
One-sided Versus Two-sided Error in ProbabilisticComputationHarry Buhrman1? and Lance Fortnow2??1 CWI, PO Box 94079, 1090 GB Amsterdam, The Netherlands,buhrman@cwi.nl,URL: http://www.cwi.nl/�buhrman2 University of Chicago, Department of Computer Science,1100 E. 58th St., Chicago, IL 60637fortnow@cs.uchicago.edu,URL: http://www.cs.uchicago.edu/�fortnowAbstract. We demonstrate how to use Lautemann's proof that BPPis in �p2 to exhibit that BPP is in RPPromiseRP. Immediate conse-quences show that if PromiseRP is easy or if there exist quick hittingset generators then P = BPP. Our proof vastly simpli�es the proofsof the later result due to Andreev, Clementi and Rolim and Andreev,Clementi, Rolim and Trevisan.Clementi, Rolim and Trevisan question whether the promise is necessaryfor the above results, i.e., whether BPP � RPRP for instance. We givea relativized world where P = RP 6= BPP and thus the promise isindeed needed.1 IntroductionAndreev, Clementi and Rolim [ACR98] show how given access to a quick hittingset generator, one can approximate the size of easily describable sets. As animmediate consequence one gets that if quick hitting set generators exist thenP = BPP. Andreev, Clementi, Rolim and Trevisan [ACRT97] simplify the proofand apply the result to simulating BPP with weak random sources.Much earlier, Lautemann [Lau83] gave a proof that BPP � �p2 = NPNP,simplifying work of Gács and Sipser [Sip83]. Lautemann's proof uses two simpleapplications of the probabilistic method to get the existence results needed.As often with the case of the probabilistic method, the proof actually showsthat the overwhelming number of possibilities ful�ll the needed requirements.With this observation, we show that Lautemann's proof puts BPP in the classRPPromiseRP[1]. Since quick hitting set generators derandomize PromiseRPproblems, we get the existence of quick hitting set generators implies P = BPP.This greatly simpli�es the proofs of Andreev, Clementi and Rolim [ACR98] andAndreev, Clementi, Rolim and Trevisan [ACRT97].? Partially supported by the European Union through NeuroCOLT ESPRIT WorkingGroup Nr. 8556, and HC&M grant nr. ERB4050PL93-0516.?? Supported in part by NSF grant CCR 92-53582.

The di�erence between RP and PromiseRP is subtle but important. Inthe class RP we require the probabilistic Turing machine to either reject alwaysor accept with probability at least one-half for all inputs. In PromiseRP weonly need to solve instances where the machine rejects always or accepts withprobability at least one-half.A survey paper by Clementi, Rolim and Trevisan [CRT98] asks whether wecan remove the promise in our result, i.e., whether BPP � RPRP. We givea relativized counterexample to this conjecture by exhibiting an oracle A suchthat PA = RPA but PA 6= BPPA. Since virtually all the techniques used inderandomization relativize, this means that new techniques will be required tocollapse BPP in this way.2 De�nitionsWe assume the reader familiarwith the standard notions of Turingmachines, anddeterministic, nondeterministic and probabilistic polynomial-time computation.We let � represent the binary alphabet f0; 1g.A quick hitting set generator �nds strings in large easily describable sets.De�nition 1. A quick �-hitting set generator is a polynomial-time computablefunction h mapping 1n to a set of strings of length n such that for all n iff : �n ! f0; 1g is a function computed by circuits of at most n gates andPrx2�n(f(x) = 1) � � then f(x) = 1 for some x in h(1n).Andreev, Clementi and Rolim [ACR98] show that for any �; �0 > 0, if quick �-hitting set generators exist than so do �0-hitting set generators. We will drop �in this case.We have many variations of probabilistic complexity classes. In this paper,we will concern ourselves with RP, BPP, PromiseRP and PromiseBPP.De�nition 2. A language L is in the class RP if there exists a probabilisticpolynomial-time Turing machine such that for all x 2 ��,� If x is in L then Pr(M accepts x) � 1=2, and� If x is not in L then Pr(M accepts x) = 0.Sometimes the class RP is denoted simply by R.De�nition 3. A language L is in the class BPP if there exists a probabilisticpolynomial-time Turing machine such that for all x 2 ��,� If x is in L then Pr(M accepts x) � 2=3, and� If x is not in L then Pr(M accepts x) � 1=3.Languages in RP require machines M that ful�ll the requirements of De�ni-tion 2 for all inputs. Sometimes we would like to consider probabilistic machinesrestricted to inputs where the desired requirements hold. We use PromiseRP todescribe these problems. This does not form a class per se, but we can formallyde�ne the notions of PromiseRP being easy and oracle access to PromiseRP.

