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Abstract—Data center network continues to grow relentlessly
in the amount of data traffic it has to “switch” between its server
racks. A traditional data center switching architecture, consisting
of a network of commodity packet switches (viewed as a giant
packet switch), cannot scale with this growing switching demand.
Adding an optical switch, which has a much higher bandwidth
than the packet switch but incurs a nontrivial reconfiguration
delay, to a data center network has been proposed as a cost-
effective approach to boosting its switching capacity. However,
to effectively do so, we need to meticulously schedule the optical
switch. In fact, we are dealing with two very different scheduling
problems here, namely hybrid switching and standalone optical
switching, depending on whether or not there is effective coop-
eration between the optical switch and the packet switch during
their respective scheduling processes.
In this work, we propose a solution that performs better than

the respective state of art solutions for both scheduling problems.
Our solution outperforms by a wide margin all existing optical
switching solutions in terms of throughput, yet its computational
complexity is comparable to those of others. Our solution also
has the best properties of both Eclipse and Solstice, the state
of the art hybrid switching solutions. Eclipse and Solstice have
different advantages: Eclipse has better throughput performance
but incurs a much higher computationally complexity than
Solstice. Our solution gets the better of both worlds: it delivers
almost the same throughput performance as Eclipse, yet incurs
a similar computational complexity as Solstice.

I. INTRODUCTION

Fueled by the phenomenal growth of cloud computing

services, data center network continues to grow both in size,

as measured by the number of server racks, and in link speed.

This has led to an explosive growth in the amount of traffic

the data center has to switch between its server racks [1]. A

traditional data center switching architecture typically consists

of a three-level multi-rooted tree of packet switches that starts,

at the lowest level, with the Top-of-Rack switches, that each

connects a rack of servers to the network [2]. However, such

architecture is struggling to scale with this explosively growing

switching capacity demand, as we can no longer increase the

switching capabilities of the underlying commodity packet

switches without increasing their costs significantly.

Adding a circuit switch, typically an optical switch, to the

network has been proposed as a possible solution approach to

this scalability problem [3], [4], [5], [6], [7], [8]. The optical

switch has a much higher bandwidth than the packet switch,

but incurs a nontrivial reconfiguration delay δ when the switch
configuration has to change. Depending on the underlying

Hybrid Switch

Fig. 1. Hybrid Circuit and Packet Switch

technology of the optical switch, δ can range from tens of

microseconds to tens of milliseconds [4], [9], [3], [10], [11].

Figure 1 illustrates a dual-switch architecture, in which n
racks of computers on the left hand side are connected, by both

an optical switch and a packet switch, to n racks on the right
hand side. Note that racks on the left hand side is an identical

copy of those on the right hand side; however for simplicity of

exposition, we assume that the former only transmit data and

refer to them as input ports, and assume that the latter only
receive data and refer to them as the output ports. This way, we
model each switch as a bipartite graph, and its configuration

a bipartite matching over this bipartite graph.

A. Two Different Scheduling Problems

In order to significantly boost the throughput performance of

the network, we need to carefully schedule the optical switch

to simultaneously fully utilize the bandwidth and minimize

the reconfiguration delays. We have significantly different

challenges, as outlined below, depending on whether or not

we have effective cooperation between the optical switch and
the packet switch during their respective scheduling processes.

Nevertheless in this work we propose a solution that kills both

birds (scheduling problems) with one stone.

In the first dual-switch system, the optical switch and the

packet switch operate in close coordination with each other

to maximize the overall throughput of the dual-switch system.

More specifically, these two switches are jointly scheduled,

and for every rack-to-rack traffic flow during a scheduling

epoch, the joint scheduler decides which portion of it should
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be switched by the optical switch and “at what times”,

while the rest, if any, is handled by the packet switch. This

scheduling problem is known as hybrid circuit (optical) and

packet switching [12], [13] in the literature, and we simply

call it hybrid switching in the sequel. Intuitively, with an

ideal hybrid switching schedule, the optical switch needs to

remove the bulk of the overall traffic workload, using as few

configurations as possible (so that the reconfiguration overhead

is kept to a minimum), leaving a residue workload that is

barely small enough for the packet switch to handle.

In the second dual-switch system, the optical and the packet

switches operate independently of each other with each switch

given a separate traffic workload to schedule and transmit.

This scenario is equivalent to scheduling a stand-alone opti-

cal switch, which is well studied in the optical networking

literature [14], [15], [16], [17], [18], [19], [11].

We highlight two major differences between the two sys-

tems. First, a stand-alone optical switch has to “sweep clean”

the entire workload assigned to it and cannot leave any

residue for the packet switch to handle, whereas the optical

switch can in hybrid switching. Second, in hybrid switching,

how the overall inter-rack traffic demand during an epoch

is split into these two workloads is an essential part of the

scheduling computation, whereas in optical switching, it is

decided “exogenously” (i.e., not a part of the scheduling

computation) [4].

B. Our Algorithm

In this work, we propose a solution that performs better

than the respective state of art solutions for both scheduling

problems. Our solution outperforms by a wide margin all

existing optical switching solutions in terms of throughput,

yet its computational complexity is comparable to those of

others, as we will show in §VI-C. Our solution also has
the best properties of both Eclipse [13] and Solstice [12],

the state of the art hybrid switching solutions. Eclipse and

Solstice have different advantages: Eclipse has better through-

put performance but incurs a much higher computationally

complexity than Solstice. Our solution, when used for hybrid

switching, gets the better of both worlds: it delivers almost the

same throughput performance as Eclipse, yet incurs a similar

computational complexity as Solstice. We need to keep the

complexity low because a scheduling epoch is typically no

more than a few milliseconds long to keep file transmission

delays low enough for various cloud applications, and ideally

the computation of the schedule should take no more than the

length of an epoch.

