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ABSTRACT
On May 4, 1971, Steve Cook presented the paper that announced
the P versus NP problem to the world. The P versus NP problem
has withstood the test of time but how we compute has greatly
evolved. Through advances in algorithms, learning and hardware
we can tackle many NP-hard problems thought impossible many
years ago. We explore how thinking about P v NP now often leads
to possibilities instead of barriers.

CCS CONCEPTS
• Theory of computation → Complexity classes; Problems, re-
ductions and completeness; • General and reference → Surveys
and overviews; • Social and professional topics → History of
computing theory.
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1 INTRODUCTION
As we prepared to celebrate this fiftieth anniversary of the P versus
NP question, Moshe Vardi asked me if I would like to update my
2009 Communications of the ACM article “The Status of the P
versus NP Problem” [13]. Although it was a dozen years ago, the
status remains “still open”.

The P vs NP problem and the theory behind it has not changed
dramatically in the last 12 years but the world of computing most
certainly has. We have seen the growth of cloud computing that has
helped empower social networks, smart phones, the gig economy,
fintech, spatial computing, online education and perhaps most im-
portantly the rise of data science and machine learning. In 2009 the
top ten companies by market cap included only one big tech com-
pany, Microsoft. As the end of 2020 the first seven are Microsoft,
Apple, Amazon, Alphabet (Google), Alibaba, Facebook and Ten-
cent [38]. The number of CS graduates in the United States more
than tripled [8] and does not come close to meeting demand.
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Instead of revising or updating the 2009 survey, we will view
advances in computing, optimization andmachine learning through
a P v NP lens. In particular we see how these advances give us a taste
of the world where P = NP, and while P v NP still gives us limits on
what we can do the question also paints some new opportunities
of study. In particular we will see how we are heading towards a
world I call Optiland, where almost miraculously we can gain many
of the the advantages of P = NP without some of the disadvantages
such as breaking cryptography.

As a mathematical problem P v NP still remains one of the most
important open problems, one of the Clay Mathematical Institute
millennium problems [21] that offers a million dollar bounty for
the solution. We end describing some new theoretical computer
science results that, while not getting us closer to solving the P v
NP question, show us that thinking about P v NP still drives much
of the important research in the area.

2 THE P VERSUS NP PROBLEM
Are there 300 Facebook users who are all friends with each other?
How would you go about finding the answer to that question?

Let’s assume you work at Facebook and have access to the entire
Facebook graph, who is friends with whom. You now need to write
an algorithm to find that large clique of friends. You could try all
groups of size 300, but there are far too many such groups to search
them all. You could try something smarter, perhaps starting with
small groups and merging them into bigger groups but nothing you
do seems to work well. In fact nobody knows a significantly faster
algorithm than trying all the groups but neither do we know that
no such algorithm exists.

This is basically the P versus NP question. NP are problems that
have solutions you can check efficiently. If I tell you which 300
people might form a clique, you can check that the 44,850 pairs of
users are all friends relatively quickly. Clique is an NP problem. P
are problems where you can find those solutions efficiently. We
don’t know whether the clique problem is in P.

Perhaps surprisingly clique has a property called NP-complete,
i.e., we can efficiently solve the clique problem quickly if and only
if P = NP. Many other problems have this property including, 3-
coloring (can we color a map using only three colors so no two
neighboring countries have the same color), traveling salesman
(can we find a short route through a list of cities if we can visit in
any order) and tens to hundreds of thousands of others.

Formally, P stands for “Polynomial time,” the class of problems
that one can solve in time bounded by a fixed polynomial in the
length of the input. NP stands for “Nondeterministic Polynomial
time,” where one can use a nondeterministic machine that can
magically choose the best answer. For the purposes of this survey,
best to think of P and NP simply as efficiently computable and
efficiently checkable.
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For those who want a longer informal discussion on the im-
portance of the P versus NP problem see the 2009 survey [13] or
the popular science book based on that survey [14]. For a more
technical introduction, the 1979 book of Michael Garey and David
Johnson [16] has held up surprisingly well and is still an invaluable
reference for those who need to understand which problems are
NP-complete.

