
The Role of Relativization in Complexity TheoryLance Fortnow�University of ChicagoDepartment of Computer Science1100 East 58th StreetChicago, Illinois 60637AbstractSeveral recent nonrelativizing results in the area of interactive proofs have caused manypeople to review the importance of relativization. In this paper we take a look at how complexitytheorists use and misuse oracle results. We pay special attention to the new interactive proofsystems and program checking results and try to understand why they do not relativize. Wegive some new results that may help us to understand these questions better.1 IntroductionThe recent result IP = PSPACE [LFKN92, Sha92] surprised the theoretical computer sciencecommunity in more ways than one. A few years earlier, Fortnow and Sipser [FS88] created anoracle relative to which co-NP did not have interactive proofs. The IP = PSPACE result washonestly a nonrelativizing theorem.Several questions immediately popped up: Why didn't this result relativize? What speci�ctechniques were used that avoided relativization? How can we use these techniques to prove othernonrelativizing facts?Also much older questions resurfaced: What exactly to oracle results mean? What should weinfer, if anything, from a relativization?Such questions gained even more importance when we discovered the amazing power of mul-tiple prover interactive proof systems [BFL91], transparent proofs [BFLS91] and probabilisticallycheckable proofs [AS92, ALM+92].We may not �nd satisfactory answers to these questions in the near future. However, in thispaper we will give some intuition and some theorems about oracles that may help shed light onsome of these issues.In Section 3, we will see that relativization is an extremely powerful tool in helping complexitytheorists direct their research.In Section 4, we will look at early results of provable statements with negative relativization. Wewill look at these various examples and argue that they all lack a proper oracle access mechanism.In section 5, we take a close look at the new unrelativizing results for interactive proof systems.We prove some new results that may help us understand these issues better. We also argue that the�Email: fortnow@cs.uchicago.edu. Partially supported by NSF grant CCR 92-53582.1



new interactive proof system techniques do not relativize because they take advantage of certainalgebraic properties of complexity classes.In section 5.1 we look at what happens when we add an oracle to probabilistically checkableproofs (PCP). Arora, Lund, Motwani, Sudan and Szegedy [ALM+92] show that every languagein NP has a PCP using only a logarithmic number of random coin tosses and a constant numberof queries to the proof. We show that in a relativized world, for all k, such a result does nothold even if we allow the veri�er to use a polynomial number of random bits and nk proof queries(Theorem 5.2).Although Heller [Hel81] has created an oracle A relative to which NPA = EXPA, we show thatPCPA(logn; 1) = EXPA would imply that P 6= NP (Theorem 5.4). Thus �nding such an oraclewould be as hard as settling the P = NP question.Arora, Impagliazzo and Vazirani [AIV92] argue that the \local-checkability" property of com-plexity classes is a major reason that the results on interactive proofs do not relativize. In Sec-tion 5.2, we give negative evidence for this thesis by showing that under a reasonable access mech-anism, local checkability does in fact relativize.We give support instead to the thesis that it is the algebraic properties of complexity classesthat do not relativize. In Section 5.3, we give evidence for this proposition by showing that IP =PSPACE holds relative to algebraic extensions of arbitrarily complicated languages.Finally, in Section 6, we give a brief arguement against infering any information from randomoracle results. We argue that we should only use random oracles as a tool to combine oracleconstructions. However, we believe that generic oracles are a much stronger and sharper tool forthis purpose.CaveatsThis paper contains several opinions on the use and misuse of relativization results. We mustcaution the reader that other complexity theorists may have di�ering opinions on these matters.In this paper, we have tried to give several examples to illustrate various points. Howeverthis