The Birkhoff-von Neumann decomposition (BvND), which

expresses a doubly stochastic matrix as the sum of permutation

matrices, lies at the heart of many hybrid and optical switch-

ing algorithms, including our solution. The standard BvND

algorithm [20] (to be presented in Algorithm 1), however,

results in a quadratic number of configurations (O(n2) in our
context) and hence cannot be used for optical switching with

nontrivial reconfiguration delay. While finding the minimum

number of configurations is NP-complete [21], we give an

efficient algorithm that results in only a linear number of

configurations (i.e., O(n)).

Our BvND algorithm, based on the well-known technique

of quantization, works as follows. A traffic demand matrix is

first quantized into an s-integer (i.e., an integral multiple of
s) for a certain s > 0, and carefully stuffed to an s-integer
matrix that is scaled doubly stochastic. Then, an existing

algorithm is applied iteratively to this s-integer matrix to
find and remove, in each iteration, a max-min matching [22],

[23] that corresponds to a configuration that has the longest

duration and contains no slack (i.e., an input-output connection
running idle) in our context, until the entire matrix is zeroed

out. Since the quantized, and stuffed traffic matrix is s-integral,
the max-min BvND algorithm guarantees to remove at least

s amount of traffic from every row/column of the matrix in

each iteration. Hence the number of iterations or configurations

is upper-bounded roughly by O(1/s), which is O(n) since
s = Ω(1/n) in our context. We refer to our solution as
Quantized BvND (QBvND).

We keep the computational complexity of QBvND low us-

ing an algorithmic trick that can reduce the total asymptotical

computational complexity of these O(n) max-min matching
computations (iterations) by a multiplicative factor of O(log n)
by take advantage of the integral nature of the quantized and

stuffed matrix. We will also describe in § IV that a slight

alternation gives a bandwidth- and computationally-efficient

hybrid switching algorithm as well.

The rest of the paper is organized as follows. In § II,
we describe the system model and formulate the problems

of both optical and hybrid switching. In § III, we provide
the background on BvND. In §IV, we describe our solution
QBvND in details. In §V and §VII, we survey related works. In
§VI, we evaluate our solution QBvND against other optical and
hybrid switching algorithms. Finally, we conclude the paper

in §VIII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section we describe the formal model for the optical

and hybrid switching problems. In both cases we are given

an n × n traffic demand matrix D, and each matrix entry
D(i, j) is the amount of traffic that originates at input port
(rack) i and is destined for output port (rack) j, within a
short (e.g., 3 milliseconds long) scheduling epoch of the

recent past (e.g., from 4 milliseconds ago to 1 millisecond
ago). Our optical or hybrid switching algorithm needs to meet

this demand in the next scheduling epoch. We assume full

knowledge of the precise and complete demand matrix D
(in this recent past epoch), as do all prior works on hybrid

switching save Albedo [24] (to be discussed in §V-C), and on
optical switching.

A. The Optical Switching Problem

Given a traffic demand matrix D, we aim to compute a

schedule that minimizes the transmission time, the amount
of time for the optical switch to transmit D. An alternative
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formulation, used in Eclipse [13], would maximize the effec-

tive throughput, i.e., the amount of traffic that the optical or

hybrid switch can transmit within a scheduling epoch of fixed

duration. These two formulations are roughly equivalent, as

mathematically the latter is roughly the dual of the former.

Hence throughout this work we use transmission time as

the metric in all performance evaluation plots, but effective

throughput as the metric in interpreting these plots.

A schedule of the optical switch consists of a sequence

of configurations (matchings) and their durations: (P1, α1),
(P2, α2), · · · , (PK , αK). Each configuration Pk is an n × n
permutation (matching) matrix where Pk(i, j) = 1 if input
i is connected to output j and Pk(i, j) = 0 otherwise. The
transmission time of the above schedule is

∑K
k=1(αk + δ),

where δ is the reconfiguration delay, and K is the number of

configurations in the schedule. The optical switching problem

aims to minimize this transmission time, under the constraint

that the configurations Pk with their respective durations αk
can “sweep clean” the traffic matrix D, or mathematically

min{Kδ +

K∑

k=1

αk} such that D ≤
K∑

k=1

αkPk (1)

Since this optimization problem is NP-hard [18], almost all

optical switching solutions use heuristics.

B. The Hybrid Switching Problem

In a hybrid switching system, the packet switch is typically

an electronic switch, which is an order of magnitude or more

slower than the optical switch. For example, the optical and

packet switches might operate at the respective rates of 100

Gbps and 10 Gbps per port. However, unlike the optical

switch, the packet switch does not incur a reconfiguration

delay when its configuration (matching) changes from one

switching cycle to the next.

In hybrid switching, the optical switch is allowed to leave a

small residue matrix R � (D−∑K
k=1 αkPk)

+ for the packet

switch to handle. Suppose the per-port rate of the packet switch

is rp. Then no row sum or column sum of the reside matrix R
can exceed rp, as otherwise the corresponding input or output
port would be given a workload larger than its its capacity.

Mathematically, this constraint can be written as

�
T ·R ≤ rp · �T and R · � ≤ rp · � (2)

where � is a column vector with n scalars that all have

value 1, and T stands for transpose. Hence the mathematical

formulation of the hybrid switching problem is the same as

that of optical switching, except that the constraint in (1) is

changed to (2) above. This optimization problem is also NP-

hard, because optical switching is a special case of it (where

rp = 0).

III. BACKGROUND ON BIRKHOFF-VON NEUMANN

DECOMPOSITION

Since many optical and hybrid switching solutions are

based on Birkhoff-von Neumann Decomposition (BvND), we

provide a brief introduction of it in this section.

