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We look at the hypothesis that all honest onto polynomial-time computable functions
have a polynomial-time computable inverse. We show this hypothesis equivalent to several
other complexity conjectures including

• In polynomial time, one can find accepting paths of nondeterministic polynomial-
time Turing machines that accept Σ∗.

• Every total multivalued nondeterministic function has a polynomial-time computable
refinement.

• In polynomial time, one can compute satisfying assignments for any polynomial-time
computable set of satisfiable formulae.

• In polynomial time, one can convert the accepting computations of any nondeter-
ministic Turing machine that accepts SAT to satisfying assignments.

We compare these hypotheses with several other important complexity statements. We
also examine the complexity of these statements where we only require a single bit instead
of the entire inverse.

1. INTRODUCTION

Grollmann and Selman [GS84] studied the invertibility of injective (one-to-one)
functions. They showed that every polynomial-time computable one-to-one func-
tion has a polynomial-time computable inverse if and only if P = UP, where UP is
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the class of languages accepted by nondeterministic Turing machines with at most
one accepting path.

In this paper we consider inverting the surjective (onto) functions. Grollmann
and Selman showed that every one-to-one and onto function is invertible if and
only if P = UP ∩ coUP, and Borodin and Demers [BD76] showed that, if every
many-to-one, poly-time computable onto function is poly-time invertible, then P =
NP∩ coNP. However, these consequences are still weaker than P = NP. Indeed, it
is conceivable that every poly-time computable, honest, onto function is invertible
in polynomial time, but P 6= NP. However, other than the above results, not
much is known about the consequences of assuming that every onto function is
polynomial-time invertible.

We will analyze the hypothesis that all polynomial-time computable, honest,
onto functions are polynomial-time invertible. We show that this proposition is
equivalent to several other fundamental propositions in complexity theory. An in-
teresting example is the following assertion: For all NP machines M that accept
SAT , there is a polynomial-time procedure that translates an accepting computa-
tion of M into a satisfying assignment. Informally, this is equivalent to saying that
there is essentially only one nondeterministic algorithm for accepting SAT . If this
holds then every many-one reduction between two NP sets can be converted to a
“witness-preserving” many-one reduction, which is equivalent to saying that Karp’s
notion of many-one completeness [Kar72] is equivalent to Levin’s notion of “uni-
versal search problems” [Lev73]. Some other equivalent propositions are tautology
search as studied by Impagliazzo and Naor [IN88] and the assertion that total func-
tions in the function class NPMV have refinements in PF [Sel94] (formal definitions
are given in Section 2). Because of the robust nature of these hypotheses, we use
the notation Q to denote the property that any or all of the propositions hold.

We also consider a weaker proposition and ask—can we efficiently compute a
single bit of an inverse of an onto function? This question is equivalent to the
single bit version of all of the other Q hypotheses. These propositions are also
equivalent to the following much studied hypothesis [GS88, FR94]: Every pair of
disjoint coNP sets are p-separable (that is, for all disjoint pairs of coNP sets, there
exists a p-time computable set that contains one of the two sets and is disjoint from
the other one). We use the notation Q′ to represent the property that any or all of
these hypotheses are true.

Papadimitriou [Pap94] (see also [BCE+95]) defined the function class TFNP to
study the complexity of computing proofs that are always known to exist because
of some combinatorial property. TFNP is the class of total functions whose graphs
are polynomial-time computable. An interesting question is whether every total
function in NPMVt has a refinement in TFNP. We show that this question is
intermediate between Q and Q′.

Does hypothesis Q′ imply hypothesis Q? This is equivalent to the question: If all
0-1 valued, total NPMV functions have refinements computable in poly-time, then
does every total NPMV function have poly-time computable refinements? Without
the totality constraint, the answer to this question is trivially in the affirmative,
since either of the hypotheses implies that P = NP. However, since neither Q nor
Q′ are known to be equivalent to P = NP, the equivalence of Q and Q′ seems
to be a harder question. We make progress towards resolving this question in the
affirmative and show that, if every 0-1 valued total NP function is computable in
poly-time, then for all k > 0, every total NP function with at most k-many output
values is computable in polynomial time (in symbols, for all k ≥ 0, Q′ ⇒ NPkVt ⊆c
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PF). To prove this, we use the technique of “binary search with multivalued oracles”
that may be of independent interest.