3 WHY CELEBRATE NOW?
On the afternoon of Tuesday, May 4, 1971, in the Stouffer’s Somerset
Inn in Shaker Heights, Ohio, Steve Cook presented his ACM Sympo-
sium on the Theory of Computing paper proving that Satisfiability
is NP-complete and Tautology is NP-hard [10].

The theorems suggest that Tautology is a good can-
didate for an interesting set not in [P] and I feel it is
worth spending considerable effort trying to prove
this conjecture. Such a proof would be a major break-
through in complexity theory.

Steve Cook’s paper thus introduced the P versus NP problem to the
world.

Dating a mathematical concept is almost always fraught with
challenges and there are many other possibilities of where to start
the clock on P versus NP.

The basic notions of algorithms and proofs date back to at least
the ancient Greeks but as far as we know they never considered
a general problem like P versus NP. The basics of efficient com-
putation and nondeterminism were developed in the 1960s. The P
versus NP question was formulated earlier than that, we just didn’t
know it.

Kurt Gödel wrote a letter [17] in 1956 to John von Neumann
describing essentially the P versus NP problem. It is not clear that
John von Neumann, then suffering from cancer, ever read the letter
and the letter was not discovered and widely distributed until 1988.

The P v NP question didn’t really become a phenomenon un-
til Richard Karp published his 1972 paper [23] showing a large
number of well-known combinatorial problems were NP-complete,
including clique, 3-coloring and traveling salesman.

In 1973 Leonid Levin, then in Russia, published a paper based on
his independent 1971 research that defined the P v NP problem [27].
By the time Levin’s paper reached thewest, the P versus NP problem
had already established itself as the most important question in all
of computing.

4 OPTILAND
Russell Impagliazzo, in a classic 1995 paper [20], described five
worlds with varying degrees of possibilities for the P versus NP
problem.

• Algorithmica P = NP or something "morally equivalent"
like fast probabilistic algorithms for NP.

• Heuristica NP problems are hard in the worst case but easy
on average.

• PessilandWe can easily create hard NP problems, but not
hard NP problems where we know the solution. This is the
worst of all possible worlds, since not only can we not solve
hard problems on average but we apparently do not get

any cryptographic advantage from the hardness of these
problems.

• Minicrypt Cryptographic one-way functions exist but we
do not have public-key cryptography.

• Cryptomania Public-key cryptography is possible, i.e. two
parties can exchange secret messages over open channels.

These worlds are purposely not formally defined but rather sug-
gest the unknown possibilities given our knowledge of the P v NP
problem. The general belief, though not universal, is that we live
in Cryptomania.

Impagliazzo draws upon a “you can’t have it all” from the theory
of P versus NP. You can either solve hard NP problems or have
cryptography but you can’t have both (you can have neither).

Perhaps, though, we are heading to a de factoOptiland. Advances
in machine learning and optimization both in software and hard-
ware are allowing us to make progress on problems long thought
difficult or impossible, from voice recognition to protein folding and
yet, for the most part, our cryptographic protocols remain secure.

In a section called “What if P=NP?” of the 2009 survey [13]
I wrote

Learning becomes easy by using the principle of Oc-
cam’s razor–we simply find the smallest program con-
sistent with the data. Near perfect vision recognition,
language comprehension and translation and all other
learning tasks become trivial. We will also have much
better predictions of weather and earthquakes and
other natural phenomenon.

Today you can take your smartphone, unlock it by having the
phone scan your face, and ask it a question by talking and often
get a reasonable answer, or have your question translated into
a different language. You get alerts on your phone for weather
and earthquakes, with far better predictions than we would have
thought possible a dozen years ago.

Meanwhile cryptography has gone mostly unscathed beyond
brute-force like attacks on small key lengths.

In the next couple of sections we show how recent advances in
computing, optimization and learning are leading us to Optiland.

5 SOLVING HARD PROBLEMS
In 2016 Bill Cook (no relation to Steve) and his colleagues decided
to tackle the following challenge [9]: How do you visit every pub
in the United Kingdom in the shortest distance possible? They took
a list of 24,727 pubs and created the ultimate pub crawl, a walking
trip that took 45,495,239 meters, approximately 28,269 miles, a bit
longer than walking around the earth.