A. Preliminaries

We say that a nonnegative n × n matrix M is doubly
stochastic (or doubly sub-stochastic) if every row or column

sum ofM is equal to 1 (or no larger than 1). The Birkhoff-von
Neumann Theorem [20] states that a doubly stochastic matrix

M can be expressed as a linear combination of permutation

matrices. More precisely, we have

M =

K∑

k=1

αkPk (3)

where
∑K
k=1 αk = 1 and P1, P2, ..., PK are permutation

matrices, in which each row or column has exactly one non-
zero entry with value 1.

Algorithm 1: BvND
Input : Doubly stochastic matrix M ;

Output: BvND of M : M =
∑K
k=1 αkPk;

1 k ← 1;
2 while M is not a zero matrix do
3 Find a perfect matching Pk in graph M ;

4 αk ← min{weights of the edges ∈ Pk};
5 M ← M − αkPk;
6 k ← k + 1;
7 end

The standard BvND algorithm, which is used in the con-

structive proof of the Birkhoff-von Neumann Theorem, is

shown in Algorithm 1. In this algorithm, the matrix M is

viewed also as a weighted bipartite graph, with n vertices,

denoted as I1, I2, ..., In, that correspond to the n rows of

M in one partite, and another n vertices, denoted as O1, O2,

..., On that correspond to the n columns of M in the other

partite; the bipartite graph contains an edge between Ii and Oj
if and only if the (current) value of the matrix element mij is
nonzero, in which case the weight of the edge is mij . In each
(say kth) iteration, Algorithm 1 first finds a perfect matching,

which corresponds to a permutation matrix Pk, in the bipartite
graph, and then subtracts αkPk from M . Here the coefficient

αk is set to the smallest value among the weights of the edges
in the perfect matching, so that after the subtraction, at least

one previously nonzero matrix element will become zero; once

a matrix element becomes zero, the corresponding edge is

deleted from the bipartite graph in performing the subsequent

iterations. Hence at most n2 iterations are needed to zero out

the matrix M , and Algorithm 1 has a total computational

complexity of O(n4.5), when the classical O(n2.5) maximum
cardinality matching algorithm [25] is used to find a perfect

matching in each iteration.

Let M be a doubly stochastic matrix. We call any uM ,

where u > 0 is a scaling factor, a scaled doubly stochastic ma-
trix. Clearly, any scaled doubly stochastic matrix can also be

expressed as a linear combination of permutation matrices, and
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this decomposition can also be computed using Algorithm 1.

In this case, the sum of the linear coefficients
∑K
k=1 αk is

equal to u instead of 1.

B. The Stuffed BvND Algorithm

A BvND-based algorithm was proposed in [26] for packet

switching when the traffic arrival rate matrix Λ is constant or

very slowly varying. It consists of two steps, namely stuffing

and BvND, so we call it stuffed BvND in the sequel. In the

stuffing step, the matrix Λ, which is in general not scaled
doubly stochastic, is stuffed into a scaled doubly stochastic

matrix Λ′, using the von Neumann stuffing algorithm [27]. In

the BvND step, Algorithm 1, the standard BvND algorithm,

is used to decompose the scaled doubly stochastic matrix

Λ′ into
∑K
k=1 αkPk. To service the incoming traffic, the

packet switch simply repeats the following schedule forever

(or until Λ changes): use permutation matrix P1 as the switch

configuration for a duration of α1, P2 for a duration of α2,

. . . , and PK for a duration of αK . Since this schedule is
precomputed for repeated use, we refer to such an operation

as precomputed packet switching in the sequel.

The stuffed BvND algorithm in general works for neither

optical nor hybrid switching, because the resulting decom-

position would in general consist of K = O(n2) different
configurations, where n is the number of racks, and hence

incur a prohibitively high reconfiguration delay cost; it works

well for packet switching because the reconfiguration delay

there is zero. For this reason, although many existing optical

and hybrid switching solutions are based on BvND, they all

have to somehow reduce this number K.

IV. OUR SOLUTION: QUANTIZED BVND (QBVND)

In this section, we first provide an overview of QBvND in

§IV-A, then describe the max-min BvND step of QBvND in

§IV-B, and finally discuss how to tune a critical parameter of
QBvND in §IV-C.
A. Pseudocode of QBvND

In this section, we first provide an overview of QBvND in

the context of optical switching, and then describe, toward the

end, how to modify it slightly for hybrid switching.

Algorithm 2: QBvND
1 Quantize D to an s-integer matrix D(Q);

2 Stuff D(Q) to a scaled doubly stochastic matrix D(QS);

3 Max-min BvND of D(QS) into
∑K
k=1 αkPk;

The pseudocode of our solution, called Quantized BvND

or QBvND in short, is shown in Algorithm 2. As its name

suggests, QBvND prepends a quantization step before the two

other steps described earlier, namely stuffing and BvND. In

the quantization step, an appropriate quantization unit s > 0
is first chosen and fixed, and then every element Dij in a
doubly sub-stochastic traffic demand matrix D � (Dij)n×n is
rounded up to �Dij

s � · s, the nearest s-integer, defined as an

integral multiple of s. The resulting s-integer matrix is denoted

as D(Q) � (D
(Q)
ij )n×n.

Due to the positive rounding error (no larger than s) added
to each matrix element of D(Q) in the rounding-up process,

the maximum row or column sum of D(Q) could exceed 1
(i.e., the matrix may not be doubly sub-stochastic any more),

but is clearly upper-bounded by 1+ns. As indirectly explained
at the end of § III-A, this maximum row or column sum

corresponds to the minimum net (excluding the reconfiguration

delays) transmission time
∑K
k=1 αk required to serve traffic

matrix D(Q). Hence this step is not slack-free in the sense the

minimum net transmission time in general increases after the

quantization step.