paper is not meant to be a survey paper. Many important works in the area have not beenmentioned due to lack of space.2 Notation and De�nitionsMost of the notation and de�nitions follow from the standard textbooks on the �eld [HU79, GJ79].We use � to represent the join of two sets A and B, i.e., A� B = (f0g � A) [ (f1g � B). Weuse FP to represent the polynomial-time computable functions.It is a misnomer to relativize a complexity class C. Instead suppose we take an enumerationof machines for C and give them some access mechanism to an oracle set A. We then say therelativized class CA consists of the languages recognized by the acceptance criteria for C applied tothe machines using the oracle A.Of course this de�nition may depend greatly on the speci�c enumeration of the machines of Cas well as the oracle access mechanism. The usual access mechanism consists of a separate oracletape that the Turing machine can write down queries and learn the answers. However, as we shallsee in Sections 4 and 5.2, such models may unduly handicap the machines.2



2.1 Relativizing FormulaeIt will be useful to have relativized NP-complete and PSPACE-complete sets.Let a relativized 3CNF formula be a CNF formula with clauses of the form:xi1 _ xi2 _ xi3 _A(xj1; : : : ; xjk)where A(xj1; : : : ; xjk) is true if xj1 : : :xjk is in A. Any of the variables or the A(xj1; : : : ; xjk) termmay be negated.Lemma 2.1 Let �A be a relativized 3CNF formula over an oracle A. Let  A be a closed relativized3CNF formula with arbitrary �rst-order existential and universal quanti�ers over the variables.1. Determining whether �A is satis�able is NPA-complete.2. Determining the truth value of  A is PSPACEA-complete.Furthermore the completeness reductions do not need access to the oracle.Goldsmith and Joseph [GJ86] prove the �rst part of the lemma. An easy modi�cation of their proofgives us the second part as well.3 Uses of Oracle ResultsIn this section, we will discuss some legitimate uses of relativization results. As we will see,complexity theorists have used relativization as a powerful tool in studying complexity theory.In Section 3.1 we will see how theorists use oracles to discover what techniques will not likelywork to solve certain problems. In Section 3.2, we will see how relativization allows us to push at aproblem in two di�erent directions. In Section 3.3, we will argue that that lack of nonrelativizabletechniques have caused theorists to look at new directions of research. Finally, in Section 3.4 wewill see how old relativization results help us to recognize new techniques that can be applied toother problems.Of course, theorists must execute extreme care in how one should interpret oracle results. InSections 4 and 5, we look at some computational models where oracle results may not have theexpected interpretation.3.1 Limiting techniquesSuppose we can show for some statement S that there exists an oracle A such that S fails relative toA in some oracle model. Then any proof that S hold must not relativize in that model or otherwisethat statement would also hold relative to A. If we can also �nd an oracle relative to which S holdsthen no relativizable technique can decide the truth of S.Baker, Gill and Solovay [BGS75] noted this in their original oracle paper where they give arelativized world where P = NP and another where P 6= NP. They also noted that essentially allthe known complexity techniques at that time relativize. They concluded that current techniqueswould not solve the P = NP question.In the nearly two decades since the Baker-Gill-Solovay paper, there have been literally hundredsof results in complexity theory. With the exception of some results in interactive proof systems (see3



