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Abstract. We study random-self-reductions from a structural com-
plexity-theoretic point of view. Specifically, we look at relationships
between adaptive and nonadaptive random-self-reductions. We also look
at what happens to random-self-reductions if we restrict the number
of queries they are allowed to make. We show the following results:

o There exist sets that are adaptively random-self-reducible but not
nonadaptively random-self-reducible. Under plausible assump-
tions, there exist such sets in NVP.

o There exists a function that has a nonadaptive (k(n)+1)-random-
self-reduction but does not have an adaptive k(n)-random-self-
reduction.

o For any countable class of functions C and any unbounded func-
tion k(n), there exists a function that is nonadaptively k(n)-
uniformly-random-self-reducible but is not in C/poly. This should
be contrasted with Feigenbaum, Kannan, and Nisan’s theorem
that all nonadaptively 2-uniformly-random-self-reducible sets are
in NP/poly.
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1. Introduction

Informally, a function f is random-self-reducible if the evaluation of f at
any given instance = can be reduced in polynomial time to the evaluation of f
at one or more random instances ;.

Random-self-reducible functions have many applications, including average-
case complexity (e.g., [4, 17]), lower bounds (e.g., [2]), interactive proof systems



2 Feigenbaum et al.

and program checkers, testers, and correctors (e.g., [6, 3, 7, 8, 15, 18, 19]), and
cryptographic protocols (e.g., [1, 4, 5, 9, 14, 20]). For a history and overview
of the subject, see [10, 11].

In this paper, we study random-self-reductions from a structural complexi-
ty-theoretic point of view. In particular, we analyze the relationships between
adaptive and nonadaptive random-self-reducibility and the effect of changing
the number of queries available to the random-self-reduction. Our main results
are:

o There exists a set that is adaptively random-self-reducible but not non-
adaptively random-self-reducible. We can make such a set sparse and
recognizable in slightly more than polynomial space.

o If bounded-error, probabilistic triple-exponential time does not contain
nondeterministic triple-exponential time, then there exists a set in NP
that is adaptively random-self-reducible but not nonadaptively random-
self-reducible.

o For any polynomially bounded k(n), there exists a function that is non-
adaptively (k(n) + 1)-random-self-reducible but not adaptively k(n)-ran-
dom-self-reducible.

o For any countable class of functions C and any unbounded function k(n),
there is a function that is nonadaptively k(n)-uniformly-random-self-
reducible but not in C/poly. For example, there is a nonadaptively k(n)-
uniformly-random-self-reducible function that is not in FPSPACE/poly,
for any unbounded k(n). This should be contrasted with Feigenbaum,
Kannan, and Nisan’s theorem that all nonadaptively 2-uniformly-random-
self-reducible sets are in NP/poly [13].

2. Definitions and Notation

Throughout this paper, z is the input to a randomized reduction, n is the
size of x, and r is a random variable distributed uniformly on {0, 1}*("), where
w is some polynomially bounded function of n. The parameter k(n) is also a
polynomially bounded function of n.

DEFINITION 2.1. A nonadaptive k(n)-random-self-reduction for f is a pair of
polynomial-time computable functions o and ¢ with the following properties.
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1. For all n and all x € {0,1}",

flx) = o(z,r flo(l,z.7)),.... flo(k(n),z,r)))
with probability at least 2/3.

2. For all 1 and xy such that |xi| = |ag| and for all i, 1 < i < k(n),
o(t,x1,7) and o(i,xq,r) are identically distributed.

Note that the random queries o(1,x,r),...,0(k(n),x,r) are in general de-
pendent.

OBSERVATION 2.2. (SZEGEDY — SEE [11]) We can assume without loss of gen-
erality that in a nonadaptive random-self-reduction all of the random variables
o(l,z,r), ..., o(k(n),z,r) are identically distributed.