In the second step, the s-integer matrix D(Q) is carefully

stuffed into another s-integer matrix D(QS) that is at least as

large (i.e, D(QS) ≥ D(Q)) and is scaled doubly stochastic.

This problem, known as matrix stuffing, has been studied

in [27], [12], [28]. Among many different such algorithms,

we use for our solution QBvND a greedy heuristic algorithm,

called QuickStuff, that was used in the Solstice algorithm [12]

for hybrid switching, because it possesses two desirable prop-

erties that others generally don’t. The first property is that, if

the input M is an s-integer matrix (hence φ is an s-integer),
the output computed by QuickStuff is also an s-integer matrix.
As explained earlier, preserving this “s-integrality” during the
stuffing step is necessary for the next step (BvND) to cap

K, the number of configurations (matchings) in the resulting
schedule, at O(n). The second property is that, QuickStuff
avoids, to the extent possible, converting a zero element to a

nonzero element and thereby decreasing the sparsity of the

matrix. It is desirable for the traffic demand matrix to be

sparse, since the BvND of a sparse matrix generally contains

a smaller number of configurations than that of a dense

one, resulting in a smaller total reconfiguration delay. Finally,

we note that all stuffing algorithms, including QuickStuff,

guarantees to be slack-free in the sense the maximum row or

column sum of D(QS) is the same as that of D(Q) (so the net

transmission time remains unchanged after the stuffing). We

refer readers to [12] for a detailed description of QuickStuff.

The last step is the BvND of D(QS). Now since D(QS) is an

s-integer scaled doubly stochastic matrix, it can be expressed
as a linear combination of at most O(n) (instead of O(n2))
permutation matrices, whose corresponding durations are s-
integers, as follows. Suppose for the moment that Algorithm 1

is used for the decomposition. Then all coefficients αk, k =
1, 2, · · · ,K, are positive s-integers for the following reason. In
the first iteration of Algorithm 1, the coefficient α1 computed

from Line 4 must be a positive s-integer, as it is the minimum
of a set of s-integer edge weights, so D(QS) remains an s-
integer matrix after the subtraction of α1P1 from it. Hence α2

is also a positive s-integer, and so on. Since each αkPk takes
away at least weight s from any row or column in D(QS),

whose sum is upper-bounded by 1 + ns as explained earlier,
there are at most (ns + 1)/s configurations in the BvND of

D(QS). Since s is set to Ω(1/n) or larger, as will be explained
in §IV-C, the number of configurations K is at most O(n).
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To further reduce the total number of configurations K,
we use the max-min BvND algorithm [21], to be described

in § IV-B, instead of Algorithm 1, to decompose D(QS).

The resulting K is also O(n), but with a much smaller

constant factor. We will show in §IV-B that the computational
complexity of the last step (max-min BvND) is O(n3.5). Since
it dominates the complexities of the other two steps, which are

both O(n2), the overall complexity of QBvND is O(n3.5).
Finally, to use QBvND for hybrid switching, only the

following slight modification needs to be made to its last

step (max-min BvND): the iterative process of searching for

max-min matchings can stop as soon as what remains of the

quantized stuffed matrix D(QS) can be handled by the packet

switch (i.e., constraint (2)).

B. A Modified Max-Min BvND Algorithm

In this section, we describe the last step of our QBvND

solution: max-min BvND [21]. The max-min BvND algorithm

differs from Algorithm 1 only in that, in each iteration (say

kth), whereas the latter finds an arbitrary full matching Pk
(Line 4), the former finds a Pk that maximizes the value of
the corresponding αk. Such a matching is called max-min
matching because αk is the minimum among the weights

of the edges in Pk, and we are trying to maximize this
minimum. As a result, max-min BvND can extract most or

all of the traffic from the traffic demand matrix using much

fewer configurations than almost all other BvND algorithms.

Now we describe the algorithm, proposed in [22], for

computing a max-min matching P in the weighted bipartite

graph that corresponds to a nonnegative matrix M . With a

slight abuse of notation, we denote this bipartite graph also as

M . This algorithm can be best explained using the following

alternative formulation of this computation problem. Consider

the pruning of the graph M according to a threshold ε > 0 as
follows: an edge is removed from the graph M if and only if

its weight is less than ε. We denote the resulting pruned graph
as Mε. This computing problem can be restated as finding the

maximum ε forMε to contain a full matching (which is exactly

the max-min matching P we are looking for). This algorithm

is simply to binary-search for this ε in the interval [0, εmax],
where εmax is the value of the largest element in the matrix
M , as follows: at each binary search point ε′, the search is
considered successful if a full matching can be found using

the classical O(n2.5) maximum cardinality matching (MCM)

algorithm [25]. The computational complexity of finding a

single max-min matching is O(n2.5 log n), since log(εmax)
binary search steps are needed, each of which involves a MCM

computation, and log(εmax) is O(log n) in our context.
Using this max-min matching algorithm, the total com-

plexity of the max-min BvND step in QBvND would be

O(n3.5 log n), since it needs to run this algorithm at most

O(n) times thanks to the quantization. In QBvND, by doing
away with the binary search, we reduce this complexity further

by a factor of O(log n) as follows. The modified algorithm
conducts a linear search, starting from the value of the largest

matrix element in D(QS) (also denoted as εmax), which is an

s-integer no larger than 1+s (since the original traffic demand
matrix D is sub-stochastic), for all O(n) max-min matchings.
In other words, it searches for and extracts full matchings

exhaustively (i.e., until a full matching can no longer be found)
at each of the O(n) arithmetically progressing graph-pruning
thresholds εmax, εmax − s, εmax − 2s, · · · , 2s, and s.
Since the modified algorithm conducts at most O(n) suc-

cessful searches, each of which results in a max-min matching

and has complexity O(n2.5), and at most O(n) unsuccessful
searches (once at each of the O(n) graph-pruning thresh-
olds), its total complexity is O(n3.5). In QBvND, we also
significantly reduce the constant factor inside this big-O, by

increasing the unit step of the linear search (i.e., the arithmetic

progression) from s to 5s. In doing so, we observe only
a negligible degradation in the qualities (i.e., the durations

and the number) of the resulting configurations (matchings).