Finally, we study the relationship of Q to other well-known complexity hypothe-
ses. It is well-known that if Q holds, then P = NP∩coNP [BD76, IN88]. Continuing
this line of research, we show that Q′ implies that AM ∩ coAM = BPP and that
NP ∩ coAM = RP. Thus, if Q′ holds, then the graph isomorphism problem is in
RP, which is not known to follow by the assumption that P = NP ∩ coNP. Next,
we study how the assumption that Q holds affects some well-studied open ques-
tions in complexity theory. The first question is whether NP = UP implies that
the polynomial hierarchy collapses. While neither hypothesis Q nor NP = UP are
by themselves known to imply to collapse of the polynomial hierarchy, we show
that if both Q′ and NP = UP hold, then PH = ZPPNP ⊆ ΣP

2 . Next, we consider
the question of whether every paddable 1-degree collapses to a paddable 1-length-
increasing degree. We show that if Q holds, then indeed this is the case. Finally, we
list some known relativization results to show that some of our results are optimal
with respect to relativizable proof techniques.

In Section 2, we will give some preliminary definitions—in particular, we will
define function complexity classes. In Section 3, we will prove the various character-
izations of Q and in Section 4, we give our results about the relationship between Q
and other complexity assertions. In Section 5, we look at the relationship between
Q and Q′. We conclude by listing open questions in Section 6.

2. PRELIMINARIES

In this section, we will set down notation that will be used throughout the paper.
All languages and functions are defined over strings in the alphabet Σ = {0, 1}, the
set of all strings is denoted by Σ∗. We will let SAT denote the set of all satisfiable
boolean formulas. We assume that the reader is familiar with the definitions of
standard language complexity classes such as P,NP,UP, and AM [Bab85, BM88].
We will, however, formally define the various classes of nondeterministic functions
that we will be looking at in great detail.

We will use the notation set down by Selman [Sel94] (see also [BLS84]) for
defining partial, multivalued functions. A transducer is a nondeterministic Turing
machine that, in addition to its usual input and work tapes, has a write-only output
tape. The transducer T outputs a string y on input x if there exists an accepting
path of T on input x that outputs y (we denote that by T (x) 7→ y). Hence, a
transducer could be multivalued and partial, since different accepting computations
of the transducer may yield different outputs and since the transducer may not
have any accepting computation on the input.

Given a multivalued function f and a string x, we use the following set.

set-f(x) = {y | f(x) 7→ y}

Next, we define some useful function classes.

Definition 1.

(a) PF is the class of functions computable by a deterministic polynomial-time
transducer.

(b) NPMV is the class of partial, multivalued functions f for which there is a
nondeterministic polynomial-time machine N such that for every x, it holds
that
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1. f(x) is defined if and only if N(x) has at least one accepting computation
path, and

2. for every y, y ∈ set-f(x) if and only if there is an accepting computation
path of N(x) that outputs y.

(c) NPSV is the class of single-valued partial functions in NPMV.

(d) A function f ∈ NPkV if f ∈ NPMV and for all x ∈ Σ∗, ‖set-f(x)‖ ≤ k.

(e) A function f ∈ NPbV if for all x, set-f(x) ⊆ {0, 1}.

We will be interested in subclasses of NPMV that are total, that is, functions f
such that for all x ∈ Σ∗, ‖set-f(x)‖ > 0. Given a function class F , we will denote
the set of all total functions in F by Ft. For example, NPMVt is the class of total
functions in NPMV.

We also need the following technical notion of refinement. Given partial multi-
valued functions f and g, define g to be a refinement of f if dom(g) = dom(f) and
for all x in dom(g) and all y, if y is a value of g(x), then y is a value of f(x). If f is
a partial multivalued function and G is a class of partial multivalued functions, we
write f ∈c G if G contains a refinement g of f , and if F and G are classes of partial
multivalued functions, we write F ⊆c G if for every f ∈ F , f ∈c G. This notion en-
ables us to compare the complexity of two functions that output a different number
of values (see [Sel94]).