De�nition 4. We say that a language A is RP-consistent with a probabilisticpolynomial-time Turing machine M if for all x 2 ��,� x is in A if Pr(M accepts x) � 1=2, and� x is not in A if Pr(M accepts x) = 0.Note that A may be arbitrary for x such that 0 < Pr(M accepts x) < 1=2.De�nition 5. We say PromiseRP is easy if for every probabilistic polynomial-time Turing machine M there is a set A in P that is RP-consistent with M .Using repetition we can reduce the error in De�nitions 2-5 to 2�q(jxj) for anypolynomial q.Contrast De�nition 5 to De�nition 2. In particular we have PromiseRPis easy implies P = RP. The converse is not so simply provable, relativizedcounterexamples easily follow from known results on generic oracles [IN88]. Theoracle we develop in Section 4 also gives a relativizable counterexample.De�nition 6. For any relativizable complexity class C, L is in CPromiseRP ifthere is a probabilistic polynomial-time Turing machine M such that L is in CAfor all A RP-consistent with M .We can also de�ne CPromiseRP[k] if we allow only k queries to A in De�ni-tion 6. We can use the notation PromiseBPP in a similar manner.One might want to require in De�nition 6 that L be in CA via a �xed machinedepending only on M . Grollmann and Selman [GS88] show that this restrictiondoes not a�ect De�nition 6. For completeness we give a proof of the equivalenceof the two de�nitions in Section 5.It is not hard to see that there is an easy connection between hitting setgenerators and PromiseRP.Fact 1 If there are quick hitting set generator then PromiseRP is easy.3 One-sided promise gives BPPTheorem 1. BPP � RPPromiseRP[1]Proof: We basically use the proof of Lautemann [Lau83] that BPP is in�p2 to prove Theorem 1.Let L be a language in BPP and M a probabilistic polynomial-time Turingmachine accepting L with an error of 2�n on inputs of length n. Let q(n) be themaximumnumber of coin tosses on any computation path of M on any input oflength n. Note q(n) is bounded by a polynomial in n.Let A be the set of pairs hx; ri such that jrj = q(jxj) and M (x) using r as itsrandom coins will accept. Note that A is computable in deterministic polynomialtime. We now de�ne the set B as:B = fhx; z1; : : : ; zq(jxj)i j jz1j = � � � = jzq(jxj)j = q(jxj) implies there is somew 2 �q(jxj) such that hx;w� z1i 62 A ^ � � � ^ hx;w� zq(jxj)i 62 Ag:

Here u� v for juj = jvj is the bitwise parity of u and v.Note we have B 2 NP. First we will show that L is in RPB[1]. Our RPBalgorithm on input x with n = jxj simply chooses z1; : : : ; zq(n) independently atrandom from �q(n) and then accepts if hx; z1; : : : ; zq(n)i is not in B.If x is in L then consider a �xed w and i, 1 � i � q(n). The probability thathx;w� zii is not in A is at most 2�n. Since the zi's are chosen independently,the chance that hx;w� zii is not in A for every zi, 1 � i � q(n) is at most2�nq(n). Since there are 2q(n) possible w's we havePr(hx; z1; : : : ; zq(n)i 2 B) � 2�n:Now suppose that x is not in L. Fix z1; : : : ; zq(n) and i, 1 � i � q(n). If wechoose w at random, the probability that w � zi is in A is at most 2�n. Theprobability that w�zi is in A for some i is at most q(n)2�n which for su�cientlylarge n is much smaller than 1=2. Thus for every z1; : : : ; zq(n) of strings of