Finally, we note this linear search trick can be used here

only because the matrix D(QS) is s-integral. Otherwise, the
algorithm would have to linearly search through all distinct

values, in the decreasing order, among the nonzero matrix

elements (in general O(n2) of them), resulting in a total
complexity of O(n4.5).

C. Theoretical Analysis and Quantization Unit Selection

In this section, we explain how to approximately maximize

the throughput performance (or equivalently minimize the

transmission time) of QBvND by tuning the quantization unit

s. The (gross) transmission time of an optical switch schedule
can be split into two parts: the net transmission time

∑K
k=1 αk

and the reconfiguration cost Kδ. As explained in §IV-A, in
optical switching, the first part is upper-bounded by 1 + ns,
and K is upper-bounded by (1 + ns)/s, so the second part is
upper-bounded by (1+ns)δ/s. Hence the (gross) transmission
time is upper-bounded by 1+ns+ 1+ns

s δ = 1+nδ+ns+δ/s,

which reaches the minimum when s =
√

δ/n. Although this
upper bound is not exactly the objective function we would

like to minimize, it is reasonable to use this optimal parameter

setting
√
δ/n “asymptotically”, that is, to set s to β

√
δ/n

where β > 0 is a tunable parameter.
It remains to explain how to set this β. In optical switching,

the second part Kδ (upper-bounded by (1 + ns)δ/s) is quite
large so we would like to make s larger to reduce it. In this
case, we set β to a value larger than 1 (e.g., set to

√
2 in §VI).

In hybrid switching, however, the second part becomes smaller

since the packet switch can absorb a residue matrix that would

otherwise have to be swept clean by a fairly large number of

configurations with short durations. Hence, it becomes less

important to reduce the second part by increasing s. In this
case, we choose β < 1 (e.g., set to 0.3 in §VI).

V. CLOSELY RELATED WORKS

In this section, we describe several (precomputed) packet,

optical, and hybrid switching algorithms that are most related

to QBvND and we will evaluate QBvND against in §VI. We
will also compare their computational complexities against that

of QBvND in §V-D.
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A. Precomputed Packet Switching Algorithms

We are aware of two other quantized BvND algorithms,

namely RQ (Rate Quantization) [29] and FBD (Frame-Based

Decomposition) [30]. Both were proposed, more than a decade

ago, for precomputed packet switching (PPS). They both ad-

dress the following problem with Chang et. al’s original solu-

tion (i.e., the stuffed BvND algorithm described in §III-B) [26]
for PPS: among the numerous (more specifically O(n2))
configurations {(Pk, αk)}Kk=1 contained in the resulting de-

composition, most of them are very short in duration (i.e.,

with a tiny αk), and moreover much shorter than a switching
cycle of the packet switch (called a frame in FBD). However,

each of these short configurations still has to be covered by

a full switching cycle, resulting in a poor utilization of the

packet switch bandwidth.

In both RQ and FBD, the sole purpose of quantization is

to reduce the number of such severely underutilized switching

cycles. Although as an unintended side benefit of the quantiza-

tion, both algorithms also reduce the number of configurations

in the resulting decomposition, this number is still too large

for bandwidth-efficient optical switching, as we will show

in §VI-C3. Note this is not a shortcoming of either algorithm:
there is no incentive to reduce the number of configurations

in packet switching, where the reconfiguration delay is zero.

B. Optical Switching Algorithms

Scheduling of optical switch alone has been studied for

decades. In early works the reconfiguration delay is often as-

sumed to be either zero [14], [15], [11] or infinity (a very large

value) [15], [16], [17]. In later works, such as DOUBLE [15],

ADJUST [18] and [16], [19], the reconfiguration delay is

usually assumed to be finite and nonzero. Towles et al. [15]

proposed three different scheduling algorithms, EXACT, MIN,

and DOUBLE, for the optical switches with zero, infinite, and

nonzero finite reconfiguration delays respectively. EXACT is

identical to the stuffed BvND algorithm described in §III-B,
which is very bandwidth-inefficient for optical switching when

the reconfiguration delay is high, due to the very large number

(O(n2) in general) of configurations it has to use.
MIN is proposed to significantly reduce the number of

configurations to at most n. Its algorithm is identical to Al-

gorithm 1 except that in Line 4, αk is set to the maximum
(instead of the minimum in Algorithm 1) among the weights of

edges in Pk. This way, after the subtraction of αkPk, n matrix
elements become zero. Hence only n configurations are needed
to “cover” the matrix. The flip side of the coin however is that

most of the n input-output connections in such a configuration
can be severely underutilized (i.e., contain considerable slack),

as their corresponding edge weights can be much smaller than

this maximum.

DOUBLE is a compromise between the two extremes

EXACT and MIN. Each schedule computed by DOUBLE uses

at most 2n configurations, each of which has the same duration
1/n, to “cover” a doubly sub-stochastic traffic demand matrix.
The algorithm is named DOUBLE because the total duration

of these configurations is bounded at 2 (= 2n ∗ 1/n), and

any set of configurations that “cover” a doubly sub-stochastic

matrix has a total duration of at least 1. In DOUBLE, each
matrix element Dij is rounded down to the closest 1/n-integer

nDij�/n called the quotient, and their difference is called the
residue. This way, the matrix D is split into a quotient matrix

and a residue matrix. Each matrix can be covered by at most

n configurations, each of which has duration 1/n.
ADJUST [18] is different than DOUBLE only in that

ADJUST sets the value of quantization unit s to
√
δ/n (like

we did in §IV-C) to strike the optimal compromise between
EXACT and MIN. ADJUST is the same as DOUBLE when

the configuration delay δ is equal to 1/n, since both are using
the same quantization unit

√
δ/n = 1/n in this case.