Sections 3.4 and 5) all of the results in complexity theory have relativized. These include severalimportant results such as PH � P#P [Tod91] and PP is closed under intersection [BRS91].The techniques for interactive proofs have not yet proven fruitful towards proving any othertheorems about complexity theory. Thus it really does appear that we still need to develop newtechniques to settle the hundreds of complexity statements that relativize both ways.Early on some people speculated that perhaps the Baker-Gill-Solovay result indicated that thesequestions about complexity theory may fall outside the axioms of set theory (see [Har78], chapter7). However most researchers no longer subscribe to this viewpoint anymore because of lack ofevidence and some of the examples in Sections 4 and 5.3.2 Two directionsOften in complexity theory, one has a complexity statement S where one can easily show a rela-tivized world where S holds but it is open whether there exists a relativizable proof of S. In orderto tackle this problem, many complexity theorists look at trying to prove two opposite directions:� Trying to prove S, or� Creating a relativized world where S fails.Often by working on a problem in two directions, one can often push a failure of a proof in onedirection into a proof of the other direction.Goldwasser and Sipser [GS89] used this method in their proof of the equivalence of public andprivate coins in interactive proof systems. Initially, Goldwasser and Sipser tried to prove that theprivate coin interactive proof hierarchy was in�nite relative to some oracle. The failure of thatattempt led to the equivalence result that implied the collapse of the private coin hierarchy.3.3 New directionsRelativization results often lead researchers in new directions that prove extremely fruitful. Thismay happen in two di�erent ways:1. A speci�c problem may have large amount of time devoted to it because of the lack of anegative relativization result.2. Whole new directions of research may develop in attempts to �nd new techniques to answerproblems with negative relativizations.Beigel, Reingold and Spielman [BRS91] concentrated their e�orts on trying to show that PPis closed under intersection mainly because of the importance of the question and the fact that nonegative relativization existed. They succeeded in �nding a relativizable proof.The whole area of circuit complexity was developed as a potential method for attacking thehard problems like P 6= NP. Although one can easily relativize circuits [Wil85], many researchersbelieved the structure of circuits would allow us to �nd nonrelativizable techniques to solve somebasic complexity questions.Circuit complexity still has a long way to go before it can ful�ll this promise. However, circuitcomplexity has provided us with several interesting combinatorial problems and some other appli-cations for machine-based complexity theory. In fact, circuit complexity has given us the tools to4



prove some important relativization results, such as a relativized world where the polynomial-timehierarchy is in�nite (see [H�as89]).3.4 Recognizing new techniquesSuppose we have a proof of a statement S but we also know that there exists a relativized worldwhere S does not hold. We can then analyze the proof of S to �nd the technique used in thatproof that does not relativize. We can then, hopefully, apply this technique to other negativelyrelativized problems.In 1989, Noam Nisan found a multiple-prover interactive proof for SAT, a problem with aknown negative relativization [FRS88]. Lund, Fortnow and Karlo� analyzed this proof and usingNisan's techniques combined with some new ones showed a single-prover interactive proof systemfor SAT [LFKN92]. Several other important papers on interactive proof theory followed fromextensions of these techniques (e.g. [Sha92, BFL91, BFLS91, ALM+92]). Babai [Bab90] goes intomore detail about the history of these developments.4 When Oracles FailAlmost since the �rst relativization results of Baker, Gill and Solovay [BGS75], complexity theoristshave look for true mathematical statements that fail in some relativized world. Though researchershave published several papers along these lines (e.g. [Mor81, Kur83, Har85, HCKM88, Cha90])most of these results hold because the machine model does not have proper access to the oracle.By understanding the various types of failures, it will enhance our ability to interpret relativiza-tion results. One should not simply ignore relativization results that fall into the categories belowbut one should cautiously draw inferences from such results.In the section we discuss several di�erent categories of examples where oracles fail. In Section 5we will look at the special case of interactive proofs.Space-Bounded ComputationShould the oracle tape count towards the space bound? Either way can cause problems. If we docount the tape that would prevent a result like