lengthq(n), hx; z1; : : : ; zq(jxj)i is in B.Now we wish to show that L is inRPPromiseRP[1]. Let C be any set such thatC and B agree on tuples where the w is chosen at random and the acceptanceprobability is either zero or greater than one-half.More speci�cally hx; z1; : : : ; zq(jxj)i is in C if1. jzij = q(jxj) for each i, 1 � i � q(jxj), and2. the number of w of length q(jxj) such thathx;w� z1i 62 A ^ � � � ^ hx;w� zq(jxj)i 62 Ais greater than 2q(jxj)�1.The tuple hx; z1; : : : ; zq(jxj)i is not in C if1. jzij = q(jxj) for each i, 1 � i � q(jxj), and2. there are no w of length q(jxj) such thathx;w � z1i 62 A ^ � � � ^ hx;w� zq(jxj)i 62 A:The set C can be arbitrary for all other inputs.The proof above that L is in RPB[1] also shows that L is in RPC[1]. 2In the proof of Theorem 1, if x is in L and the zi are badly chosen then thenumber of w such thathx;w� z1i 62 A ^ � � � ^ hx;w � zq(jxj)i 62 Amight be nonzero yet small. This is why we need PromiseRP instead of justRP for this proof. Theorem 3 shows that any relativizable proof would need touse PromiseRP.From Theorem 1 and its proof we get the following two corollaries.Corollary 1. If PromiseRP is easy then P = BPP and PromiseBPP iseasy.

Corollary 2 (Andreev-Clementi-Rolim). If quick hitting set generators ex-ist then P = BPP.The proof of Theorem 1 only uses the set A restricted to the inputs of theform hx; ri. Thus we can use PromiseBPP is easy instead of just P = BPP inTheorem 1 and Corollaries 1 and 2.Andreev, Clementi and Rolim [ACR98] prove the following stronger result toget Corollary 2.Theorem 2 (Andreev-Clementi-Rolim). For any � > 0, there is a poly-nomial-time algorithm that, given access to a quick hitting set generator, andgiven as input a circuit C returns a value D such thatj Prx2�n(C(x) = 1)�Dj � �:We should note that Theorem 2 also follows from Theorem 1. One just neednotice that distinguishing the possibilities that Prx2�n(C(x) = 1) � D + � andPrx2�n(C(x) = 1) � D � � is a PromiseBPP question.4 RP can be easy without BPP being easyIn this section we show that Theorem 1 cannot be improved to show that P = Rimplies P = BPP using relativizing techniques.Theorem 3. There exists a relativized world where P = RP 6= BPP.De�ne the following function tower(0) = 2, tower(n + 1) = 2tower(n), i.e.tower(n) is an exponential tower of n + 1 2's. We will use a special type ofgeneric (see [FFKL93] for an overview) to prove the theorem.De�nition 7. A BPP-generic oracle G is a type of generic oracle that is onlyde�ned at length n such that n = tower(m) for some m. Moreover at theselengths it will always be the case that at most 1=3 or more than 2=3 of thestrings of length n are in G. We will call oracles that satisfy these requirementsoracles that are BPP-promise.The oracle that ful�lls the conditions of Theorem 3 will be QBF � G forG a BPP-generic. Here QBF is the PSPACE-complete set of true quanti�edboolean formulae. The following lemma shows that the second part of Theorem 3is ful�lled.Lemma 1. Let G be a BPP-generic. PQBF�G 6= BPPQBF�G.Proof: This follows because G is generic and the condition that P 6= BPPcan be met under the BPP promise of G. 2The more di�cult part is to show that PQBF�G = RQBF�G. We will needthe following notion of categoricity.