C. Hybrid Switching Algorithms

Liu et al. [12] first formulated the mathematical problem of

the hybrid switch scheduling and proposed a greedy heuristic

solution, called Solstice. Like QBvND, Solstice is also a

BvND-based algorithm, and it also attempts to find and extract

a max-min matching in each iteration. However, different

than QBvND, Solstice does not quantize the demand matrix

D, and to reduce its computational complexity also by a
factor of log(n), Solstice settles with an approximate max-
min matching (in each iteration) whose weight is at least half

of that of an actual one.

Different than Solstice and QBvND, Eclipse [13] is not a

BvND-based algorithm. In each iteration, Eclipse attempts to

extract and subtract a configuration (P, α) from the demand

matrix D that maximizes a cost-adjusted utility function.

However, this optimization problem is very computationally

expensive: Even a much more efficient heuristic used instead

in [13] has to perform 4 logn computationally expensive

maximum weighted matching (MWM) computations [31] to
arrive at such a (approximate) utility-maximizing matching.

This high computational cost will be highlighted in Table I.

Finally, we note neither Solstice nor Eclipse is suitable for

optical switching for the following reason. Both are designed

and optimized only for identifying a relatively small number

of configurations with relatively long durations that the optical

switch can use to remove the bulk of D. If we were to run
both to the “bitter end” (i.e., until D is a zero matrix), as

we would have to in optical switching, both would produce a

large number of configurations with tiny durations, and hence

incur a very high reconfiguration cost.

D. Computational Complexity Comparisons

Table I summarizes the computational complexities of the

optical and the hybrid switching algorithms that QBvND will

be compared against in §VI. In the complexities of Solstice
and Eclipse, K denotes the total number of configurations in

the schedule. Although K is not too large (roughly O(n))
in our simulation scenarios, it could be as large as O(n2)
in the worst case. Hence the worst case complexities of

Solstice and Eclipse are both higher than that of QBvND,

which is O(n3.5). Compared to optical switching algorithms,
although QBvND has a higher computational complexity than
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TABLE I
COMPLEXITIES OF VARIOUS ALGORITHMS

Algorithms Complexities

Optical

Switching

DOUBLE [15] O(n2 log n)
ADJUST [18] O(n2 log n)
MIN [15] O(n3.5)
EXACT [15] O(n4.5)

Hybrid

Switching
Solstice [12] O(Kn2.5)

Eclipse [13] O(Kn2.5 log2 n)

Precomputed

Packet
Switching

BvND [26] O(n4.5)
FBD [30] O(n2 log n)
RQ [29] O(n4.5)

DOUBLE and ADJUST, it outperforms all four of them, in

terms of throughput performance, by a wide margin, as will

be shown in §VI.
VI. EVALUATION

In this section, we evaluate the performance of QBvND

both as an optical switching solution (§ VI-C) and as a

hybrid switching solution (§VI-D). We compare QBvND with
other optical and hybrid switching solutions, under various

system parameter settings and traffic demands. For all these

comparisons, we use the transmission time Kδ +
∑K
k=1 αk

(needed to transmit D) as the performance metric.

A. Traffic Demand Matrix D

As shown in [12], [13], the typical workloads we see in data

centers exhibit two characteristics: sparsity (the vast majority

of the demand matrix elements have value 0 or close to 0)
and skewness (few large elements in a row or column account

for the majority of the row or column sum). Hence, for our

simulations, we use the same set of sparse and skewed demand

matrices as used in [12], [13]. In each such matrixD, each row
(or column) contains nL large equal-valued elements (large
input-output flows) that as a whole account for cL (percentage)
of the total workload to the row (or column), nS medium
equal-valued elements (medium input-output flows) that as a

whole account for the rest cS = 1 − cL (percentage), and

noises. Hence nL and nS control the sparsity, and cL and

cS control the skewness, of the traffic demand, respectively.
Roughly speaking, we have

D =

nL∑

i=1

cL
nL

Pi +

nS∑

i=1

cS
nS

P ′
i +N (4)

where each Pi and each P ′
i is an n × n random permutation

matrix.

Same as in [12], [13], in our simulation studies, the default

values of the sparsity parameters nL and nS are set to 4 and 12
respectively and the default values of cL and cS are set to 0.7
(i.e., 70%) and 0.3 (i.e., 30%) respectively. In other words,
in each row (or column) of the demand matrix, by default

the 4 large flows account for 70% of its total traffic demand,

and the 12 medium flows account for the rest 30%. We will

also vary the sparsity parameters nL and nS and skewness
parameters cL and cS in our evaluations. In Equation (4),

before a noise matrix N (described next) is added to it, each

such D is doubly stochastic, that is, the sum of each row or

column of it is 1. This normalized workload 1 is defined as
the amount of traffic that an established (after paying for the
reconfiguration cost) optical switch connection/link, which we

assume to have a normalized rate also of 1, can transmit in 1
unit of time, defined as the length of a scheduling epoch (e.g.,

3 milliseconds).
As shown in Equation (4), we also add a noise matrix term

N to D, like in [12], [13]. Each nonzero element in N is

a Gaussian random variable that is added to a traffic demand

matrix element that was nonzero before the noise added. Each

nonzero (noise) element here in N has a standard deviation,

which is equal to 0.3% of the normalized workload 1.