ASPACE(poly) = EXP from relativizing becausethe space-bounded machine could not ask exponentially long queries. If we do not count thetape then a result like ATIME(poly) = PSPACE will not relativize because the space-boundedmachine could ask exponentially long queries. Hartmanis, Chang, Kadin and Mitchell [HCKM88]have further discussion on these oracle models.Ladner and Lynch [LL76] suggest a reasonable alternative: Do not count the space on theoracle tape but make the oracle tape a write-only tape that is automatically erased after eachquery. While this suggestion works well below P, it does not solve the quandary described in theprevious paragraph.Buss [Bus88] creates an oracle model that seems to get around this problem but is too cum-bersome for use in practice. If one must relativize a space class we suggest to either use thecorresponding relativized alternating time class or to use the Landner and Lynch model with acareful eye. 5



Partial RelativizationsIn these results some, but not all, of the objects involved are allowed to have access to the oracle.Kurtz [Kur83] showed that NP � PSAT but for a random R, NPR 6� PSAT�R giving a counterex-ample to the Random Oracle Hypothesis (See Section 6). However, it uses heavily the fact thatqueries to the SAT oracle do not have access to R. In fact, for all A, NPA � PSATA. Hartmanis[Har85] has a similar example.Chang [Cha90] has a di�erent example where a function s(n) is not space-constructible in theunrelativized world but s(n) is space-constructible in a relativized world. However, if the functions(n) was computed using a relativized Turing machine, the theorem Chang states would relativize.Insu�cient Oracle AccessOne of the basic theorems in complexity theory is linear speedup: if a program takes t(n) time witht(n) superlinear then for every c, for all but a �nite n, there is a another Turing machine that takesonly t(n)=c time. Moran [Mor81] noted that this result does not relativize: we need only make thelanguage dependent on strings in the oracle of length say t(n) + 1.This oracle failure occurs because of insu�cient oracle access. The proof of the linear speed-uptheorem works by encoding several tape square into single square by using a larger set of tapesymbols. However, the relativized model does not allow this compression on the oracle tape. If wechange the model to allow compressed queries to the oracle then we will indeed have a relativizedlinear speedup theorem. We will show another example of this type of failure in Section 5.2.When interpreting a relativization result, one must be extremely careful in looking at how thecomputational model may access the oracle. If we can prove a statement S false relative to anoracle in a certain model then techniques that relativize only in the model will not work to proveS. Recent nonrelativizing results on interactive proofs do not appear to �t in any of the abovecategories. In Section 5, we will explore as best we can why these techniques do not relativize.5 Relativizations of Interactive ProofsInteractive proofs were invented in 1985 simultaneously by Babai [Bab85, BM88] and Goldwasser,Micali and Racko� [GMR89]. We refer the reader to these papers for descriptions and formalde�nitions of interactive proofs.In 1986, Fortnow and Sipser [FS88] created a relativized world where some language in co-NPdoes not have an interactive proof. Fortnow and Sipser then conjectured that there exist languagesin co-NP that do not have interactive proofs.In 1989, Lund, Fortnow, Karlo� and Nisan [LFKN92] showed that every co-NP language hasan interactive proof system. By the Fortnow and Sipser oracle, their proof could not relativize. Inthis section, we will try to examine why that proof does not relativize.In Section 5.1, we discuss a recent important result about probabilistically checkable proofs byArora, Lund, Motwani, Sudan and Szegedy [ALM+92] and show that that result does not relativizein a strong way. We also discuss the possibility that one can use the probabilistically checkableproof result to show that NP 6= EXP. In Section 5.2, we discuss local checkability developed byArora, Impagliazzo and Vazirani [AIV92] and argue that this notion does not give a satisfactory6