The word nonadaptive in Definition 2.1 refers to the fact that all of the
random queries are produced in one round; that is, o(¢,z,r) does not depend
on f(o(y,x,r)) for j # i. The next definition covers the case in which queries
are produced in multiple rounds—that is, the reduction follows an adaptive
strategy.

DEFINITION 2.3. An adaptive k(n)-random-self-reduction for f is a polynomi-
al-time oracle Turing machine M with the following properties.

1. For all n and all x € {0,1}",
fla) = M (,7)
with probability at least 2/3.

2. For all x and v, M/ (z,r) asks at most k(n) queries to the f-oracle. The
queries are denoted (q{(:z;, T, . .. ,qg(n)(:zj, r)).

3. For all 1 and x5 such that |xi| = |x2] and all 1, 1 <@ < k(n), qlf(:zjl,r)
and qu(:zjg, r) are identically distributed. Note that we do not require that
qlfl(:zjl,r) and qlfl(:zjz,r) be identically distributed for f" # f.

We say that a function f is random-self-reducible if it has a (nonadaptive or
adaptive) k(n)-random-self-reduction for some polynomially bounded function
k(n). A language L is random-self-reducible if the characteristic function for
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L is random-self-reducible. We use the abbreviation “rsr” for both “random-
self-reducible” and “random-self-reduction.”

For both adaptive and nonadaptive rsr’s we can replace 2/3 by 1 — 22(") for
any polynomial p(n) at the cost of increasing k(n) by a polynomial factor. We
can achieve this bound by using the standard technique of running independent
copies of the rsr and taking a plurality vote. See [11] for details.

Property 2 in Definition 2.1 and property 3 in Definition 2.3 are referred
to as the instance-hiding property. This means that any one query of the rsr
reveals nothing about the instance x, except its size. It should be noted that
the instance = might be computable from a set of two queries. Note that the
instance-hiding property need not hold for a “cheating” oracle f’ £ f, i.e., an
adaptive oracle machine could, in round ¢, “leak” something besides the size of
the instance if it is given wrong answers to one or more of its queries in rounds
1 through ¢ — 1.

An rsr is oblivious if its queries only depend on the input size—that is,
not only are the distributions of queries the same for all inputs of the same
size (which is true of any rsr), but moreover the reduction ignores the input
until after all queries have been made. It is straightforward to prove that
obliviously rsr sets are in P/poly. An rsr is uniform if, for all inputs x, each
query is uniformly distributed over {0,1}1l. We call such a reduction a k(n)-
uniformly-random-self-reduction (abbreviated k(n)-ursr) and stress that the
word “uniform” describes the distribution of random queries, i.e., it is not
meant to distinguish between reduction procedures that take advice and those
that do not. Uniformly-random-self-reductions are the type of rsr’s studied in
[13].

Let BPE be the class of languages recognizable in bounded-error, proba-
bilistic exponential time, i.e., the union of BPTIMFE(2°") for all constants c.
Similarly, let BPEE and BPEFEFE denote the languages recognizable in bounded-
error, probabilistic double-exponential and triple-exponential time. The non-
deterministic time classes NE, NEFE, and NEEE are defined analogously.

Let 3(n) be any unbounded nondecreasing function such that n" is time
constructible, e.g., f(n) = log™ n.

3. Adaptiveness versus Nonadaptiveness

In this section, we study the difference between adaptive and nonadaptive
rsr’s. We find sets of relatively low complexity that are adaptively rsr but not
nonadaptively rsr.
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It is tempting to conjecture that any sparse adaptively rsr set is also non-
adaptively rsr, in the hope that one could just look for all the elements of that
set. However, the location of those elements could make that process difficult.
In fact, we show that our main results also hold for sparse sets.

THEOREM 3.1. For any 1 < k(n) < n, there exists a sparse set L such that L
is in DSPACE(n®")) and has an oblivious, adaptive k(n)-rsr but for which any
nonadaptive k'(n)-rsr will err with probability at least 1/2 — k'(n)/(2F()+1 —2)
for infinitely many inputs.