B. System Parameters
In this section, we introduce the system parameters, for both

optical and hybrid switching, used in our simulations.
Network size: By default, both the optical switch and the
packet switch (if applicable) has n = 100 input/output ports
(i.e., 100 racks of servers in the data center) although we will
vary n in §VI-D3. Other reasonably large (say ≥ 32) switch
sizes produce similar results.
Reconfiguration delay of the optical switch δ: In both
optical and hybrid switching, the larger this reconfiguration

delay is, the more time the optical switch has to spend on

reconfigurations, and hence the higher the transmission time

is. By default, δ = 0.01 (i.e., 1/100 of the scheduling epoch),
although we will vary δ in our simulation studies.
Optical switch per-port rate rc = 1 and packet switch per-
port rate rp: As far as designing hybrid switching algorithms
is concerned, only their ratio rc/rp matters. The higher this
ratio is, the higher percentage of traffic should be transmitted

by the optical switch. This ratio varies from 8 to 40 in

our simulations. As explained earlier, we normalize rc to 1
throughout this paper.
The largest row or column sum in a (random) demand

matrix D generated using (4), also a random variable, has

an expectation that is roughly equal to 1.0325, where the
fractional part 0.0325 comes from the noise matrix N . In
optical switching, since rc = 1, even with perfect scheduling
and zero reconfiguration delay, the total transmission time is at

least 1.0325. In hybrid switching, the transmission time could
be smaller than 1, thanks to the switching and transmission
capacity of the packet switch, although that never materialized

in our simulation studies, likely due to the nontrivial recon-

figuration delays.
In the rest of §VI, every point in every plot in every figure

is the sample mean averaged from 100 simulation runs, so is
every number in Table II and Table III.

C. QBvND vs. Others for Optical Switching
In this section, we compare QBvND, as an optical switching

solution, with three state of the art optical switching algo-

rithms: ADJUST [18], DOUBLE [15], and MIN [15]. Note
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δ

Fig. 2. Comparison while varying the reconfiguration delay (optical)

that when δ = 0.01 (i.e., δ = 1/n since n = 100), ADJUST
is the same as DOUBLE, as we explained in §V-B. Hence
there is a combined plot for ADJUST/DOUBLE in Figure 3.

1) Performances under Different System Parameters: In

this section, we evaluate the performances of ADJUST, DOU-

BLE, MIN, and QBvND for different values of δ under the
traffic demand matrix with the default parameter settings (4
large flows and 12 small flows accounting for roughly 70%
and 30% of the total traffic demand into each input port). The

simulation results, shown in Figure 2, demonstrate that the

schedules generated by QBvND are consistently better (i.e.,
shorter transmission times) than those generated by ADJUST,

DOUBLE, and MIN. More specifically, when δ = 0.01
(default setting) and δ = 0.04, the average transmission times
of the schedules generated by QBvND are roughly 40% shorter

than those of schedules generated by ADJUST, the best among

others.

2) Performances under Different Traffic Demands: We also
evaluate the performance of QBvND under a large set of traffic

demand matrices that vary by sparsity and skewness. Figure 3

(left) compares the transmission times under ADJUST, DOU-

BLE, MIN, and QBvND when the sparsity parameter nL+nS
varies from 4 to 32 (while nL/nS is fixed at 1/3) while the
value of the skewness parameter cS is fixed at the default value
0.3. Figure 3 (right) compares the transmission times under
these four algorithms when the the skewness parameter cS
varies from 5% to 75% while the sparsity parameter nL+nS is
fixed at the default value 16 (= 4+12). In all these evaluations,
the reconfiguration delay δ is set to the default value of 0.01.
Figure 3 shows that schedules computed by QBvND have an

average transmission time that is roughly 40% shorter than

that computed by ADJUST, the best scheduler among others.

3) An “Anatomic” Comparison of Transmission Time: To
better understand the reason why the QBvND outperforms

all other optical switching algorithms by a wide margin, we

split the (gross) transmission time into the aforementioned

two components: the net transmission time
∑K
k=1 αk and

the reconfiguration cost Kδ. Table II separately compares
these two components in schedules computed by different

algorithms under the default setting (4 large flows and 12
small flows accounting for roughly 70% and 30% of the

total traffic demand into each input port, δ = 0.01). Besides
ADJUST, DOUBLE and MIN, we compare QBvND also

δ = 0.01 δ = 0.01

Fig. 3. Comparison under various demand matrices (optical)

with three other algorithms: FBD [30], RQ [29], and EXACT

[15]. Note that FBD and RQ are proposed originally for

precomputed packet switching, but here we view them as

optical switching algorithms and impose the reconfiguration

delay on them. ADJUST is not in the table since it is equivalent

to DOUBLE under this parameter setting. The simulation

results are summarized in Table II.

TABLE II
TRANSMISSION TIME COMPARISON OF OPTICAL SWITCHING ALGORITHMS

Algorithm Kδ
∑K
k=1 αk Kδ +

∑K
k=1 αk

DOUBLE 1.1245 1.1245 2.2490
MIN 0.4403 4.8337 5.2740
EXACT 12.98 1.0325 14.0125
FBD 0.8329 1.1697 2.0026
RQ 1.7252 2.0185 3.7437
QBvND 0.2294 1.1457 1.3751

As expected, the average net transmission time
∑K
k=1 αk

under EXACT is equal to 1.0325, the aforementioned theoret-
ical minimum, since it is precisely the stuffed BvND algorithm

(described in § III-B). However, its reconfiguration cost is
humongous (12.98), due to the large number of configurations
in the resulting BvND. The net transmission time under

QBvND (1.1457) is only slightly larger than the theoretical
minimum 1.0325 and smaller than that of all other algorithms.
Its reconfiguration cost (0.2294) is smaller, by at least 70%,
than that of all other algorithms except MIN, whose net

transmission time (4.8337) is extremely high.