answer to the question of why the interactive proof results do not relativize. In Section 5.3, we arguethat a more algebraic property of complexity classes is the root of this nonrelativization. Finally,in Section 5.4 we discuss some further questions about interactive proofs and relativization.5.1 Probabilistically Checkable ProofsIn this section, we will show two results about probabilistically checkable proof systems. First weshow that the result of Arora, Lund, Motwani, Sudan and Szegedy [ALM+92] does not relativize ina strong way. We then look at what happens if we look at oracles trying to relate PCP and EXP.Arora and Safra [AS92] de�ne a hierarchy of complexity classes PCP, corresponding to thenumber of random and query bits required to verify a proof of membership in the language, asfollows:A veri�er M is a probabilistic polynomial-time Turing machine with random access to a string� representing a membership proof; M can query any bit of �. Call M an (r(n); q(n))-restrictedveri�er if, on an input of size n, it is allowed to use at most O(r(n)) random bits for its computation,and query at most O(q(n)) bits of the proof.A language L is in PCP(r(n); q(n)) if there exists an (r(n); q(n))-restricted veri�er M suchthat for every input x:1. If x 2 L, there is a proof �x which causes M to accept for every random string, i.e. withprobability 1.2. If x 62 L, then for all proofs �, the probability that M using proof � accepts is bounded by1=2.In 1988, Ben-Or, Goldwasser, Kilian and Wigderson [BGKW88] de�ned multiple prover interac-tive proof systems where the veri�er communicates with several provers that cannot communicateamong themselves. Fortnow, Rompel and Sipser [FRS88] show that the languages accepted bymultiple provers (MIP) and [k>0PCP(nk; nk) are equivalent. Babai, Fortnow and Lund [BFL91]building on the work of [LFKN92] show that NEXP =MIP = [k>0PCP(nk; nk).Arora, Lund, Motwani, Sudan and Szegedy [ALM+92] building on techniques of Arora andSafra [AS92] show the following surprising and powerful theorem:Theorem 5.1 NP = PCP(log(n); 1)One can easily create an oracle relative to which this result does not relativize because the veri�erhas only a polynomial number of computation paths. We use techniques of Fortnow and Sipser[FS88] and Fortnow, Rompel and Sipser [FRS88] to show a much stronger negative oracle result:Theorem 5.2 For some oracle A, NPA is not contained in [j>0PCPA(nj ; nk) for any �xed k.Proof: Let Lk(A) = f1njThere exists a string x of length n2k in Ag. Clearly Lk(A) is in NPAfor every A.Let M1;M2; : : : be an enumerate of probabilistic veri�ers where Mi runs in time ni.Terminology: Mi makes two kinds of queries: A proof query is a query to the membership proof�; An oracle query is a query to A.Requirement Ri;k: Lk(A) is not accepted by veri�er MAi where MAi makes at most nk proofqueries. 7



We will handle these countably many requirements one at a time. Initially A is the emptyoracle. We will add a �nite number of strings to A in each stage. The �nal A is the union of allthe strings added in each stage.Stage (i; k):1. Pick n large enough so that it does not conict with earlier stages and such that 2n >> n2ik.2. Look at MAi (1n). If there exists a membership proof that causes MAi (1n) to accept withprobability greater than 1=4 then we have ful�lled Ri;k. Go on to the next stage.3. If some �nite extension to A would cause MAi (1n) to ask more than nk proof queries thenmake that extension and Ri;k is ful�lled. Go on to the next stage.4. Put x from Lemma 5.3 into A. Suppose there existed some membership proof such that theprobability of MAi (1n) accepts is one. Then this same membership proof will cause A � fxgto accept with probability at least 3=4 because of Lemma 5.3. This contradicts step 2. Thuswe have ful�lled Ri;k. Go on to the next stage.Lemma 5.3 There exists a string x of length n2k such thatPr(There exists a membership proof � where MAi (1n) has an oracle query to x) < 1=4The probability is taken over the random strings of MAi (1n).Proof: Fix a random coin toss r. The number of oracle queries that MAi (1n) could make isat most ni2nk for all possible membership proofs because there are at most nk proof queries. Soa randomly chosen string of length n2k will have extremely low probability of being in this set oforacle queries. The lemma follows from the usual averaging argument. 