ProoF. First we will describe how to construct a non-sparse L. From there,
the construction of a sparse L is straightforward. In this proof, there will be
a 1-1 correspondence between strings of length n and the integers 1,2,...,2",
i.e., the ¢! string in the lexicographic ordering corresponds to z.

A step-function B, ,, s is the language
Bm,s = {x € {0,1}"]s <z},

where 0 < s < m < 2" (i.e., m is a bound on how big s can be). Hence B, ,, s
consists of all n-bit strings from the s'* such string on. We call s the step and
m the range.

Note that any function on {0,1}* whose restriction to {0,1}" is equal to
Bim,s for some m has an oblivious, adaptive ([log,(m+1)])-rsr. This is because
it takes [log,(m 4 1)] queries to find the step using binary search and, once
the step is known, it is simple to determine membership in B, , s.

The language L will be a union of step-functions, one B, ,, ; for each input
length n, where the range m will always be equal to 25" —1 and the steps will
be determined by diagonalization against nonadaptive &'(n)-rst’s.

The diagonalization is done as follows. Let M, M5, ... be an enumeration
of all the nonadaptive &'(n)-rsr’s in which every k'(n)-rsr occurs infinitely many
times. Assume without loss of generality that M,’s running time is bounded
by n'.

We diagonalize against M; on inputs of length n;, where n; is the least
integer such that F(n;) > ¢. (This choice is made in order to ensure that nf(ni)
is greater than the running time of M; on inputs of length n;.)

Since M; asks at most k'(n) queries, there must be an x, 1 <« < m, such
that the probability that one of M;’s k'(n) queries is equal to x is at most
K'(n)/m. Look at M,’s behavior on the first such input « with oracles B, ..
and By, pmp41- Let

pr= PAMT () = 1)
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p2 = PrIM 7 () = 1),

K3

Then [p1 — p2| < K'(n)/m. On the other hand, for M; to err with probability
at most p for both B, ., , and B,, , »4+1, it must be the case that p; > 1 —p
and py < p, by definition of the step functions. Hence k'(n)/m > 1 — 2p.
Let s be the one of # and  + 1 on which M; errs with probability at least
p=1/2—=F(n)/2m on input x.

The above construction can be carried out in deterministic space O(n®),
We need to run M; several times, and all of these runs can be done on the same
tape. We need O(n?(") additional space in order to compute probabilities of
acceptance and to search for an appropriate x.

In order to make L sparse we delete from L any string that the k(n)-rsr
does not query during its binary search and denote the resulting language by
L'. This will allow the same procedure to find the step of L and then decide
membership in L.

In the proof that we could choose a query x and a step s on which M;
errs, we only needed the fact that the set of functions that we could choose
from, {Bu, m.0,- -+ Bun,mm}, contains, for every query z, two functions that
differ only in their answer for z, e.g., By, m. and By, ;m.41. The languages L'
have the same property. The function derived from B,, ,, y2v, where z is odd,
is identical to the function derived from By, y (x41)20 €xcept in its value at z2Y.
Thus, we can use the sparse functions of L’ to diagonalize against M;’s as we

did for L. O

COROLLARY 3.2. There exists a sparse set L € DSPACE(n”™) such that L
is obliviously, adaptively rsr but not nonadaptively rsr.

PrROOF. Let k(n) = n and L be the sparse language L’ constructed in the
proof of Theorem 3.1. Then, for any polynomial p(n), any nonadaptive p(n)-rsr
M will err with probability at least 1/2 — %%% for infinitely many inputs with
respect to L. Hence, there exists some input for which M errs with probability
greater than 1/3, which means that M is not an rsr for L. O

COROLLARY 3.3. Forany 1 < k(n) < n, there exists a sparse set L such that L
is in DSPACE(n®")) and has an oblivious, adaptive k(n)-rsr but for which any

2k//(n)_1

SRFT 3 for infinitely

adaptive k" (n)-rsr will err with probability at least 1 —
many inputs.
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PROOF. We can assume that the adaptive £”(n)-rsr M has the instance-hiding
property for all the 2¥") step-functions. Otherwise, we can diagonalize against
M by choosing a step-function for which M does not have the instance-hiding
property.