Selman [Sel94] and Hemaspaandra et al. [HNOS94] have shown that NPSVt =
PFNP∩coNP. From this, we get the following useful proposition.

Proposition 1. NPSVt ⊆ PF if and only if P = NP ∩ coNP.

We use the notion of refinement to define what it means to invert a many-to-
one function. If f ∈ PF is an honest function and F is a function class, then we
say that f is invertible in F if f−1 has a refinement in F—that is, there exists a
function g ∈ F such that dom(g) = dom(f−1) and for all x, if g(x) outputs y, then
f(x) 7→ y.

If M is a nondeterministic polynomial-time Turing machine, then consider the
following function pM ∈ NPMV. For all strings x ∈ L(M), pM (x) 7→ y if y is an
accepting computation of M on x.

We will abuse notation to use pM (x) to denote some unspecified output value
of pM on input x.

3. CHARACTERIZATIONS OF Q AND Q′

In this section we discuss two hypothesis that we will call Q and Q′ and give
several characterizations of each.

Theorem 2. The following are equivalent.

1. For all NP machines M that accept Σ∗, there exists a polynomial-time com-
putable function gM such that for all x, gM (x) outputs an accepting compu-
tation of M on x.

2. All polynomial-time computable onto honest functions are invertible in PF.

3. NPMVt ⊆c PF.
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4. For all S ∈ P such that S ⊆ SAT , there exists a poly-time computable g such
that for all x ∈ S, g(x) outputs a satisfying assignment of x.

5. P = NP ∩ coNP and NPMVt ⊆c NPSVt.

6. For all NP machines M such that L(M) = SAT , ∃fM ∈ PF such that for all
x ∈ SAT ,

fM (x, pM (x)) 7→ a satisfying assignment of x.

7. For all NP machines M,N such that L(M) ⊆ L(N), ∃fM ∈ PF such that
∀x ∈ L(M), fM (x, pM (x)) 7→ pN (x).

8. For all L ∈ P and for all NP machines M that accept L, ∃fM ∈ PF such that
∀x ∈ L, fM (x) 7→ pM (x).

Proof.

(1) ⇒ (3): Let f ∈ NPMVt. Consider the following NP machine M . On
input x, M guesses a value y and accepts x if and only if f(x) 7→ y. Since f is
total, L(M) = Σ∗. By (1), for all x, some accepting path of M is computable in
polynomial time. Hence f ∈c PF.

(3)⇒ (1): Let M be an NP machine accepting Σ∗. Consider the multivalued
function, fM (x) 7→ pM (x). Since L(M) = Σ∗, fM ∈ NPMVt and thus fM has a
refinement gM ∈ PF.

(2) ⇐⇒ (3): The assertion in (2) is just a restatement of the assertion
NPMVt ⊆c PF.

(3) ⇐⇒ (5): We simply observe that NPMVt ⊆c PF ⇐⇒ [NPMVt ⊆c
NPSVt and NPSVt ⊆ PF] and apply Proposition 1.

(1) ⇒ (6): Suppose M is an NP machine that accepts SAT . Define an NP
machine M ′ as follows. On input 〈x, p〉, if p is not an accepting computation of M
on x, then accept. Else, if p is an accepting computation of M on x, then guess an
assignment of x and accept iff it is a satisfying assignment. It is easy to see that
L(M ′) = Σ∗. By (1), there exists f ∈ PF computes an accepting path of M ′ on
input 〈x, p〉, and when p = pM (x), a satisfying assignment of x can be recovered
from the output of f .

(6) ⇒ (1): Let L(M) = Σ∗. Let h ∈ PF denote the many-one reduction
implied by Cook’s theorem [Coo71] from M to SAT . Let S be the range of f , that
is,

S = {h(x) | x ∈ Σ∗}.