Cook had cheated a bit, eliminating a number of pubs to keep
the size reasonable. After some press coverage in the UK [7] many
complained about missing their favorite watering holes. So Cook
and company went back to work now using a list of 49,687 pubs.
After a year and a half of more effort they came up with a tour
length of 63,739,687 meters, or about 39,606 miles (see Figure 1).
One needs just a 40% longer walk to reach over twice as many pubs.

The pub crawl is just a traveling salesman problem, one of the
most famous of the NP-complete problems. The number of possible
tours through all the 49,687 pubs is roughly 3 followed by 211,761
zeros. Of course Cook’s computers don’t search the whole set of
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Figure 1: Shortest route through 49,687 UK pubs. Used by
permission (http://www.math.uwaterloo.ca/tsp/uk)

tours but use a variety of optimization techniques. Even more im-
pressive, the tour comes with a proof of optimality based on linear
program duality.

Taking on a larger task, Cook and company aim to find the
shortest tour through over two million stars where distances could
be computed. Their tour of 28,884,456 parsecs is within a mere 683
parsecs of optimal.

Beyond traveling salesman, we have seen major advances in
solving satisfiability and mixed integer programming, a variation
of linear programming where some, but not necessarily all, of the
variables are required to be integers. Using highly refined heuris-
tics, fast processors, specialized hardware and distributed cloud

computing one can often solve problems that arise in practice with
tens of thousands of variables and hundreds of thousands or even
millions of constraints.

Faced with an NP problem to solve, one can often formulate the
problem as a satisfiability or mixed integer programming question
and throw it at one of the top solvers. These tools have been used
successfully in verification and automated testing of circuits and
code, computational biology, system security, product and packag-
ing design, financial trading and even solving some hard mathe-
matical problems.

6 DATA SCIENCE AND MACHINE LEARNING
Any reader of CACM and most everyone else cannot dismiss the
transformative effects of machine learning, particularly learning by
neural nets. The notion of modeling computation by artificial neu-
rons, basically objects that computes weighted thresholds functions,
goes back to the work of Warren McCulloch and Walter Pitts in the
40’s [28]. In the 90’s, Yoshua Bengio, Geoffrey Hinton and Yan Le-
Cun (see [26]) would develop the basic algorithms that would power
the learning of neural nets, a circuit of these neurons several layers
deep. Faster and more distributed computing, specialized hardware
and enormous amounts of data helped propel machine learning to
where it can accomplish many human-oriented tasks surprisingly
well. ACM honored Bengio, Hinton and LeCun with the 2018 A. M.
Turing Award for their work recognizing the incredible impact it
has had in our society.

How does machine learning mesh with P v NP? In this section
when we talk about P = NP, it will be in the very strong sense of all
problems in NP having efficient algorithms in practice.

Occam’s razor states that “entities should not be multiplied with-
out necessity” or informally that the simplest explanation is likely
to be the right one. If P = NP we can use this idea to create a strong
learning algorithm: Find the smallest circuit consistent with the
data. Even though we likely don’t have P = NP, machine learning
can approximate this approach which led to its surprising power.

Nevertheless the neural net is unlikely to be the “smallest” possi-
ble circuit. A neural net trained by today’s deep learning techniques
is typically fixed in structure with parameters that are only on the
weights on the wires. To allow sufficient expressibility there are
often millions or more such weights. This limits the power of neural
nets. They can do very well with face recognition but they can’t
learn to multiply based on examples.

6.1 Universal Distribution and GPT-3
Consider distributions on the infinite set of binary strings. You
can’t have a uniform distribution but you could create distributions
where every string of the same length has the same probability.
However, some strings are simply more important than others. For
example, the first million digits of 𝜋 has more meaning than just a
million digits generated at random. You might want to put a higher
probability on the more meaningful strings.

There are many ways to do this, but in fact there is a universal
distribution that gets close to any other computable distribution
(see [25]). This distribution has great connections to learning, for ex-
ample any algorithm that learns with small error to this distribution
will learn for all computable distributions.

http://www.math.uwaterloo.ca/tsp/uk
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The catch is that this distribution is horribly non-computable
even if P = NP. If P = NP we still get something useful by creating
an efficiently computable distribution universal to other efficiently
computable distributions.