We construct a nonadaptive (28" (n))-rst M’ for L as follows. M’ first
chooses a random string 7. For each of the 2¥") step functions, M’ simulates
M(r). The list of queries to be made by M’ is the concatenation of the lists of
queries of M on each step function. When given the answers to these queries,
M’ does what M would have done if given these answers. Since M has the
instance-hiding property for each step function, M’ has the instance-hiding
property.

Once r is fixed, the :th query of M is determined by the answers to the
previous ¢ — I queries. Thus, while the list of queries made by M’ has 250 £ (n)
entries, at most 25" (") —1 of these queries are distinct. The corollary then follows
from Theorem 3.1. O

We turn next to the question of whether we can find sets in NP that satisty
the conditions of Corollary 3.2. First, we prove a result about a restricted form
of nonadaptive rsr’s, i.e., those that are length-preserving. A length-perserving
rst requires that for every @ € ¥*, the queries o(¢,2,r) or qlf(:zj,r) have the
same length as x. We then show how the proof can be modified to yield a
result about general nonadaptive rsr’s.

THEOREM 3.4. If NE — BPFE is nonempty, there exists a set in NP that has
a length-preserving, adaptive rsr but does not have a length-preserving, non-
adaptive rsr.

PROOF. This construction uses the step-function idea from the proof of
Theorem 3.1.

Let L be a set in NE — BPFE and L’ be {0'|x € L}, where 1z denotes
the integer whose binary representation is lx. Note that L’ is a tally set in

NP — BPP. Because L' is in NP, the question “is 0" in L' can be reduced to
a SAT instance p, in n® variables, for some constant c¢. Let

L"= J{y € {0,1} : J a satisfying assignment s for o, such that s < y}.
n>1

We will prove that L” has the properties stated in the theorem. This follows
from Claims 3.5 through 3.8.

CLAIM 3.5. L" is in NP.
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ProOOF. On input z of length n, a nondeterministic procedure can compute
[ such that n = [°. It rejects x if no such [ exists. It then computes ¢;, guesses
an assignment s, and accepts z if s satisfies ¢; and s < z. O

Cram 3.6. L” has a length-preserving, adaptive rsr.

ProOF. This follows from the fact that L” is a sequence of step-functions. O

CrLAIM 3.7. If L” has a length-preserving, nonadaptive rsr, then L" € BPP.

PrROOF.  Let M be a length-preserving, nonadaptive k(n)-rsr for L”. As-
sume without loss of generality that, for all inputs = of length n, M fails with
probability at most 1/2".

We construct a probabilistic procedure M’ which on input « finds the step
among the L”-instances {0, 1}"” with high probability. Once the step is known,
it is trivial to decide membership in L”.

M’ first generates m strings by taking m independent samples from M’s
query-distribution D, where m will be determined later. We call this set of m
queries the test queries. Note that all test queries have length n, because M is
length-preserving.

Because the restriction of L” to {0,1}" is a step-function, there are only
m + 1 consistent ways in which to answer the test queries. We describe below a
procedure M" that finds the step s in {0, 1}" with high probability when given
the correct answers to the test queries. For now, note that M’ can construct
a list s1,82,..., 8,11 of possible steps by running M"” on each consistent set of
answers to the test queries. M’ can then conclude that the correct value for
the step s is the lexicographically least s; that satisfies y;, where [° = n.