Recalling the proof of Cook’s theorem, observe that h(x) is a boolean formula that
encodes a nondeterministic computation of M on x, so given a satisfying assignment
to h(x), some accepting path of M can be computed in polynomial time. Moreover,
it follows by the construction of h that x is encoded in h(x). So S ∈ P.

Now, define an NP machine N as follows. On input φ, N accepts immediately if
φ ∈ S. If φ 6∈ S, then N accepts φ if and only if there exists a satisfying assignment
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to φ. It is easy to see that N accepts SAT . By (6), there exists a function gN such
that on input 〈φ, pN (φ)〉, gN outputs a satisfying assignment of φ.

Now we can compute an accepting computation of M as follows. On input
x, let h(x) = φ and let gN (φ, pN (φ)) output w, a satisfying assignment for φ.
Now compute an accepting path of M on x using w. Since for all φ ∈ S, pN (φ)
is computable deterministically in polynomial time, the above procedure runs in
polynomial time.

(7) ⇒ (6): Simply let N be the NP machine that accepts SAT by guessing
satisfying assignments.

(3) ⇒ (7): Let M and N be such that L(M) ⊆ L(N). Define a function hM
as follows.

hM (x, y) 7→
{
pN (x) if y is an accepting computation of M(x)
x otherwise

It is easy to see that hM ∈ NPMVt, since hence for all pairs 〈x, y〉, if pM (x) 7→ y,
then there must exist a string z = pN (x), which will be output by hM . By (3), hM
has a refinement g in PF.

(8)⇒ (1): Trivial.

(3)⇒ (8): Let L ∈ P and let M be an NP machine that accepts L. Consider
the following total function.

hM (x) 7→
{
y if x ∈ L and y is an accepting computation of M(x)
x otherwise

Clearly, hM ∈ NPMVt, and by (3), hM has a refinement gM that can be computable
in polynomial time.

(8)⇒ (4): Trivial.

(4) ⇒ (8): Let L ∈ P and let M be an NP machine that accepts L. Let h be
the poly-time computable Cook reduction from M to SAT . Let h(L) denote the
range of h on strings in L.

h(L) = {h(x) | x ∈ L}

It is easy to see that h(L) ⊆ SAT and h(L) ∈ P. By (4), there exists a poly-time
procedure g that computes a satisfying assignment for all φ ∈ h(L). Thus, an
accepting computation of M on x ∈ L can be computed as follows: On input x,
compute g(h(x)) to obtain a satisfying assignment of h(x). It follows by the encod-
ing in Cook reduction that given a satisfying assignment of h(x), some accepting
path of M on x can be computed in polynomial time.

Definition 2. We let Q represent the hypothesis that any (and thus all) of the
statements in Theorem 2 hold.
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Suppose Q holds and A,B ∈ NP are such that A ≤P
m B via a function f .

It follows from (1) similarly to the proof that (1) ⇒ (6) in Theorem 2 that for
all Turing machines M,N such that L(M) = A and L(N) = B, there exists a
polynomial-time computable function gM,N such that for all x ∈ A,

gM,N (x, pM (x)) 7→ pN (f(x)). (1)

In their seminal papers on NP-completeness, Karp [Kar72] and Levin [Lev73] gave
independent definitions of many-one reductions. The main difference between the
Karp and Levin definitions of many-one reduction was that Levin insisted that in
addition to instances in A mapping to instances in B, there must be a polynomial
algorithm that maps every “witness” of a string in A to some “witness” of the
mapped string in B. This is just a restatement of Equation 1, hence Q can be
stated in another interesting way.

Corollary 3. Proposition Q holds if and only if for all A,B ∈ NP, every
Karp reduction from A to B can be extended to a Levin reduction.

Theorem 2 looks at finding entire witnesses. What if we just need a single bit
of a witness? This leads to a different set of equivalent propositions.

Theorem 4. The following are equivalent.

1. For all NP machines accepting Σ∗ there is a polynomial-time computable func-
tion gM that computes the first bit of an accepting computation of M .

2. For all polynomial-time computable onto honest functions f , there exists a
function g ∈ PF that computes the first bit of f−1.