What do we get out of machine learning? Consider the Gen-
erative Pre-trained Transformer, particularly GPT-3 released in
2020 [5]. GPT-3 has 175 billion parameters trained on 410 billion
tokens taken from as much of the written corpus as could be made
available. It can answer questions, write essays given a prompt, even
do some coding. Though it has a long way to go, GPT-3 has drawn
rave reviews as generating material that looks human produced.

One can view GPT-3 in some sense like a distribution where we
can look at the probability of outputs generated by the algorithm,
a weak version of a universal distribution.

If we restrict a universal distribution to have a given prefix, that
provides a random sample prompted by that prefix. GPT-3 can
also build on such prompts, handling a surprisingly wide range of
domain knowledge without further training.

As this line of research progresses, we will get closer to a uni-
versal metric from which one can do built-in learning: Generate a
random example from a given context.

6.2 Science and Medicine
In science we have made advances by doing large scale simulations
to understand, for example, exploring nuclear fusion reactions. Re-
searchers can then apply a form of the scientific method: Create a
hypothesis for a physical system, use that model to make a predic-
tion and then instead of attempting to create an actual reaction, use
an experimental simulation to test that prediction. If the answer is
not as predicted, change or throw away the model and start again.
After we have a strong model we can then make that expensive test
in an physical reactor.

If P = NP, as we’ve mentioned above we could use a Occam’s
Razor approach to create hypotheses–find the smallest circuits
that are consistent with the data. Machine learning techniques can
work along these lines, automating the hypothesis creation. Given
data, whether generated by simulations, experiments or sensors,
machine learning can create models that match the data. We can use
these models to make predictions and then test those predictions
as before.

While these techniques allow us to find hypotheses and models
thatmight have beenmissed, they can also lead to false positives.We
generally accept hypothesis with a 95% confidence level, meaning
that one out of twenty bad hypotheses might pass. Machine learning
and data science tools can allow us to generate hypotheses at will
run the risk of publishing results not grounded in truth.

Medical researchers, particularly those trying to tackle diseases
like cancer, often hit upon hard algorithmic barriers. Biological
systems are incredibly complex structures. We know that our DNA
forms a code that describes how our bodies are formed and the func-
tions they perform but we have only a very limited understanding
on how these processes work.

As I wrote this, on November 30, 2020, Google’s DeepMind an-
nounced a new algorithm, AlphaFold, that predicts the shape of
a protein based on its amino acid sequence [22]. AlphaFold’s pre-
dictions nearly reach the accuracy of experimentally building the

amino acid sequence and measuring the shape of the protein that
forms. There is some controversy as to whether or not DeepMind
has actually “solved” protein folding and it is far too early to gauge
its impact but it in the long run this could give us a new digital tool
to study proteins, learn how they interact and how to design them
to fight disease.

6.3 Beyond P v NP: Chess and Go
NP is like solving a puzzle. Sudoku, on an arbitrarily sized board,
is NP-complete to solve from a given initial setting of numbers in
some of the squares. But what about games with two players who
take alternate turns, like Chess and Go, when we ask about who
wins from a given initial setting of the pieces?

Even if we have P = NP, it wouldn’t necessarily give us a perfect
chess program. You would have to ask if there is a move for white
such that for every move of black, there is a move for white such
that for very move of black ... white wins. You just can’t do all those
alternations of white and black on P = NP alone.

Games like these tend to be what’s called PSPACE-hard, hard
for computation that uses a reasonable amount of memory without
any limit on time. Chess and Go could even be harder depending
on the precise formulation of the rules (see [11]).

This doesn’t mean you can’t get a good chess program if P = NP.
You could find an efficient computer program of one size that beats
all efficient programs of slightly smaller sizes, if that’s possible.

Meanwhile even without P = NP, computers have gotten very
strong at Chess and Go. In 1997 IBM’s Deep Blue defeated Gary
Kasparov, the then world’s champion but Go programs struggled
against even strong amateurs.