It remains to specify M”. Because it is given the answers to the test queries,
M" knows some interval I in which the step must lie: [ is the interval bounded
by the lexicographically greatest no-instance in the test set and the lexico-
graphically smallest yes-instance in the test set. M” uses the rsr M to perform
a binary search for the step in the interval I. It gets the right answer with
high probability for any particular input it needs in its binary search if all of
the random queries M makes for that input lie outside I. Thus, we must show
that there is an m that is large enough, but still polynomial, to make I small
enough so that all of the random queries asked by M on all inputs used in the
binary search are outside of I with high probability.

It the following inequality holds:

PrD(y) [y € 1] <,
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then the probability is at most k(n)e that at least one of the random queries
for any given input falls in /. The binary search procedure needs at most n+ 1
inputs. Hence, M" fails to get a correct answer from the binary search with
probability at most

(n+ 1)(k(n)e + 1/27),

where the 1/2" term is the probability that M fails. So, it remains to choose
appropriate values for ¢ and m.

Let s be the step and let I~ be the smallest interval of the form [s7, s]
such that Prpg,)ly € I7] > ¢/2. Similarly, let I be the smallest interval of
the form [s,s*] such that Prpg,)[y € IT] > ¢/2. Let I' be the open interval
(s7,sT). From the minimality of /= and I, we get that Prp,)ly € I'] < e
Furthermore, if one test query belongs to I~ and another belongs to I+, then
I C I'. With probability at most (1 — ¢/2)™, none of the m random queries
belongs to I~; hence, the probability that I ¢ I’ is at most 2(1 — ¢/2)™. Thus,
with probability at least 1 — 2(1 — ¢/2)™, we have

PrD(y) [yel]<e.
It follows that M" fails with probability at most
21 —¢/2)" + (n 4 1)(k(n)e+ 1/2") < 1/3,

if we choose € = 1/(6(n + 1)k(n)) and m =5/e. O

CraM 3.8. If L” € BPP, then L € BPE.

PROOF.  Assume that L” € BPTIME(n?), for some constant d. Then, L'
belongs to BPTIME(n®?). This in turn implies that L is in BPTIME(24"+2))
which is a subset of BPE. O

A similar but more intricate argument can be used to prove the following
more general result.

THEOREM 3.9. If NEEE — BPEFEFE is nonempty, there exists a set in NP that

is adaptively rsr but not nonadaptively rsr.

SKETCH OF PROOF. The reason that the construction in Theorem 3.4 does
not work for a general nonadaptive rst M is that M may ask queries of either
smaller or larger sizes than the input size n. This property implies that the
proof of Claim 3.7 is no longer valid.
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It M only asked smaller sized queries then a simple change in the proof of
Claim 3.7 would be enough to prove the analogous claim for Theorem 3.9. We
could modify the M’ of the previous proof so that it computed, in a bottomup
fashion, the steps for all input sizes less than n.

On the other hand, if M asks queries of size greater than n, there will
be more than a polynomial number of ways to answer the test queries. For
example, if each test query is of a different size and all sizes are greater than
n, there will be 2™ consistent sets of answers.

We solve this problem by making sure that our NP language is trivial for
most input sizes. We need that any polynomial time rst M only be able to ask
queries of a constant number of sizes on which M’ does not already know the
answers.

We can assume that M’ knows the answers for all queries of size less than
n, since M’ can use the bottomup approach described above. For a hard input
size N, there will only be @ + 1 consistent ways of answering the test queries
of size N, where a is the number of queries of size N. Hence, if there are only
a constant number of nontrivial query sizes larger than n, M’ can enumerate
all the consistent answers in polynomial time.

The construction of a language with the desired property is similar to the
previous construction except that we let L be in NEEE — BPEEE. Hence, L'
is a tally set in NEE — BPEE, o, has 227" variables, and

L" = J{y €0, 1}22m : J a satisfying assignment s for ¢, such that s < y}.
n>1

Let M be an rsr that runs in time n? for some constant d. Hence, M
can only ask queries of size at most n?. This implies that there are only a
constant number of nontrivial sizes greater than n that are represented among
M’s queries, i.e., the number of such sizes is at most (logd)/c.