3. NPbVt ⊆c PF.

4. For all S ∈ P such that S ⊆ SAT , there exists a poly-time procedure fM such
that for all x ∈ S, fM (x) 7→ the first bit of a satisfying assignment of x.

5. For all M such that L(M) = SAT, ∃fM ∈ PF such that ∀x, fM (x, pM (x)) 7→
the first bit of a satisfying assignment of x.

6. ∀M,N such that L(M) ⊆ L(N), there exists fM ∈ PF such that for all strings
x, fM (x, pM (x)) 7→ the first bit of pN (x).

7. [FR94] All disjoint coNP sets are P-separable.

Proof. The proof of the equivalence of the first six propositions are analogous
to the corresponding proofs in Theorem 2.

Fortnow and Rogers [FR94] showed that (7) is equivalent to (1).

Definition 3. We let Q′ represent the hypothesis that any (and thus all) of
the statements in Theorem 4 hold.

Remark: In Theorem 4, we can replace any of the occurrences of “the first bit”
with any polynomial-time computable boolean function of the bits.

Beame at al. [BCE+95] study the class TFNP, which is the class of functions
f in NPMVt such that the set graph(f) = {〈x, y〉 | f(x) 7→ y} is in P. Does the
graph of every function in NPMVt belong to P? The following proposition shows
that the answer is “no”, unless P = NP.
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Proposition 5. If for all f ∈ NPMVt, graph(f) ∈ P, then P = NP.

Proof. Consider the following 2-valued function f , which is clearly in NPMVt.
For all strings x ∈ Σ∗, f(x) outputs the number 2, and for all strings x ∈ SAT , f(x)
outputs 1. (So if x ∈ SAT , then f(x) outputs 1 and 2 on two different accepting
paths.) By hypothesis, graph(f) ∈ P. It is easy to see that x ∈ SAT if and only if
〈x, 1〉 ∈ graph(f).

Thus, it might be more meaningful to compare these classes using refinements.
We ask whether every NPMVt-function has a refinement whose graph is in P (in
symbols, is NPMVt ⊆c TFNP). We show that this hypothesis is intermediate in
complexity between Q and Q′.

Theorem 6. (i) If Q holds, then NPMVt ⊆c TFNP.

(ii) If NPMVt ⊆c TFNP, then Q′ holds.

Proof.

(i) We have NPMVt ⊆c PF ⊆ TFNP.

(ii) Let f be a function in NPbVt. We want to show that f has a refinement in
PF.

By hypothesis, there exists a function g ∈ NPMVt such that g is a refinement of
f and graph(g) ∈ P. Let M be the polynomial-time TM that accepts graph(g).
Then, a polynomial-time refinement N of f can be described as follows. On input
x, N simulates M on input 〈x, 0〉 and 〈x, 1〉. Since g is total, M must accept at
least one of 〈x, 0〉 or 〈x, 1〉. If M accepts 〈x, b〉, for some b ∈ {0, 1}, then N outputs
b. This implies that NPbVt ⊆c PF, and hence Q′ holds.

Finally, using the fact that for all NP machines M such that L(M) = Σ∗, the
accepting path of any given input can be verified in polynomial time, we get the
following characterization of Q.

Proposition 7. Q holds if and only if TFNP ⊆c PF

Hemaspaandra, Rothe and Wechsung [HRW95] define the complexity class EASY∀∀
as the class of NP languages L such that for all NP machines M , if L(M) = L,
then pM ∈c PF. It is easy to see that Q can be formulated as follows.

Proposition 8. Q holds if and only if EASY∀∀ = P.

4. RELATIONSHIPS WITH OTHER COMPLEXITY HYPOTHESES

In this section, we ask how propositions Q and Q′ relate to other well-known
complexity hypotheses. The following relationships are either well-known or easy
to prove.

Proposition 9. (i) [BD76, IN88] If Q′ holds, then P = NP ∩ coNP.

(ii) If Q′ holds, then every polynomial-time computable permutation has a polynomial-
time computable inverse.

