, where Testis an integer hosen uniformly at random in [T1n�2a=3; T1n2a=3℄13



We need to show that with high probability, ESTIMATE halts within T (n)n steps andneither overestimates nor underestimates T (n) by more than a na fator. First we show thatfor eah r; 1 6 r 6 2n2, with probability at least 1 � 1=2n, tr 6 T (n)na=3. This impliesthat with probability at least 1 � 2n2+1, T1 6 T (n)na=3 whih implies Test 6 T (n)na. Fixr suh that 1 6 r 6 2n2. Let M be a mahine implementing algorithm OPTIMAL. De�nea modi�ed version Mn of M whih runs M 2d2 log(n)e times independently for 2dlog(T (n)e)steps and outputs the majority value of these runs if at least one of these runs produesa value, otherwise it outputs an arbitrary value. The desription length of Mn is at mostjM j + log log(T (n)) + log log(n) + O(1), whih is at most 3 log log(T (n)), sine T (n) > n.By applying the bounds of Proposition 16, we see that the suess probability of Mn on anystring of length at most n is at least 1� 2�n, and hene the probability that IM2dT (n)e+d2 log(n)enprodues a non-"?" value is at least 2�n+1. Again by applying the bounds of Proposition16, for any given i > log(n) the probability that the exeution X = (2dlog(T (n))e+d2 log(n)e;Mn)passes all the tests of the rth run of proedure ESTIMATE is at least 1� 1=n3. By a unionbound, the exeution X passes all the tests for all log(n) 6 i 6 n with probability at least1� 1=n2. Thus tr 6 2T (n)nr1+k + nr2+k + ne 6 T (n)nr1+r2+e+k = T (n)na=3 with probabilityat least 1 � 1=n2. Also note that the time spent by proedure ESTIMATE in the rth rununtil it �nishes all tests for exeution X is at most T (n)n16k+r1+r2+e+5, and thus the totaltime for all runs is at most T (n)n.The argument that ESTIMATE does not underestimate T (n) is more ompliated. Again�x an r suh that 1 6 r 6 2n2. We show that with probability at least 1 � 1=2n,tr > T (n)n�a=3, whih implies T1 > T (n)n�a=3 with probability at least 1�1=2n2+1 and heneTest > T (n)n�a with at least that probability. De�ne l(n) = T (n)=na=3. Assume for the pur-pose of ontradition that with probability greater than 1=2n, tr 6 l(n) = T (n)=nr1+r2+e+k.There are at most n4 exeutions (m;M) tried by the proedure ESTIMATE in the rthrun(sine only values of m whih are powers of 2 are tried, and for eah suh value m, atmost (log(m))3 mahines M are onsidered), hene there is an exeution (m;M) suh thatm < l(n) and (m;M) is i-good for all log(n) 6 i 6 n with probability at least 1=2n5 overthe oin tosses of ESTIMATE. Fix suh an exeution (m;M).We �rst show that the probability that an input of length i is (m;M)-good is at least1 � 1=ik+2 for eah log(n) 6 i 6 n. Assume, to the ontrary, that this probability is lessthan 1 � 1=ik+2. We show that then the probability that ESTIMATE estimates (m;M) tobe i-good is less than 1=2n5. By the Cherno� bounds of Proposition 16, the probabilitythat a string of length i is estimated to be (m;M)-good if it is not (m;M)-good is at most1=n6 if i > log(n). Again by Proposition 16, the probability that (m;M) is estimated to bei-good when the fration of strings of length i that are (m;M)-good is less than 1� 1=ik+2is at most 1=n6. Hene the probability that ESTIMATE estimates (m;M) to be i-good isat most 2=n6 < 1=2n5 for n large enough , whih is a ontradition.Let m0 = mnr1+k + nr2+k + ne. Next we show that if the probability that an input oflength i is (m;M)-good is at least 1�1=ik+2 for eah log(n) 6 i 6 n, then T (n) 6 m0, whihis a ontradition if m < l(n). We need to show that under the assumption, AlgorithmOPTIMAL takes at most time m0 on every input of length at most n. Let x of length i bethe input of length 6 n on whih Algorithm OPTIMAL takes maximum time. It annotbe the ase that i < log(n), sine Algorithm OPTIMAL takes at most time n on inputs14