2The oracle constructed by this algorithm will ful�ll all the requirements and thus L(A) is notcontained in [j>0PCPA(nj ; nk) for any �xed k. 2Since clearly PCPA(logn; 1) � NPA for all A, We can interpret Theorem 5.1 as a weakcharacterization of NP. Perhaps we can use this characterization to separate NP from highercomplexity classes like PSPACE and EXP by separating PCP(logn; 1) from these classes.HoweverPA � PCPA(logn; 1) for all A and for some B we have PB = PSPACEB [BGS75], forthis B we will have PB = PCPB(logn; 1) = NPB = PSPACEB . Thus we would need additionalnonrelativizable techniques to separate PCP(logn; 1) from PSPACE.The class EXP does not fall into the same trap. For every oracle A, we have PA 6= EXPAsince the deterministic time hierarchy theorem relativizes [HS65]. Heller [Hel81] showed that thereexists an oracle A where NPA = EXPA. Since Theorem 5.1 does not relativize, Heller's theoremdoes not necessarily imply that PCPA(logn; 1) = EXPA. In fact any such oracle will be hard to�nd:Theorem 5.4 If there exists an oracle A such that PCPA(logn; 1) = EXPA then P 6= NP in theunrelativized world.Proof: Since a PCPA(logn; 1) veri�er has only a polynomial number of computation paths, apolynomial time machine could query all of the oracle queries on these paths. Then the polynomial-time machine could determine whether a proof � exists by a single unrelativized NP question. Thuswe have for every A that PCPA(logn; 1) � PA�SAT.8



Assume that P = NP and for some oracle A, PCPA(logn; 1) = EXPA. We then haveEXPA = PCPA(logn; 1) � PA�SAT = PA which contradicts the fact that the deterministic timehierarchy relativizes. 25.2 Local CheckabilityArora, Impagliazzo and Vazirani [AIV92] de�ne the notion of proof checker as follows:A proof-checker is a Turing machineM that uses universal quanti�cation and which is provided,in addition to the input, a proof string. It is allowed random access to both the input and the proofstring. It is said to accept an input x using proof-string � (denoted M�(x) = 1) i� all branchescreated by its universal branching accept.A language L is in the class PFCHK(t(n)) i� there is a proof-checker M that runs in O(t(n))time and has the property� 8x 2 L, there exists a � such that M�(x) = 1.� 8x 62 L, M�(x) = 0 for every �.Using the Cook-Levin theorem [Coo71, Lev73], Arora, Impagliazzo and Vazirani show thatNP = PFCHK(logn). Arora, Impagliazzo and Vazirani call this fact the \Local CheckabilityTheorem".Now suppose we relativize PFCHK to an oracle A by giving the proof-checker an oracle tapeby writing a full oracle query z on the tape and magically entering a state qy if z 2 A and a stateqn if z 62 A. However since only queries of length O(logn) can be asked by a PFCHKA(logn)proof checker, it is easy to construct oracles A such that A 62 PFCHKA(logn) and thus NPA 62PFCHKA(logn).Arora, Impagliazzo and Vazirani conclude that local checkability does not relativize. However,we feel that any oracle access mechanism that prevents a machine from querying its own input is anextremely weak access model. We will present a more robust access model and show that relativeto this model, local checkability does relativize.We will allow M to query the oracle as follows: When M wants to make an oracle query, Mwrites two pointers on the oracle tape. M will now go to state qy if the string located betweenthose two pointers on the proof tape is in the oracle and will go to state qn otherwise.Theorem 5.5 For all oracles A, NPA = PFCHKA(logn).Proof: Let �A be a relativized 3CNF formula as described in Section 2.1. A proof � willconsist of a satisfying assignment as well as a list of xi1; : : : ; xik for each A(xi1; : : : ; xik) occurring ina clause. Such a proof can be universally veri�ed in O(logn) time using the oracle access mechanismdescribed above.Let L 2 NPA. By Lemma 2.1 there is an unrelativized reduction f mapping an input x tosome relativized 3CNF formula �A. Part of � will contain the formula �A as well as as proof that�A = f(x). 2 9