Machine learning made dramatic improvements to computer
game playing. While there is a lengthy history, let me jump to Alp-
haZero developed by Google’s DeepMind [35] in 2017. AlphaZero
uses a technique known as Monte Carlo tree search (MCTS) that
randomly makes moves for both players to determine the best
course of action. AlphaZero uses deep learning to predict the best
distributions for the game positions to optimize the chances to win
usingMCTS.While AlphaZero is not the first program to useMCTS,
it does not have any built in strategy or access to a previous game
database. AlphaZero assumes nothing more that the rules of the
game. This allows AlphaZero to excel on both chess and go, two
very different games that share little other than alternating moves
and a fixed-size board. Recently DeepMind went even further with
MuZero [33] that doesn’t even get the full rules, just some repre-
sentation of the board position, a list of legal moves and whether
the position is a win, lose or draw.

Now we’ve gotten to the point that pure machine learning eas-
ily beats any human or other algorithm in Chess or Go. Human
intervention only gets in the way.

For games like Chess and Go, machine learning can achieve
success where P = NP wouldn’t be enough.

6.4 Explainable AI
Many machine learning algorithms seem to work very well but we
don’t know why. If you look at a neural net trained for say voice
recognition, it’s often very hard to understand why it makes the
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choices it makes. Why should we care? Here are a few of several
reasons.

• Trust How do we know that the neural net is acting cor-
rectly? Beyond checking input/output pairs we can’t do any
other analysis. Different applications have a different level of
trust. It’s okay if Netflix makes a bad movie recommendation,
but less so if a self-driving car makes a mistake.

• FairnessMany examples abound of algorithms trained on
data will learn intended or unintended biases in that data
(see [30]). If you don’t understand the program how do figure
out the biases?

• Security If you use machine learning to monitor systems
for security, you won’t know what exploits still might exist,
especially if your adversary is being adaptive. If you can
understand the code you could spot and fix security leaks.
Of course if the adversary had the code, they might find
exploits.

• Cause and Effect Right now at best you can check that a
machine learning algorithm only correlates with the kind
of output you desire. Understanding the code might help us
understand the causality in the data, leading to better science
and medicine.

Would we get a better scenario if P = NP? If you had a quick al-
gorithm for NP-complete problems, you could use it to find the
smallest possible circuit for say matching or traveling salesman but
you would have no clue why that circuit works. On the other hand,
the reasons you might want an explainable algorithm is so you can
understand its properties, but we could use P = NP to derive those
properties directly.

Whole conferences have cropped up studying explainable AI,
such as the ACM Conference on Fairness, Accountability and Trust.

6.5 Limits of Machine Learning
While machine learning has shown many surprising results in the
last decade, these systems are far from perfect and in most applica-
tions can still be bested by humans. We will continue to improve
machine learning capability through new and optimized algorithms,
data collection and specialized hardware. Machine learning does
seem to have its limits. As we’ve seen above, machine learning will
give us a taste of P = NP, it will never substitute for it.

Machine learning makes little progress on breaking cryptogra-
phy which we will discuss more in Section 7.

Machine learning seems to fail learning simple arithmetic, sum-
ming up a large collection of numbers or multiplying large numbers
for example. One could imagine combining machine learning with
symbolic mathematical tools. While we’ve seen some impressive
advances in theorem provers [19], we sit a long way frommy dream
task of taking one of my research papers with its informal proofs
and having an AI system fill in the details and verify the proof.
Again P = NP would make these tasks easy or at least tractable.

Machine learning may not do well when faced with tasks not
from the distribution in which it was trained. Anything from low-
probability edge cases, face recognition from a race not well repre-
sented in the training data, or even adversarial attempt to force a
different output by making a small change in the input, like chang-
ing a few pixels of a stop sign to make an algorithm to decide its a

speed limit sign [12]. Deep neural net algorithms can have millions
of parameters so they may not generalize well off distribution. If P
= NP one can produce minimum-sized models that would hopefully
do a better job generalizing but without the experiment we can’t
perform we never will know.

As impressive as we’ve seen machine learning, we have not
achieved anything close to Artificial General Intelligence, a term
that can mean something like true comprehension of a topic or an
artificial system that achieves true consciousness or self-awareness.
Even defining these terms can be tricky, controversial, perhaps
even impossible. Personally I’ve never seen a formal definition of
consciousness that captures my intuitive notion of the concept. I
suspect we will never achieve Artificial General Intelligence in the
strong sense, even if P = NP.