De�nition 8. A polynomial time nondeterministic machine M is categoricallyR if for all BPP-promise oracles B it is the case that for all x MQBF�B(x)has either more than 1=2 of its paths accepting or none. We will also call thesemachines categorical.The idea is to show that if M is categorical then there is a polynomial time(relative to QBF) algorithm that computes for all x whether M (x) accepts orrejects. The core of this proof will be an argument from Nisan [Nis91].The proof of Theorem 3 follows from Lemmas 2 and 3. Lemma 2 says thatif we have a machine M (x) that is categorically R and we only consider oraclesA such that at most 1=6 or at least 5=6 of the strings of length n are in A thenMQBF�A(x) can be decided in polynomial time relative to QBF�A.Lemma 2. Fix an input x and let n = jxj. Let M (x) be a categorical machine.For any set A that only contains strings of length n with the promise that eitherat most 1=6 or at least 5=6 of the strings of length n are in A, there exists adeterministic strategy that determines MQBF�A(x), querying only a �xed poly-nomial number of strings in A. Moreover this strategy can be computed in a �xedpolynomial time relative to QBF�A.Proof We follow the lines of the proof of Nisan [Nis91]. Suppose M runs intime p(n). Call any B that ful�lls the 1=6, 5=6 promise BPP2-promise. Fix Ato be any BPP2-promise oracle.The deterministic strategy to determine MQBF�A(x) works as follows.Let S1 contain all the oracles B such that MQBF�B(x) accepts:S1 = fB j Pr(MQBF�B(x) accepts) > 0gLet S0 contain all the BPP2-promise oracles such that M (x) rejects:S0 = fC j C is BPP2 -promise and Pr(MQBF�C(x) accepts) = 0gLet B1 a set in S1. Fix any accepting path � of MQBF�B1(x) with queriesq1; : : : ; qp(n) on it and let b1; : : :bp(n) be such that B1(qi) = bi. Next queryq1; : : : ; qp(n) to A and let a1; : : :ap(n) be the answers (i.e. ai = A(qi)). If for alli it holds that ai = bi we know that MQBF�A(x) accepts and we are done. Soassume that this is not the case.At this point we have the following claim:Claim. For all C 2 S0 at least half of the computation paths of MQBF�C(x)query a string in Q = q1; : : : ; qp(n).Proof Suppose this is not true and that there is a C 2 S0 such that less thanhalf of the computation paths of MQBF�C(x) query a string in Q. Considerthe oracle C 0 which is de�ned as follows. For all x 62 Q, C 0(x) = C(x) andfor qi 2 Q, C 0(qi) = bi. (i.e. C 0 equals C except for the queries in Q whereit equals B1). Since C was BPP2-promise it follows that C 0 is BPP-promise.Since MQBF�C0(x) has at least one accepting path � and it is categorical it

follows that at least 1=2 of its paths are accepting. On the other hand sinceMQBF�C(x) has no accepting paths and more than half of the computationpaths do not query anything in Q it follows that less than 1=2 of the pathschanged and hence that MQBF�C0(x) still rejects. A contradiction. 2Next adjust S0 and S1 such that they only contain oracles that agree withA(q1); : : : ; A(qp(n)) and repeat the above construction. It follows that in eachround we learn the answer to a new query that is queried on at least half ofthe computation paths. Suppose after 2p(n) rounds we have not yet encountereda proof that MQBF�A(x) accepts. Either all the queries on all the paths ofMQBF�A(x) have been queried or the current S0 is empty. Let E be the set ofqueries made to A in all the rounds. We will have that MQBF�A(x) accepts ifand only if MQBF�(A\E)(x) has an accepting path.To choose the set B1 in each round we need remember the oracle queriespreviously made to A. It is not hard to see then that this construction can becarried out in PSPACE and reducible to QBF. 2Let D be the deterministic strategy that comes out of Lemma 2. The nextlemma shows that this strategy also works for BPP-promise oracles.Lemma 3. For any BPP-promise oracle A. Let D be the strategy as describedin Lemma 2. D will compute correctly MQBF�A(x).Proof Suppose that D does not compute MQBF�A(x) for some BPP-promiseA. Suppose that A contains