of length 6 log(n). We an assume without loss of generality that x 2 S (sine if x 62 S,Algorithm OPTIMAL runs instead on an equivalent input in S whih is omputed from xin linear time). Sine S \ f0; 1gi = 2i�1 by Theorem 9, the probability that an input oflength i in S is (m;M)-good is at least 1 � 1=2ik+1. Consider the behavior of algorithmOPTIMAL during exeution (m;M) on input x. It follows from the form of the average-aseto worst-ase onnetion for L stated in Theorem 9 that queries whih are not (m;M)-goodappear on at most a fration 1=2i of omputation paths. For omputation paths on whihonly (m;M)-good queries appear, with probability at least 1 � 1=2i over the oin tosses ofI, the orret answer is output within time mir1+k + ir2+k + ie 6 m0 sine i 6 n. Thus withprobability at least 1� 1=i, Algorithm OPTIMAL halts and outputs the orret answer onx, whih implies T (n) 6 m0, and hene a ontradition.Now that we have established that ESTIMATE outputs a good approximation to T withhigh probability, we need to show that the distribution of values output by ESTIMATE is\smooth". The smoothness property we require, roughly speaking, is that the distributionhas at most one median - this will ome in useful in our proof of Theorem 2.Let Tmid be the least number suh that jPr(Test < Tmid) � Pr(Test > Tmid)j 6 1=4Tna.We show that in this ase, Pr(Test = Tmid) > 1=4Tna, whih implies that there is no othernumber T 0 suh that jPr(Test < T 0 � Pr(Test > T 0)j 6 1=4Tna.Note that the fat that ESTIMATE is a good approximator of T with high probabilityimplies that Tmid 2 [T=na; Tna℄. We onsider 3 ases - (1) Tmid 2 [T=na=3; Tna=3℄, (2) Tmid 2[Tna=3; Tna℄, and (3) Tmid 2 [T=na; T=na=3℄. In ase (1), Pr(T1 2 [T=na=3; Tna=3℄ > 1�1=2n2as established before, and Pr(Test = TmidjT1 2 [T=na=3; Tna=3℄) > 1=Tna by the de�nition ofESTIMATE and the assumption on the range of Tmid, hene Pr(T = Tmid) > 1=2Tna.Now we turn to ase (2), and the proof for ase (3) will follow by a symmetrial argument.Pr(Test > Tmid) = Pr(Test > TmidjT1 > Tna=3)Pr(T1 > Tna=3) + Pr(Test > TmidjT1 <Tna=3)Pr(T1 < Tna=3) 6 1=2n2 + Pr(Test = Tmid)Tna, whih implies Pr(Test = Tmid) >(1=2� 1=2n2)1=Tna, and thus Pr(Test = Tmid) > 1=4Tna when n > 4. �4.6 Proof of Theorem 2In this setion, we outline a proof of Theorem 2. The proof relies on the ability to estimatethe running time of Algorithm OPTIMAL on inputs of length n, as guaranteed by Lemma17, as well as the translation argument with pads of a �xed struture utilised in the proofof Theorem 1.As in the proof of Theorem 1, we onsider 2 ases. In the ase that L 2 BPP, Proposition10 and Lemma 12 imply Theorem 2 .Lemma 18. If L 2 BPP, then BPP 6� heur2=3 � BPTIME(nd).In the ase that L 62 BPP, we �rst need a stronger version of Lemma 13. The proof ofthe stronger version is idential to the proof of Lemma 13, exept that we additionally usethe fat that L has a worst-ase to average-ase redution.Lemma 19. If L 62 BPP, there are onstants � > 0 and a > 0 suh that for all b > 0,L 62 heur1�n�a � BPTIME(nb + T �)=2 log log(T ).15