7 CRYPTOGRAPHY
While we have seen much progress in attacking NP problems, cryp-
tography in its many forms, including one-way functions, secure
hashes, and public-key cryptography seemed to have survived in-
tact. An efficient algorithm for NP, were it to exist, would break all
cryptosystems save those that are information-theoretically safe
such as one-time pads and some based on quantum physics. We
have seen many successful cybersecurity attacks but usually they
follow from bad implementations, weak random number generators
or human error, but rarely if ever from breaking the cryptography.

Most CPU chips now have AES built in, so once we’ve used
public-key cryptography to set up a private key, we can send en-
crypted data as easily as plaintext. Encryption powers blockchain
and cryptocurrencies, meaning people trust cryptography enough
to exchange money for bits.

Michael Kearns and Leslie Valiant [24] in 1994 showed that
learning the smallest circuit, even learning the smallest bounded-
layer neural net would could be used to factor number and break
public-key cryptosystems. Machine learning algorithms have so far
not been successfully used to break cryptographic protocols nor
are they ever expected to.

Why does encryption do so well when we’ve made progress
on many other NP problems? In cryptography we can choose the
problem, specifically designed to be hard to compute and well-
tested by the community. Other NP problems generally come to us
from applications or nature and tend not to be the hardest cases,
and more amenable to current technologies.

Quantum computing seems to threaten current public-key pro-
tocols that secure our Internet transactions. Shor’s algorithm [34]
can factor numbers and other related number theory computations.
This concern can be tempered in a few ways. Despite some im-
pressive advances in quantum computing we are still decades if
not centuries away from developing quantum machines that can
handle enough entangled bits to implement Shor’s algorithm on
a scale that can break today’s codes. Also, researchers have made
good progress towards developing public-key cryptosystems that
appear resistant to quantum attacks [31]. We will dwell more on
quantum computing in Section 9.

Factoring is not known to be NP-complete and it is certainly
possible a mathematical breakthrough could lead to efficient al-
gorithms even if we don’t have large-scale quantum computers.
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Having multiple approaches to public-key systems may come in
handy no matter your view of the future of quantum.

8 COMPLEXITY AS FRICTION
What advantages can we get from computational hardness? Cryp-
tography comes to mind. But perhaps the universe made computa-
tion difficult for a reason, not unlike friction.

In the physical world friction usually costs us energy to overcome
but on the other handwe can’t walk without it. In the computational
world, complexity can often slow progress but if it didn’t exist we
could have many other problems.

P = NP would allow us in many cases to eliminate this friction.
Recent advances in computing show us that sometimes eliminating
friction doesn’t always have the best consequences.

Consider even our private selves. No one can read our minds,
only see the actions that we take. Economists have a term “prefer-
ence revelation” that tries to determine our desires based on our
actions. For most of history, the lack of data and computing power
made this at best a highly imprecise art.

Today we’ve collected considerable amount of information about
people, from their web searches, their photos and videos, the pur-
chases they make, the places they visit (virtual and real), their social
media activity and so much more. Moreover machine learning can
process this information and make eerily accurate predictions of
people’s behavior. Computers often know more about us than we
know about ourselves.

We have the technological capability to wear glasses that would
allow you to learn the name, interests and hobbies, and even the
political persuasion of the person you are looking at. Complexity
no longer affords us privacy, we need to preserve privacy with laws
and corporate responsibility.

Computational friction can go beyond privacy. The US govern-
ment deregulated airline pricing in 1978 but finding the best price
for a route required making phone calls to several airline or work-
ing through a travel agent who didn’t always have the incentive
to find the lowest price. Airlines worked on reputation, some for
great service and others for lower prices.

Today we can easily find the cheapest airline flights and so
airlines have put considerable effort into competing on this single
dimension of price and have used computation to optimize pricing
to fill their planes at the expense of the whole flying experience.

Friction helped clamp down on cheating by students. Calculus
questions I had to answer as a college student in the 80’s can now
be tackled easy by Mathematica. I now have trouble creating home-
work and exam questions in introductory theory courses whose
solutions cannot be found online. With GPT-3 and its successors,
even essay and coding questions can be automatically generated.
How do we even motivate students when they will have even com-
plex questions answered just by asking them?