The rest of the proof of Theorem 3.9 is the same as that of Theorem 3.4
except for small changes in the parameters. O

The above construction can be modified to yield a sparse set L"” € NP that
is adaptively rsr but not nonadaptively rsr, using the same transformation from
nonsparse to sparse set as in the proof of Theorem 3.1.

Furthermore any nonadaptive rsr M for L™ can be transformed into a non-
adaptive rsr for L”. To prove this, it is enough to show that L” is polynomial-
time, truth-table equivalent to L. Given an input z, consider the elements
encountered during a binary search for x. If we know whether each of these
elements is in L, it is easy to determine whether x is in L”. The same is true
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the other way—in this case, we need only the answers for « and the query that
is encountered just before x in the binary search.

4. Number of queries

In this section, we investigate how much each additional query increases
the power of a random-self-reduction. We find a function that has relatively
low complexity for which one additional query makes the difference between
being rsr and not being rsr. Recall that $(n) is an unbounded nondecreasing
function such that n®" is time constructible, e.g., log" n.

THEOREM 4.1. Let k(n) be polynomially bounded. There is a function in
FDSPACE(n™) that is obliviously, nonadaptively (k(n) 4+ 1)-ursr but not
adaptively k(n)-rsr.

PrOOF. In this proof, we use a 1-1 correspondence between strings of length n
and the elements of the finite field GF(2"). The function f will be a sequence
of univariate polynomials over GF(2") of degree at most k(n), one for each
input size n. It is clear that such a function has an oblivious, nonadaptive
(k(n)+ 1)-ursr, because, for each input size, knowing the value of f at k(n)+1
points allows the reduction to interpolate the polynomial and determine the
value at any other point.

As in the proof of Theorem 3.1, we construct f by diagonalizing against all
k(n)-rsr’s, so let M; be the ith k(n)-rsr. We diagonalize against M, on inputs
of length n; = 571(7).

We need to find a polynomial p of degree k(n) such that, if f = p on inputs
of length n;, then M; fails on some such input with high probability. Assume
that M, has the instance-hiding property for all polynomials p; if it does not,
we can diagonalize against M; by choosing a p for which M; does not have the
property (and hence is not an rsr). We show that even for a random p and a
random input, M; fails with high probability. Specifically, we show that

k(n)+1

Prx,T,p[Mip(xv T) = p(:z:)] < on ’

where r is the random string used by M; on this run. This follows from the
following inequalities.

1
Va,r  Pr,[JM(z,r) = p(z)|M](z,r) does not query x] < o (4.1)
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k(n)
2n

We prove Inequality (4.1) by choosing p in the following way. Assume
without loss of generality that no two of M,’s queries are equal. For each
query, choose a random value for p at that point. After k(n) queries, M;(x,r)’s
answer on input x is determined. However, all values for p(x) are still equally

Vp  Pry,[M!(z,r) does query z] < (4.2)

likely after k(n) queries—just choose a random element of GF'(2") as the value

of p(x).
To prove Inequality (4.2), we use the fact that M; has the instance-hiding
property for p. Let D; be the distribution for M!’s ith question, i.e.,

Va  Pr,[M!(z,r) queries x in the ith step] = D;(x).

Hence, we have the following relations:

k(n)
Vo Pr.[M!(x,r) queries x in any step] < Z D;(x),
=1
Pry . [M](x,r) queries ] < o > > Di(x)

z€GF(27) =1

5. Uniform Random-Self-Reductions with
an Unbounded Number of Queries

Feigenbaum, Kannan, and Nisan [13] showed that, if S has a nonadaptive
2-ursr that never errs, then S is in NP/poly. We show by contrast that, for any
unbounded k(n), there exist functions f that are nonadaptively k(n)-ursr but
not even recursive with polynomial-sized advice.

THEOREM 5.1. Let C be any countable class of functions. If k(n) = w(1), then
there exists a function f that is nonadaptively k(n)-ursr but not in C/poly.