at most 1=3 of the strings of length n. The case whereA contains more than 2=3 of the strings of length n can be handled similarly.Suppose D accepted but did not �nd an accepting path ofMQBF�A(x). Thiscould only have happened if the �nal S0 was empty. Let E be a minimal subsetof A consistent with D's queries to A such that MQBF�E(x) rejects. Since S0is empty, E must contain at least 2n6 strings. Removing any string y from Enot queried by D will cause MQBF�(E�fyg)(x) to accept with probability atleast one-half. Thus every string in E not queried by D must occur on at leasthalf of the computation paths of MQBF�E(x) which cannot happen by a simplecounting argument.Thus the only way the strategy can make an error is when D rejects whereasMQBF�A(x) accepts. Let Q = q1; : : : ; q2p(n)2 be the queries made by D. andlet R = r1; : : : ; rp(n) be the queries on some accepting path of MQBF�A(x).Consider the following set A0. For all q 2 Q set A0(q) = A(q), and for r 2 Rset A0(r) = A(r). For all the other strings x set A0(x) = 0. It now followsthat A0 contains at most a polynomial number of strings of length n and isBPP2-promise. Moreover since MQBF�A0(x) has an accepting path it followsthatMQBF�A0(x) accepts. But since all the queries made by D will be the samefor A and A0 it follows that D still rejects contradicting Lemma 2. 2Proof (of Theorem 3) By Lemma 1 it follows that PQBF�G 6= BPPQBF�G.Let M be any categoric machine that runs in time p(n). let x be any string oflength l and let m be the biggest m such that tower(m) � p(n). Set n =tower(m). Query all the relevant strings in G of length strictly less than n. SinceG is only de�ned at lengths that are a tower of 2's it follows that the previous

relevant length is so small that one can query all those strings in polynomialtime. Next apply Lemma 3 and use QBF to compute MQBF�A(x). The lastpossibility is that MQBF�G happens to be an R machine but it is not categoric.This however can not happen since the genericity of G will diagonalize againstsuch non-categoric machines. (See [BI87]) 2Theorem 3 in combination with Theorem 1 gives a relativized world wherePromiseRP is not easy but P = RP. This corollary also follows from work ofImpagliazzo and Naor [IN88].Heller [Hel86] exhibits a relativized world where BPP = NEXP. One mightsuspect that the techniques of Heller and those used in the proof of Theorem 3may lead to an oracle A where PA = RPA and BPPA = NEXPA. We showthis cannot happen.Theorem 4. In all relativized worlds, if P = RP and NP � BPP then P =BPP.Proof Zachos [Zac88] shows that if NP � BPP then NP = RP. We thenhave P = NP = �p2 and thus P = BPP. These arguments all relativize. 25 Relativizing to PromiseRPDe�nition 6 may allow the machine that exhibits L in CPromiseRP to dependon A instead of just the underlying probabilistic machine. Grollmann and Sel-man [GS88] give a general result that implies that disallowing this dependencedoes not change the class CPromiseRP. For completeness we give a proof of thisresult.For simplicity we will show the equivalence for the class PPromiseRP. Theproof works similarly for many other natural classes such as RPPromiseRP,NPPromiseRP, RPPromiseRP[1], PPromiseBPP, etc.Theorem 5 (Grollmann-Selman). For every language L and the followingare equivalent:1. L is in PPromiseRP, i.e., there exists a probabilistic polynomial-time Turingmachine M such that for all A RP-consistent with M , there is a polynomial-time oracle Turing machine N such that L = L(NA).2. There exist a probabilistic polynomial-time Turing machine M and a poly-nomial-time oracle Turing machine N such that for all A RP-consistentwith M , L = L(NA).Proof: (2) is more restrictive than (1). We have to show that (1) implies(2). Fix L in PPromiseRP and a M that witnesses this.Let D be the set of x such that M (x) accepts with probability zero or prob-ability at least one-half. Let E be the set of x such that M (x) accepts withprobability at least one-half. We have that A is RP-consistent with M if andonly if A \D = E.