(iii) If P = NP then Q holds.
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Next, we consider an interesting open question in structural complexity, namely,
whether NP = UP implies that the polynomial hierarchy collapses. We show that
if Q′ holds, then the answer to this question is affirmative. This fact is interesting
since it is not known whether Q′ itself implies a collapse of the polynomial hierarchy.

Theorem 10. If Q′ holds and NP = UP, then PH = ZPPNP ⊆ ΣP
2 .

Proof. It suffices to show that Q′ and NP = UP implies that NPMV ⊆c NPSV,
since by a result of Hemaspaandra et al. [HNOS94], if NPMV ⊆c NPSV, then
PH = ZPPNP. Further, to prove that NPMV ⊆c NPSV, it suffices to show that
there exists a single-valued nondeterministic transducer that computes a satisfying
assignment of a given boolean formula [Sel94].

Let M be an UP machine accepting SAT . Since Q′ holds, there exists a function
fM ∈ PF that computes the first bit of a satisfying assignment of φ, given φ and
pM (φ) as input. Let q be a polynomial that bounds the running time of M .

Now consider the following nondeterministic transducer T . On input φ(x1, x2, . . . , xn),
guess n-pairs of strings: (〈y1, b1〉, . . . , 〈yn, bn〉) such that b1, b2, . . . , bn ∈ {0, 1} and
y1, . . . , yn ∈ {0, 1}q(n).

Now verify that y1 = pM (φ(x1, . . . , xn)), b1 = fM (φ, y1), and for all i, 2 ≤ i ≤ n,
yi = pM (φ(b1, . . . , bi−1, xi, . . . , xn)) and bi = fM (x, yi). If all the above conditions
hold, then output b1 · b2 · · · bn.

It is easy to see that b1 · · · bn is a satisfying assignment of φ, since bn =
fM (φ(b1, . . . , bn−1, xn)). We need to show that b1 . . . bn is unique—that is, no two
accepting computations of T output two different assignments. This follows from
our following claim.

Claim 1. For all i, 1 ≤ i ≤ n, if b1, . . . , bi−1 are unique, then bi is unique.

Proof. If b1, . . . , bi−1 are unique, then φ(b1, . . . , bi−1, xi, . . . , xn) is unique, and
since M is a UP machine, pM (φ(b1, . . . , bi−1, xi, . . . , xn)) is unique too. Recall that
fM ∈ PF, so the claim follows.

Thus T is an NPSV transducer that outputs unique satisfying assignments, and
hence PH = ZPPNP.

A set Z is paddable if there exists a function g(·, ·) ∈ PF that is one-to-one,
length-increasing and p-time invertible in both arguments, and has the property
that for all strings x and y, x ∈ Z ⇐⇒ g(x, y) ∈ Z. A 1-1 paddable degree consists
of all sets that are 1-1 equivalent to some paddable set. A length-increasing degree
is a set C of languages such that for all A,B ∈ C, there exists a many-one reduction
f from A to B and for all strings x, |f(x)| > |x|. Paddable sets play an important
role in the study of the isomorphism conjecture [BH77]. SAT is known to be
paddable, so the class of NP-complete sets form a paddable degree. Berman and
Hartmanis [BH77] showed that if A and B are reducible to each other by 1-1 length-
increasing and invertible reductions, then A and B are isomorphic. Thus, if every
paddable degree collapses to a 1-1 length-increasing and invertible degree, then the
isomorphism conjecture holds. Here we show that if Q holds, then a weaker form
of the above implication is true..

Theorem 11. If Q holds, then every 1-1 paddable degree is a 1-1 length in-
creasing degree.
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Proof. Let A and B be many-one equivalent and let A ≤P
m B via a one-to-

one function f . If B is paddable, then trivially, A reduces to B via a 1-1 length-
increasing reduction [BH77]. Now assume that A is paddable. Let g be the padding
function of A. We will show that A reduces to B via a one-to-one length-increasing
reduction.