Stock trading used to happen in big pits with traders using hand
signals to match prices. Now algorithmic trading algorithms adjusts
to new pricing automatically occasionally leading to “flash crashes”.

Machine learning techniques have led to decision making sys-
tems for face recognition, matching social media content to users
and judicial sentencing often at scale. These decision systems have

done some good but also have led to significant challenges lead-
ing to amplifying biases and political polarization [30]. No easy
answers here.

This is just a few of many such stories. As computer scientists
our goal is to make computation as efficient and simple as possible
but we must keep in our minds the costs of reducing friction.

9 THE POWER OF QUANTUM COMPUTERS
As the limits of Moore’s laws have become far more apparent, com-
puter researchers have looked towards non-traditional computation
models to make the next computational breakthroughs leading to a
large growth in research and applications of quantum computing.

Major tech companies including Google, Microsoft and IBM have
put considerable resources toward developing quantum computers,
not to mention a raft of startups. The United States has launched a
National Quantum Initiative and other countries, notably China,
have followed suit.

In 2019, Google announced [1] they have used a quantum com-
puter with 53 qubits to achieve “quantum supremacy”, solving a
computational task that current traditional computation cannot.
While some have questioned that claim, we certainly sit at the
precipice of a new era in quantum computing. Nevertheless we
remain far away from having the tens of thousands of quantum bits
required to run Peter Shor’s algorithm [34] to find prime factors of
numbers that we cannot factor by today’s machines.

Often quantum computing gets described by the number of states
represented by the bits, for example the 253 states of a 53-qubit
machine. This might suggest that we could use quantum computing
to solve NP-complete problems by creating enough states to, say,
check all the potential cliques in a graph. Unfortunately, there are
limits to how a quantum algorithm can manipulate these states
and all evidence suggests that quantum computers cannot solve
NP-complete problems [3], beyond a quadratic improvement given
by Grover’s algorithm [18].

10 COMPLEXITY UPDATES
Since the 2009 survey, we have seen several major advances in our
understanding of the power of efficient computation. While these
results do not make significant progress towards resolving the P
versus NP problem, they still show how P v NP continues to inspire
great research.

10.1 Graph Isomorphism
Some NP problems resist characterization as either in P (efficiently
solvable) or NP-complete (as hard as the clique problem). The most
famous, integer factoring which we discuss in Section 7, still re-
quires exponential time to solve.

For another such problem, graph isomorphism, we have seen
dramatic recent progress. The graph isomorphism problem asks
whether two graphs are identical up to relabeling. Thinking in
terms of Facebook, given two groups of 1000 people, can we map
names from one group onto the other that preserve friendships?

Results related to interactive proofs in the 80’s gave strong ev-
idence that graph-isomorphism is not NP-complete [4] and even
simple heuristics can generally solve graph isomorphism problems
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quickly in practice. Nevertheless we still lack a polynomial-time
algorithm for graph isomorphism that works for all instances.

László Babai had a breakthrough result in 2016 giving a quasi-
polynomial-time algorithm for graph isomorphism [2]. The prob-
lems in P run in polynomial-time, that is 𝑛𝑘 for some constant 𝑘
where 𝑛 is the size of the input, for example the number of peo-
ple in each group. A quasipolynomial-time algorithm runs in time
𝑛 (log𝑛)

𝑘
, a bit worse than polynomial time but considerably bet-

ter than the exponential time (2𝑛
𝜖
) that we expect NP-complete

problems will require.
Babai’s proof is a tour-de-force masterpiece combining combina-

torics and group theory. Although getting the algorithm to run in
polynomial-time would require several new breakthroughs, Babai
gives a major theoretical result making dramatic progress on one
of the most important problems between P and NP-complete.

10.2 Circuits
If NP does not have small circuits over a complete basis (AND, OR,
NOT) then P ≠ NP. While there were significant circuit complex-
ity results in the 1980s, none get close to showing P ≠ NP. The
2009 survey remarked that there were no major results in circuit
complexity in the twenty years prior. That lasted about one more
year.