Proof. The proof is by ontradition, and is almost idential to the proof of Lemma 13.The only hange is that given a mahine of size 2 log log(T )+O(1) deiding L on average oninputs of length n in time T �,we �rst transform it into a mahine of size 2 log log(T ) +O(1)operating in time T �poly(n) and deiding L orretly on all inputs of length n, using theworst-ase to average-ase redution for L. It is suÆient to pik a as in the statement ofLemma 17 to derive a ontradition (where, as before, nk is the number of queries made bythe worst-ase to average-ase redution for L on inputs of length n). �Let a be as in the statement of Lemma 17. We de�ne a language Lpad0 whih is apadded version of L suh that Lpad0 2 heur1�n�a � BPP � heur1�n�a � BPTIME(nd). Firstwe require some notation. Given an integer m, there is at most one integer n < m=2 suhthat m = n + 22z for some integer z. Call m \good" if suh an integer exists; denotethe orresponding integer by nm and the orresponding z by zm. For eah good m, letHm : f0; 1gm ! f0; 1gnm be the funtion mapping eah string of length m to the nm-bitpre�x of the string. Intuitively, what we are doing here is trying to use Hm to de�ne apadded language so that for any \good" length, there are no \irrelevant" strings, unlikein the proof of Theorem 1 where any string not in the spei�ed format was irrelevant andould be rejeted. Interpreting u 2 f0; 1gm as the integer in [1; 2m℄ whih is its position inthe lexiographial order of m-bit strings, we de�ne shift(u) = bu(m4a� � m�)=2m. Let� = 6(d+1)=�. Let Tmid(nm) be the median of the distribution of estimates for the runningtime indued by the proedure ESTIMATE in the statement of Lemma 17.Now we are ready to de�ne Lpad0 :Lpad0 = fuj juj is good, Hjuj(u) 2 L; juj� + shift(u) > Tmid(njuj)gThe de�nition of Lpad0 is a little ompliated, so we try to give some intuition for it. Thede�nition is similar to the de�nition of Lpad in Setion 4.4, in that the length of the pad isompared to a quantity based on the running time of the optimal algorithm. The di�erenein the present ase is that this quantity depends on the input and not just on the inputlength - essentially, it is a random perturbation of the orresponding quantity in Setion4.4, where the randomness is derived from the input itself. The reason we add the randomperturbation is that we probabilistially ompute an approximation to the quantity ourself(unlike in the proof of Theorem 1 where the advie bit told us if the pad was good), and theapproximations omputed on di�erent probabilisti paths may be evenly spread about thelength of the pad, resulting in the BPP-promise being destroyed. Sine we add a di�erentrandom perturbation to the quantity for eah input and then ompare to the length of thepad, for most of the inputs, the approximations of the randomized quantity will not be evenlyspread about the length of the pad, and hene for most inputs the BPP-promise will notbe destroyed. The probabilisti approximation of the quantity is done using the proedureESTIMATE in the proof of Lemma 17. One we know the pad is good, we simulate theoptimal algorithm to deide whether to aept or rejet the input.Lemma 20. If L 62 BPP, then Lpad0 2 heur1�n�a�BPP but Lpad0 62 heur1�n�a�BPTIME(nd).Proof. We show that Lpad0 2 heur1�m�a � BPTIME(m3a�+3a++4) but Lpad0 62 heur1�m�a �BPTIME(md).We show the positive inlusion �rst. We de�ne a probabilisti Turing mahine M a-epting Lpad0 in time m3a�+3a++4 on average. Given u of length m, M �rst determines if m16