D. QBvND vs. Solstice and Eclipse for Hybrid Switching

In this section, we compare QBvND, as a hybrid switching

solution, with the two state of the art algorithms, Eclipse [13]

and Solstice [12].
1) Performances under Different System Parameters: In

this section, we evaluate the performances of Eclipse, Solstice,

and QBvND for different value combinations of δ and rc/rp
under the traffic demand matrix with the default parameter set-

tings (4 large flows and 12 small flows accounting for roughly
70% and 30% of the total traffic demand into each input port).

We set rc/rp and δ to their respective default values 10 and
0.01 in Figure 4(left) and Figure 4(right) respectively. The
simulation results demonstrate that the schedules generated by

QBvND are better than those generated by Solstice, especially
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Fig. 5. Comparison under various demand matrices (hybrid)

when the reconfiguration delay δ or the rate ratio rc/rp is
large. More specifically, as shown in Figure 4(left), when

δ = 0.04, rc/rp = 10, QBvND results in 8% shorter average

transmission time than Solstice; as shown in Figure 4(right),

when δ = 0.01, rc/rp = 32, QBvND results in 11% shorter

average transmission time than Solstice. On the other hand,

QBvND results in slightly longer (approximately 5% longer)

average transmission times in both cases than Eclipse.

2) Performances under Different Traffic Demands: In this
section, we evaluate the performance of QBvND under the

same set of traffic demand matrices used in §VI-D2 that vary
by sparsity and skewness. The simulation results are shown

in Figure 5. In both subfigures, we set δ and rc/rp to their
respective default values 0.01 and 10. Like Figure 4, Figure 5
shows that QBvND results in shorter average transmission

times than Solstice, and slightly longer average transmission

times than Eclipse, under various traffic demand matrices.

3) Execution Time Comparison: In this section, we present
the execution times of Eclipse, Solstice, and QBvND (all

implemented in C++) for three different δ values (0.0025, 0.01,
and 0.04), under the traffic demand matrix with the default
parameter settings (nL = 4, nS = 12, cL = 0.7, cS = 0.3).
We set rc/rp to 10 in each scenario. These execution time
measurements, shown in Table III, are performed on a Dell

Precision Tower 3620 workstation equipped with an Intel Core

i7-6700K CPU @4.00GHz processor with 16GB RAM, and

running Windows 10 Professional.

As shown in Table III, the average execution time of

QBvND is roughly 20 times smaller than that of Eclipse

under the default setting (n = 100). As n increases to 200,
QBvND outperforms Eclipse even more (e.g., 100 times when
δ = 0.01) in terms of execution time. Meanwhile, QBvND’s
average execution time is only slightly larger than that of

TABLE III
COMPARISON OF AVERAGE EXECUTION TIME

δ Eclipse QBvND Solstice

n = 50
0.0025 152.3ms 52.75ms 33.23ms
0.01 141.5ms 24.90ms 33.83ms
0.04 128.8ms 19.45ms 25.95ms

n = 100
0.0025 1.430s 111.67ms 76.07ms
0.01 1.282s 55.65ms 72.67ms
0.04 0.943s 48.15ms 59.56ms

n = 200
0.0025 17.57s 263.6ms 182.8ms
0.01 12.37s 139.1ms 165.8ms
0.04 7.384s 111.2ms 134.0ms

Solstice when δ = 0.0025. When δ = 0.01, 0.04, QBvND
is even faster than Solstice.

VII. OTHER RELATED WORKS

A. Optical Switching Algorithms

Recently, a solution called Adaptive MaxWeight (AMW)

[32], [33] was proposed for optical switches (with nonzero

reconfiguration delays). The basic idea of AMW is that when

the maximum weighted configuration (matching) has a much

higher weight than the current configuration, the optical switch

is reconfigured to the maximum weighted configuration; oth-

erwise, the configuration of the optimal switch stays the same.

However, this algorithm may lead to long queueing delays (for

packets) since it usually reconfigures infrequently.

B. Hybrid Switching Algorithms

The hybrid switching problem has also been considered in

two other works, namely ProjecToR [34] and FireFly [35].

Their problem formulations are a bit different than that in

Solstice [12] and Eclipse [13], and so are their solution ap-

proaches. In ProjecToR [34], the problem of matching senders

with receivers is modeled as a (distributed) stable marriage

problem, in which a sender’s preference score for a receiver

is equal to the age of the data the former has to transmit to

the latter in a scheduling epoch, and is solved using a variant

of the Gale-Shapely algorithm [36]. This solution is aimed at

minimizing transmission latencies while avoiding starvation,

and not at maximizing network throughput, or equivalently

minimizing transmission time. The innovations of FireFly [35]

are mostly in the aspect of systems building and not on

matching algorithm designs.

All hybrid switching algorithms we have described so far

consider and allow only direct routing in the sense all optical-

switched data packets reach their respective final destinations

in one-hop (i.e., enters and exits the optical switch only once).
Only two hybrid switching algorithms, namely Eclipse++ [13]

and Albedo [24], have explored indirect routing. To do so,

however, both algorithms have to perform a large number of

single-source shortest-path computations, and hence appear to

be extremely computationally expensive.
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VIII. CONCLUSION

While researchers have proposed multiple algorithms for

either optical switching or hybrid switching, none of these

solutions works particularly well, especially if we have a

nontrivial reconfiguration delay. In this work, we propose

QBvND, a scheduling algorithm that combines matrix quan-

tization and the max-min Birkhoff-von Neumann decomposi-

tion techniques. Comparing to the state of the art solutions,

QBvND achieves a much better performance for the optical

switching problem and strikes a much better tradeoff between

the resulting performance of the hybrid switch and the compu-

tational complexity of the algorithm for the hybrid switching

problem.
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