A one-to-one length-increasing reduction h′ from A to B can be constructed as
follows. Let x be an input string. Consider the set pad(x) = {g(x, y) | y ∈ Σ|x|+2}.
Now consider the set Im(x) = {f(w) | w ∈ pad(x)}. Since f is 1-1, it must
map distinct strings in pad(x) to distinct strings. Since g is 1-1 by definition,
‖Im(x)‖ > 2|x|+1. Thus, by the pigeon-hole principle, for all x ∈ Σ∗, there exists a
string z ∈ Im(x) such that |z| > |x|.

Define h to be the NPMV function that maps x to z such that z = f(w),
w ∈ pad(x), and |z| > |x|. It is easy to see that h is total. Since Q holds, h has a
refinement h′ in PF. Hence h′ is the 1-li reduction from A to B.

We now extend Proposition 9, part (i) to probabilistic classes. It is interesting to
note that none of the following collapses are known to be implied by the hypothesis
P = NP ∩ coNP.

Theorem 12. (a) Q′ → AM ∩ coAM = BPP.

(b) Q′ → NP ∩ coAM = RP.

Proof. To prove (a), let L ∈ AM ∩ coAM. It follows by a result of Furer et
al. [FGM+89], that the AM ∩ coAM protocol for L can be converted to a protocol
with “one-sided error,” that is, for all strings x, the “correct” verifier will accept x
for all random strings. Let V1 and V2 be the verifiers for the Arthur-Merlin systems
for L and L. Consider the following Turing machine M that accepts Σ∗ × Σ∗. On
input 〈x, r〉, M guesses a “response” from Merlin on input x and then nondeter-
ministically simulates a computation of V1 or V2 on input x with the random string
r. If either V1 or V2 accept, then accept 〈x, r〉. Clearly, M accepts Σ∗ × Σ∗, and
since Q′ holds, there exists a polynomial-time computable function fM that, on
input x, outputs the first bit of a computation of M . Hence, membership in L can
be determined as follows. On input x, simulate fM (x, r) on a random string r. If
the output of fM is an accepting computation of V1, then accept, else reject. It is
easy to see that the above procedure will be correct with high probability. Hence
L ∈ BPP.

The proof of (b) is identical to the proof of (a)—now M also guesses a witness
for x if x ∈ L, hence the BPP algorithm described above is an RP algorithm.

One interesting consequence of the Theorem 12 is that if Q′ holds, then the
graph isomorphism problem is in RP since Goldreich, Micali and Wigderson [GMW91]
showed that graph isomorphism is in coAM.

We end this section by listing the relativized results that are known about Q
and Q′.

Theorem 13. The following relativized results are known.

1. [BGS75] A relativized world where P = NP and thus Q and Q′ both fail, the
isomorphism conjecture fails and the polynomial-time hierarchy collapses.

2. [BG81, Ver93] Q and Q′ fail for random oracles and generic oracles.
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3. [FR94] Q holds relative to any sparse generic oracle with the subset property
(any subset of the sparse generic set is also a sparse generic).5

4. [FR94] There exists an oracle A such that NPA 6= coNPA and QA holds.

5. There exists an oracle B such that NPB = UPB, QB holds and NPB 6=
coNPB.

6. [FR94, IN88, CS93] There exists an oracle C such that PC = NPC ∩ coNPC

and Q′C fails.

7. [FFK96] There exists an oracle D such that QD fails and the isomorphism
conjecture holds relative to D.

8. [KMR89] There exists an oracle E such that QE fails and the isomorphism
conjecture fails relative to E.

Proof. To prove (4), it is not hard to see that the oracle in (3) can be constructed
so that NP = UP relative to the oracle. Hence the claim follows.

In particular, the oracle in (4) implies that the collapse of the polynomial hier-
archy in Theorem 10 is unlikely to be improved to NP = coNP. This also shows
that the result of Hemaspaandra et al. [HNOS94] is optimal under relativizable
proof techniques.

5. ONE BIT VS. MANY BITS

In this section we ask the question, does Q hold if and only if Q′ hold? This
question remains open even in relativized worlds.

We can rephrase the question as

Does NPbVt ⊆c PF imply that NPMVt ⊆c PF?