In 1987, Razborov [32] and Smolensky [36] showed the impos-
sibility of computing the majority function with constant-depth
circuits of AND, OR, NOT and Mod𝑝 gates for some fixed prime
𝑝 . We could prove little though for circuits with Mod6 gates. Even
showing that NEXP, an exponential-time version of NP, could not
be computed by small constant-depth circuits of AND, OR, NOT
and Mod6 gates remained open for decades. Constant depth cir-
cuits are believed to be computationally weak. The lack of results
reflects the paltry progress we have had in showing the limits of
computation models.

In 2010, Ryan Williams showed [39] that NEXP indeed didn’t
have such small constant depth circuits withMod6 or any otherMod
gate. He had created a new technique of applying satisfiability algo-
rithms that do just slightly better than trying all assignments and by
drawing in several complexity tools can achieve the lower bounds.
Later Williams with his student Cody Murray strengthened [29] the
result to show that nondeterministic quasipolynomial-time doesn’t
have small constant-depth circuits with Mod𝑚 gates for any fixed
𝑚.

Nevertheless showing that NP does not have small circuits of
arbitrary depth, which is what you would need to show P ≠ NP,
still remains far out of reach.

10.3 Complexity Strikes Back?
In a section entitled “A New Hope?” in the 2009 survey [13] we
discuss a new geometric complexity theory approach to attack-
ing the P versus NP problem based on algebraic geometry and
representation theory developed by Ketan Mulmuley and Milind
Sohoni.

In short Mulmuley and Sohoni sought to create high-dimension
polygons capturing the power of a problem in an algebraic version
of NP and show that it had different properties than any such
polygon corresponding to an algebraic property of P.

One of their conjectures considered the property that the poly-
gons contained a certain representation-theoretic object. In 2016
Peter Bürgisser, Christian Ikenmeyer and Greta Panova [6] showed
that this approach cannot succeed.

While the Bürgisser-Ikenmeyer-Panova result deals a blow to
the GCT approach to separating P versus NP, it does not count it
out. One could still potentially create polygons that differ based on
the number of these representation-theoretic objects. Nevertheless
we shouldn’t expect the GCT approach to settle the P versus NP
problem anytime in the near future.

11 THE POSSIBILITY OF THE IMPOSSIBLE
As we reflect back through fifty years of P versus NP, we see the
question having many different meanings. There is P versus NP
the mathematical question, formally defined, stubbornly open and
still with a million dollar bounty on its head. We’ve had times
when we could see a way forward towards settling the P versus NP,
through tools of computability theory, circuits, proofs and algebraic
geometry. At the moment we don’t have a strong way forward to
solving the P versus NP problem. In some sense we are further
away from solving the P versus NP problem than we ever were.

There’s also the NP problems we just want or need to solve.
In the classic 1976 text Computers and Intractability: A guide to
the Theory of NP-completeness [16], Garey and Johnson give an
example of a hapless employee asked to solve a NP-complete opti-
mization problem. Ultimately they go to the boss and says “I can’t
find an efficient algorithm but neither can all these famous people,”
indicating that the boss shouldn’t fire the employee since no other
hire would solve the problem either.

In those early days of P v NP, we saw NP-completeness as a
barrier–these were problems that we just couldn’t solve. As comput-
ers and algorithms evolved, we found would could make progress
on many NP problems through a combination of heuristics, approx-
imation and just brute-force computing. In the Garey and Johnson
story, if I were the boss, I might not fire the employee but tell them
to at least try mixed-integer programming, machine learning or just
a brute-force search. We are well past the time that NP-complete
means impossible. It just means there is likely no algorithm that
will always work and scale.

In my 2013 book on P v NP [14], I have a chapter entitled “A
Beautiful World” imagining a world where a Czech mathemati-
cian proved P = NP leading to a very efficient algorithm for all
NP problems. A world with medical advances, virtual worlds indis-
tinguishable from reality, learning algorithms that generate new
works of art. While we do not and likely will not ever live in that
ideal world, the wonderful (and not so wonderful) consequences
of P = NP no longer seem out of reach, but rather an eventual
consequence of our further advances in computing.

We truly on are way to nearly completely reversing the meaning
of the P v NP problems. Instead of representing a barrier, thinking
of P v NP opens door and shows us new directions, showing us the
possibilities of the impossible.
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