is good. This hek an be done in linear time. If m is not good, M rejets. Otherwise, Mdetermines nm and x = Hm(u). If nm < log(m)=3, M runs Algorithm OPTIMAL on x andaepts if and only if OPTIMAL aepts within the allotted time. If nm > log(m)=3,M runsthe proedure ESTIMATE in the proof of Lemma 17 f(m) = m2a�+2a+4 times independentlyon input nm. If there is a run on whih ESTIMATE does not halt within time ma�+a+, Mrejets. Otherwise, let Test;i be the value output by ESTIMATE on run i; 1 6 i 6 f(m). Marries out the Estimate Comparison Test - it omputes m� + shift(u) and heks if thisvalue is at least the median of the values Test;i; i = 1 : : : f(m). If this test fails, it rejets,otherwise it simulates Algorithm OPTIMAL for Test time steps on x and aepts if and onlyif OPTIMAL does.We need to prove that for at least a fration 1�m�a of strings of length m, M aeptsu i� u 2 Lpad0 . First note that if m is not good, then M rejets on all strings of length m,hene we only need to onsider the ase when m is good.Let T = T (nm) and Tmid = Tmid(nm). If nm < log(m)=3, sine T < 26 log(nm) < m2, thereis enough time for M to simulate OPTIMAL and thus for eah u of length m, M aepts ui� u 2 Lpad0 .Now assume nm > log(m)=3. By Lemma 17, with probability at least 1 � 1=2n2m >1� 1=mlog(m)=9, ESTIMATE halts in time Tnm and outputs a value Test suh that T=nam <Test < Tnam. We onsider 2 ases - (1) T > ma�+a, and (2) T 6 ma�+a.If ase (1) holds, for eah u of length m, m�+ shift(u) 6 ma� < T=ma < Tmid, and thusu 62 Lpad0 . We show that for eah u of length m, M rejets u. If there is an i, 1 6 i 6 f(m)suh that Test;i is not de�ned, then M rejets by de�nition. Conditional on Test;i beingde�ned for all 1 6 i 6 f(m), the Estimate Comparison Test fails with probability at least1 � 1=m
(log(m)), and hene M rejets with probability at least 2=3, assuming m is largeenough.Now assume that ase (2) holds. In this ase, with probability at least 1 � m
(log(m)),Test;i is de�ned for all 1 6 i 6 f(m). Given that all the Test;i are de�ned, by Lemma 17and the Cherno� bounds of Proposition 16, with probability at least 1 � m�a over stringsof length m, the Estimate Comparison Test aepts with probability at least 1 � e�m ifm�+ shift(u) > Tmid and rejets with probability at least 1� e�m if m�+ shift(u) < Tmid.If the Estimate Comparison Test aepts with probability at least 1�e�m, by the assumptionon T , there is enough time to simulate Algorithm OPTIMAL on input x = Hm(u), and heneM aepts with probability at least 2=3 if x 2 L and rejets with probability at least 2=3 ifx 62 L. If the Estimate Comparison Test rejets with probability at least 1� e�m, M rejetswith probability at least 2=3. In either ase M aepts u i� u 2 Lpad0 . Thus we have shownthat with probability at least 1�m�a over strings u of length m, M aepts u i� u 2 Lpad0 .The proof of the negative inlusion is similar to the proof of Lemma 15. We assume Lpad0 2heur1�m�a � BPTIME(md) and show that it follows that L 2 heur1�n�a � BPTIME(T � +n2(d+1) + n2(d+1)a=�)=2 log log(T ), whih is a ontradition to Lemma 19. Let M be a proba-bilisti Turing mahine deiding Lpad0 on average in time md+1 with error probability 2�
(m).We de�ne a probabilisti advie-taking mahine M 0 taking < 2 log log(T ) bits of advie,operating within time T � and aepting L on average. Given an input x of length n, M 0uses its advie to determine a good length m suh that m� > Tna > Tmid. This requires atmost 2 log(log(T )) bits to speify. It then generates a random string u of length m suh that17
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