5.3 Algebraic OraclesBabai and Fortnow [BF91] give an algebraic characterization of various complexity classes and arguethat the interactive proof take advantage of this characterization. This algebraic characterizationalso does not seem to relativize.In this section, we will give additional evidence that it is the algebraic properties of complexityclasses that prevent the relativization of interactive proof results.Let A be any function mapping f0; 1g� to f0; 1g. Let An be that function restricted to f0; 1gn.Let fn to be the unique multilinear extension to An.Let hy1; : : : ; yki be a standard pairing function such that jhy1; : : : ; ykij > jy1j+jy2j+jy3j+� � �+jykj.For any set L � �� we de�ne the algebraic extension A of L inductively in n as follows:1. Let f(x1; : : : ; xn) be the unique multilinear extension of A(x1 : : :xn).2. Let h0; y1; : : : ; yni be in A i� y1 : : : yn is in L.3. Let h1; x1; : : : ; xni be in A if f(x1; : : : ; xn) > 0.4. Let hi+ 2; x1; : : : ; xni be in A if the ith bit of f(x1; : : : ; xn) is one.Note that L is many-one reducible to A.Lund, Fortnow, Karlo� and Nisan [LFKN92] and Shamir [Sha92] show that every language inPSPACE has an interactive proof. This result does not relativize, Fortnow and Sipser [FS88]show that relative to some oracle A, even co-NP does not have interactive proofs. However, theIP = PSPACE result does hold for algebraic extensions:Theorem 5.6 For A an algebraic extension for any set L � ��, IPA = PSPACEA.Proof Sketch:Instead of repeating the entire proof in [Sha92], we will just describe how to modify it.We use the relativized formulae described in Section 2.1. We arithmetized the formulas in thesame way as in [Sha92] replacing A(xj1; : : : ; xjk) with f(xj1; : : : ; xjk). Thus the arithmetized degreeremains low as required. At the end of the protocol the veri�er can read o� the values of f usingthe encoding in the oracle A. 2From Theorem 5.6 we immediately have the have the following corollary:Corollary 5.7 For any set L there is an oracle A such that1. L is many-one reducible to A and2. IPA = PSPACEA.5.4 Further Questions about Interactive ProofsWe would like to see the ideas of Section 5.3 applied to other classes based on the interactive proofsystem such as multiple prover interactive proof systems and probabilistically checkable proofs. Thismay lead to even more evidence of an algebraic property that is the main cause of the nonrelativizingnature of these results.However, given what we have seen in Section 5.2, we may question the usual oracle accessmechanisms used in these models. We think the oracle access mechanism used in PCP(logn; 1)10



works �ne because the veri�er is allowed to run in polynomial time. However, time may prove uswrong.The access mechanism used by Fortnow, Rompel and Sipser [FRS88] is almost surely the wrongone. If one thinks about multiple-provers as [j>0PCP(nj; nj) then we see the proof might haveexponential size and thus describe exponential strings in the oracle. It is not clear how to extendthe access mechanism. One simple but workable suggestion is to have the veri�er run in exponentialtime.It should be noted however that even if the veri�er is given access to exponentially long stringsin the oracle, there will still be an oracle A such that co-NPA 6�MIPA. We can easily modify theproof of Fortnow, Rompel and Sipser [FRS88] so all the diagonalizations occur on exponentiallydistant lengths with the oracle empty in between.Because of the di�culty in creating an oracle A such that PCP(logn; 1)A = EXPA, we shouldcontinue to try to show that PCP(logn; 1) 6= EXP and thus NP 6= EXP. We should also see ifsome di�erent assumption, like a suitably strong one-way function, would allow us to �nd an oraclerelative to which PCP(logn; 1)A = EXPA.6 Random and Generic OraclesIn 1981, Bennet and Gill [BG81] looked at what happens when we choose the oracles randomly:decide for each string whether or not it should be in the oracle independently with probabilityone-half. We say a statement S holds with probability one if the set of oracles relative to which Sholds has measure one. From measure theory we have a wonderful zero-one law: for virtually anycomplexity theory statement S, we know that S holds with either probability zero or probabilityone.Bennet and Gill conjectured the random oracle hypothesis roughly stated as \if a complexitystatement holds with a random oracle with probability one then it holds in the unrelativized world".The random oracle hypothesis has great appeal. Intuitively it seems right: We ought to be able tosimulate a random oracle with a suitably strong pseudorandom number generator.Kurtz [Kur83] showed that the formulation