Let us assume that (2) fails for M , i.e., for every polynomial-time Turingmachine N there is an A such that A \D = E and L 6= L(NA). We will createa set B with B \D = E such that for all polynomial-time Turing machines N ,L 6= L(NB). This contradicts that fact that M witnesses L in PPromiseRP.Let N1; N2; : : : be an enumeration of the polynomial-time oracle Turing ma-chines.We create B in stages, in each stage we give a partial setting of whether somestrings are or are not in B. Let B0 be the oracle where all strings in E are putin B0 and all strings in D �E are put out of B0. Let m0 = 0.Our goal at stage i will be to guarantee that for any oracle A extending Bi,L 6= L(NAi). At the end of stage i we will have all strings of length less than mide�ned in Bi and only the strings in D of length greater than i will be de�ned.Stage i+ 1:Claim. There exists an RP-consistent A extending Bi such that L 6= L(NAi).Proof: Suppose not. Create machine NC that simulates NCi except that onoracle queries of length less than mi, N will answer them according to Bi. LetC be any RP-consistent language. Then NC will simulate NFi whereF = (Bi \�<mi) [(C \��mi):Since C \D = E we have that F extends Bi. By the assumption that the claimfails we have L(NC) = L(NFi) = L. We now have that L(NC) = L for allRP-consistent C contradicting the assumption that (2) fails. 2Fix an RP-consistent A and an x such that x 2 L , x 62 L(NAi). Let mi+1be one more than length the longest oracle query made by NAi (x) and let Bi+1be the extension of Bi where all strings of length less thanmi+1 are set accordingto A. 2AcknowledgmentsWe thank NoamNisan for bringing the �PromiseRP is easy impliesP = BPP�problem to our attention. We thank Luca Trevisan for suggesting the alternatede�nition for relativized PromiseRP (De�nition 6) and the possibility that thetwo de�nitions are equivalent.We thank Luca Trevisan, Noam Nisan, Stuart Kurtz, John Rogers and SteveFenner for many helpful discussions. Dieter van Melkebeek provided many help-ful suggestions on earlier drafts. We also thank Ronald de Wolf for the use ofhis notes.References[ACR98] A. Andreev, A. Clementi, and J. Rolim. A new general derandomizationmethod. Journal of the ACM, 45(1):179�213, January 1998.

[ACRT97] A. Andreev, A. Clementi, J. Rolim, and L. Trevisan. Weak random sources,hitting sets, and BPP simulations. In Proceedings of the 38th IEEE Sym-posium on Foundations of Computer Science, pages 264�272. IEEE, NewYork, 1997.[BI87] M. Blum and R. Impagliazzo. Generic oracles and oracle classes. In Pro-ceedings of the 28th IEEE Symposium on Foundations of Computer Science,pages 118�126. IEEE, New York, 1987.[CRT98] A. Clementi, J. Rolim, and L. Trevisan. Recent advances towards provingP = BPP. Bulletin of the European Association for Theoretical ComputerScience, 64:96�103, February 1998.[FFKL93] S. Fenner, L. Fortnow, S. Kurtz, and L. Li. An oracle builder's toolkit. InProceedings of the 8th IEEE Structure in Complexity Theory Conference,pages 120�131. IEEE, New York, 1993.[GS88] J. Grollmann and A Selman. Complexity measures for public-key cryptosys-tems. SIAM Journal on Computing, 17:309�355, 1988.[Hel86] H. Heller. On relativized exponential and probabilistic complexity classes.Information and Computation, 71:231�243, 1986.[IN88] R. Impagliazzo and M. Naor. Decision trees and downward closures. InProceedings of the 3rd IEEE Structure in Complexity Theory Conference,pages 29�38. IEEE, New York, 1988.[Lau83] C. Lautemann. BPP and the polynomial hierarchy. Information ProcessingLetters, 17(4):215�217, 1983.[Nis91] N. Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing,20(6):999�1007, December 1991.[Sip83] M. Sipser. A complexity theoretic approach to randomness. In Proceedingsof the 15th ACM Symposium on the Theory of Computing, pages 330�335.ACM, New York, 1983.[Zac88] S. Zachos. Probabilistic quanti�ers and games. Journal of Computer andSystem Sciences, 36:433�451, 1988.