Note that the answer to the analogous question for partial functions is trivial, since
NPbV ⊆c PF implies that P = NP. However, a collapse of P = NP is not known
to be implied the corresponding hypothesis about total functions.

The following theorem obtains a partial “collapse” result for total functions.
The proof technique involves using binary search with multivalued oracles, which
might be of independent interest.

Theorem 14. For all k ≥ 0,

NPbVt ⊆c PF ⇐⇒ NPkVt ⊆ PF.

Proof. We will show that if NPbVt ⊆c PF, then for all k ≥ 2, NPkVt ⊆c
NP(k− 1)Vt. By induction, this implies that NPkVt ⊆ NPSVt. The theorem then
follows by Theorem 4 and Propositions 9(i) and 1.

Let f ∈ NPkVt for some constant k ≥ 2. Suppose that for every input x we
are given—as free advice—some value c(x) which is guaranteed to be between the
minimum and maximum outputs of f(x), inclusive (c(x) is otherwise arbitrary).
We can then nondeterministically compute a refinement of f with at most k − 1
values for every input x, as described by the algorithm A below. We then show
that if NPbVt ⊆c PF, then such a c(x) can be computed in polynomial time, which
then implies that f ∈c NP(k − 1)Vt, which proves the theorem.

5See [FR94] for a discussion on sparse genericity.
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Begin A
Input: x. (c(x) is also given as free advice.)
Guess an output y of f(x)
if y = c(x), then output y and halt.
else begin

S := {y}
repeat

Guess an output z of f(x)
such that z 6∈ S

S := S ∪ {z}
until S contains an element ≥ c(x).
if c(x) is the maximum element of S, then

Output c(x) and halt.
else

Output the minimum element of S
end
End A

We claim that procedure A outputs a refinement of f with at least one and
at most k − 1 values. First, note that all outputs of A are also outputs of f(x).
Second, note that A is total: if the repeat loop is entered, then by our assumption
about c(x) there must be at least two outputs of f(x), and since at least one output
is ≥ c(x), a value of z will always be found, and the loop will eventually terminate.

We now show that for all x, A(x) will output fewer than k strings. There are
two cases:

1. If c(x) is the maximum output of f(x), then A will only output c(x) on any
accepting path, i.e., A(x) is 1-valued.

2. If c(x) is less than some output of f(x), then the maximum output of f(x) is
never output on any accepting path of A. This is because any accepting path
will either output c(x) or else the minimum of a set of at least two distinct
outputs of f(x). In this case, A outputs at most k − 1 outputs of f(x).

Now to complete the proof, assume that NPbVt ⊆c PF. We show how to
compute a value c(x), lying between the extreme values of f(x), via something akin
to binary search. Let M be an NP machine that on input (x, y) outputs 0 if there
is a value z of f(x) with z ≤ y, and outputs 1 if there is a value z of f(x) with
z ≥ y (the machine may output both values on different paths). M computes an
NPbVt function, so it has a refinement Up(x, y) in PF. Note that if y is less (resp.
greater) than all outputs of f(x), then Up(x, y) = 1 (resp. Up(x, y) = 0). Fixing x,
we perform “binary search” on the space of all y (up to an appropriate polynomial
length bound), where for each probe y′ in the middle of a range, we use Up(x, y′)
to tell us where to continue searching—the upper half iff Up(x, y′) = 1. By the
aforementioned properties of Up, we will be steered into the range spanning the
outputs of f(x), and will converge on a value c(x) satisfying our requirements.

6. OPEN QUESTIONS

The following questions remain open.
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1. Does Q imply that the polynomial hierarchy collapses? Is there an oracle
relative to which Q holds and the polynomial hierarchy does not collapse to
ΣP

2 ?

2. Is there an oracle relative to which Q′ holds but Q fails?

3. For some non-constant function f , does NPbVt ⊆c PF imply that NPfVt ⊆c
PF?

4. Does Q and P=UP imply that the polynomial hierarchy collapses?

5. Q and the Isomorphism Conjecture: Is there an oracle relative to which Q
holds and the Isomorphism conjecture holds?
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