PrOOF. The proof is a counting argument. For each function in C, there are
only an exponential number of functions that can be created by varying the
polynomial advice string over all possibilities. For each input size we construct
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superexponentially many functions that all have the same nonadaptive k(n)-
ursr. The existence of an f with the desired property then follows by a standard
diagonalization argument. O

LEMMA 5.2. Given n > 0 and k(n) < loglogn, let m = [logk(n)]. There
exists a family F, of functions g : {0,1}" — {0,1}™ and a probabilistic
polynomial-time machine M such that M, when restricted to inputs in {0,1}",
is a nonadaptive k(n)-ursr for any function in F,, and |F,| > 2772 for large
n.

PrROOF. Any g in F,, will correspond to an [-variable polynomial p of degree
at most k(n)—1 over some finite field G'F'(¢). This type of function is known to
have a k(n)-ursr, as long as k(n) < ¢ [4, 17]. To prove Lemma 5.2, we need to
count the number of such functions and to embed (GF(q))" into {0,1}". The
purpose of the embedding is to create a function defined on {0, 1}" and to have
the rsr produce queries that are distributed uniformly over {0, 1}"; the natural
domain for the polynomials is (GF(¢))". The embedding will determine the
parameters ¢ and /.

Let ¢ = 2" and [ = |n/m]. Note that ¢ > k(n), which is required by the
standard reduction in [4, 17]. Write down 277! copies of (GF(q))". There
are ¢ = 2" elements in (GF(q))' so there are a total of 2" elements in this
multiset consisting of 27~ copies. Assign an n-bit string to each element in the
multiset. This assignment is the embedding of (GF'(¢))" into {0,1}". We now
define the rsr. Given an [-variable polynomial p, we evaluate the corresponding
function g on {0,1}" as follows. To find ¢(x), where € {0,1}", first find the
element y € (GF(q))" that is mapped to = by the embedding. Evaluate p(y)
to get an element z of GF(q); z corresponds to an element of {0,1}” in the
natural way used in Theorem 4.1. To perform the rsr of ¢ on input x, first
find y and perform the [4, 17] ursr of p on input y; this produces uniformly
random queries y1, ..., Yx(n). For each y;, pick a copy of (GF(q))" uniformly
at random, take the z; € {0,1}" that corresponds to y; in that copy in the
embedding, and evaluate g(x;). This procedure results in g-queries that are
distributed uniformly over {0, 1}".

In order to estimate the number of such functions, note first that two dif-
ferent polynomials p and p’ define different functions. We use the expression ¢
as a lower bound on the number of [-variable polynomials over GGF'(¢) of degree
at most k(n) — 1, where ¢ is the number of multilinear monomials of degree
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k(n) — 1. There are exactly ¢ = (k(nl)_l) such monomial, and

! (Lgsgiy) = RO s
(k<n>—1)> (k(n) — 1)!

because k(n) < loglogn. Thus, (k(n) —1)! < n and (Lmj — k(n))*) >

n*(M=1 Hence, our lower bound on the number of /-variable polynomials is
nk(n)—2 k(n)—2

> 2" . O

6. Open Questions and Subsequent Related Work

Theorem 4.1 shows that there are functions that are (k(n) -+ 1)-rsr but not
k(n)-rsr. Is this also true of sets? Similarly, does Theorem 5.1 hold for sets as
well as functions?

Theorem 5.1 and Feigenbaum, Kannan, and Nisan’s result about 2-ursr’s
together suggest the following question: Is there a set that is O(1)-ursr but not
in NP/poly?

In Section 3, we provided one hypothesis that guarantees the existence of
sets in NP that are adaptively rsr but not nonadaptively rsr, namely NEEE €
BPEFEE. Subsequently, Hemaspaandra, Naik, Ogiwara, and Selman [16], using
a suggestion of Beigel, improved this result by showing that if NE' € BPFE, then
such sets exist.
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