of the random oracle hypothesis given by Bennet andGill was false. Other counterexamples come from the area of interactive proofs [CGH90, HCRR90].Despite these examples, many complexity theorists still believe that some version of the randomoracle hypothesis. We however would like to argue that we should not have ever believed therandom oracle hypothesis in the �rst place.Kolmogorov complexity tells us that a \random" set R will contain lots of information. It istrue that for a �xed set L, looking at a random R may not greatly a�ect the complexity of L.However the theory of random oracles works in the other direction. First we �x the set R. Then wecan look at a language L designed to take advantage of the information in R. For example, Bennetand Gill [BG81] create a language L 2 NPR � PR that takes advantage of the fact that some ofthe information in R can be accessed nondeterministically but not deterministically.Since an empty oracle does not contain any information, there is no reason to believe that resultsabout random oracles should carry over to the unrelativized world. If we know that a statement Sholds with probability one, we should not infer anything about the statement S other than whatwe can infer from the fact that there exists an oracle where S holds (see Section 3).We know that all the de�nable statements that hold with probability one all hold simultaneouslywith probability one. Thus random oracles give us a nice relativized world where several interesting11



complexity theory statements all hold at the same time. However, a much more powerful tool forsuch purposes is the theory of generic oracles.Generic oracles allow us to combine di�erent oracle requirements in a clean manner. They giveus very powerful tools in developing oracles. Fenner, Fortnow and Kurtz [FFK92] use generic oraclesto develop a relativized world where the isomorphism conjecture holds, answering a long-standingopen question. Space limitations prevent us from giving more details about generic oracles herebut for the interested reader we recommend [BI87, FFKL93, FR93].7 Conclusions and Other QuestionsHopefully, this paper will convince the reader of the many and varied uses of relativization resultsif done properly. The area of relativization remains a very important and active area of complexitytheory. We caution researchers in the area though to keep in mind the limitations mentioned inSections 4 and 5. Also, theorists must remember that oracles results are a tool. Theorems strictlyabout the structure of oracles should be discouraged.Although we do not know how to settle many important complexity theory statements, theopposite is true in relativized worlds. For most important complexity theory statements S, weeither know how to prove S or show that S does not hold in some relativized world. We thus wouldlike to end this paper with two interesting exceptions:1. Does P = UP and NP = co-NP imply that P = NP? (See [HS92])2. Does the isomorphism conjecture imply that there are no one-way functions? (See [FFK92])AcknowledgmentsThis paper grew out of an informal debate with Russell Impagliazzo on relativization results heldat the Eighth Annual Structures in Complexity Theory Conference that was part of the FederatedComputing Research Conference in San Diego in May, 1993. I thank the Structures program andconference committees, particularly Steve Homer, in organizing the debate. I would also like tothank Russell Impagliazzo for interesting discussion before and during the debate.I have also had several interesting discussion about oracles and proof checking with many peopleincluding Sanjeev Arora, L�aszl�o Babai, Richard Beigel, Joan Feigenbaum, Stuart Kurtz, CarstenLund, Muli Safra and Mike Sipser. Stuart Kurtz was particularly helpful in Section 5.2. The authorbased Section 3.2 on discussions with Mike Sipser.References[AIV92] S. Arora, R. Impagliazzo, and U. Vazirani. Relativizing versus nonrelativizing tech-niques: The role of local checkability. Manuscript, University of California, Berkeley,1992.[ALM+92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�cation andhardness of approximation problems. In Proceedings of the 33rd IEEE Symposium onFoundations of Computer Science, pages 14{23. IEEE, New York, 1992.12
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