
THE POWER OF ADAPTIVENESSAND ADDITIONAL QUERIES INRANDOM-SELF-REDUCTIONSJoan Feigenbaum, Lance Fortnow,Carsten Lund, and Daniel SpielmanAbstract. We study random-self-reductions from a structural com-plexity-theoretic point of view. Speci�cally, we look at relationshipsbetween adaptive and nonadaptive random-self-reductions. We also lookat what happens to random-self-reductions if we restrict the numberof queries they are allowed to make. We show the following results:� There exist sets that are adaptively random-self-reducible but notnonadaptively random-self-reducible. Under plausible assump-tions, there exist such sets in NP:� There exists a function that has a nonadaptive (k(n)+1)-random-self-reduction but does not have an adaptive k(n)-random-self-reduction.� For any countable class of functions C and any unbounded func-tion k(n), there exists a function that is nonadaptively k(n)-uniformly-random-self-reducible but is not in C=poly. This shouldbe contrasted with Feigenbaum, Kannan, and Nisan's theoremthat all nonadaptively 2-uniformly-random-self-reducible sets arein NP=poly.Key words. Adaptiveness; random-self-reducibility.Subject classi�cations. 68Q15.1. IntroductionInformally, a function f is random-self-reducible if the evaluation of f atany given instance x can be reduced in polynomial time to the evaluation of fat one or more random instances yi.Random-self-reducible functions have many applications, including average-case complexity (e.g., [4, 17]), lower bounds (e.g., [2]), interactive proof systems



2 Feigenbaum et al.and program checkers, testers, and correctors (e.g., [6, 3, 7, 8, 15, 18, 19]), andcryptographic protocols (e.g., [1, 4, 5, 9, 14, 20]). For a history and overviewof the subject, see [10, 11].In this paper, we study random-self-reductions from a structural complexi-ty-theoretic point of view. In particular, we analyze the relationships betweenadaptive and nonadaptive random-self-reducibility and the e�ect of changingthe number of queries available to the random-self-reduction. Our main resultsare:� There exists a set that is adaptively random-self-reducible but not non-adaptively random-self-reducible. We can make such a set sparse andrecognizable in slightly more than polynomial space.� If bounded-error, probabilistic triple-exponential time does not containnondeterministic triple-exponential time, then there exists a set in NPthat is adaptively random-self-reducible but not nonadaptively random-self-reducible.� For any polynomially bounded k(n), there exists a function that is non-adaptively (k(n) + 1)-random-self-reducible but not adaptively k(n)-ran-dom-self-reducible.� For any countable class of functions C and any unbounded function k(n),there is a function that is nonadaptively k(n)-uniformly-random-self-reducible but not in C=poly. For example, there is a nonadaptively k(n)-uniformly-random-self-reducible function that is not in FPSPACE/poly,for any unbounded k(n). This should be contrasted with Feigenbaum,Kannan, and Nisan's theorem that all nonadaptively 2-uniformly-random-self-reducible sets are in NP=poly [13].2. De�nitions and NotationThroughout this paper, x is the input to a randomized reduction, n is thesize of x, and r is a random variable distributed uniformly on f0; 1gw(n), wherew is some polynomially bounded function of n. The parameter k(n) is also apolynomially bounded function of n.Definition 2.1. A nonadaptive k(n)-random-self-reduction for f is a pair ofpolynomial-time computable functions � and � with the following properties.



Random-self-reducibility 31. For all n and all x 2 f0; 1gn,f(x) = �(x; r; f(�(1; x; r)); : : : ; f(�(k(n); x; r)))with probability at least 2=3.2. For all x1 and x2 such that jx1j = jx2j and for all i, 1 � i � k(n),�(i; x1; r) and �(i; x2; r) are identically distributed.Note that the random queries �(1; x; r); : : : ; �(k(n); x; r) are in general de-pendent.Observation 2.2. (Szegedy { see [11])We can assume without loss of gen-erality that in a nonadaptive random-self-reduction all of the random variables�(1; x; r), : : :, �(k(n); x; r) are identically distributed.The word nonadaptive in De�nition 2.1 refers to the fact that all of therandom queries are produced in one round; that is, �(i; x; r) does not dependon f(�(j; x; r)) for j 6= i. The next de�nition covers the case in which queriesare produced in multiple rounds|that is, the reduction follows an adaptivestrategy.Definition 2.3. An adaptive k(n)-random-self-reduction for f is a polynomi-al-time oracle Turing machine M with the following properties.1. For all n and all x 2 f0; 1gn,f(x) = Mf (x; r)with probability at least 2=3.2. For all x and r, Mf (x; r) asks at most k(n) queries to the f -oracle. Thequeries are denoted (qf1 (x; r); : : : ; qfk(n)(x; r)).3. For all x1 and x2 such that jx1j = jx2j and all i, 1 � i � k(n), qfi (x1; r)and qfi (x2; r) are identically distributed. Note that we do not require thatqf 0i (x1; r) and qf 0i (x2; r) be identically distributed for f 0 6= f .We say that a function f is random-self-reducible if it has a (nonadaptive oradaptive) k(n)-random-self-reduction for some polynomially bounded functionk(n). A language L is random-self-reducible if the characteristic function for



4 Feigenbaum et al.L is random-self-reducible. We use the abbreviation \rsr" for both \random-self-reducible" and \random-self-reduction."For both adaptive and nonadaptive rsr's we can replace 2=3 by 1� 2p(n) forany polynomial p(n) at the cost of increasing k(n) by a polynomial factor. Wecan achieve this bound by using the standard technique of running independentcopies of the rsr and taking a plurality vote. See [11] for details.Property 2 in De�nition 2.1 and property 3 in De�nition 2.3 are referredto as the instance-hiding property. This means that any one query of the rsrreveals nothing about the instance x, except its size. It should be noted thatthe instance x might be computable from a set of two queries. Note that theinstance-hiding property need not hold for a \cheating" oracle f 0 6= f , i.e., anadaptive oracle machine could, in round i, \leak" something besides the size ofthe instance if it is given wrong answers to one or more of its queries in rounds1 through i� 1.An rsr is oblivious if its queries only depend on the input size|that is,not only are the distributions of queries the same for all inputs of the samesize (which is true of any rsr), but moreover the reduction ignores the inputuntil after all queries have been made. It is straightforward to prove thatobliviously rsr sets are in P/poly. An rsr is uniform if, for all inputs x, eachquery is uniformly distributed over f0; 1gjxj. We call such a reduction a k(n)-uniformly-random-self-reduction (abbreviated k(n)-ursr) and stress that theword \uniform" describes the distribution of random queries, i.e., it is notmeant to distinguish between reduction procedures that take advice and thosethat do not. Uniformly-random-self-reductions are the type of rsr's studied in[13].Let BPE be the class of languages recognizable in bounded-error, proba-bilistic exponential time, i.e., the union of BPTIME(2cn) for all constants c.Similarly, let BPEE and BPEEE denote the languages recognizable in bounded-error, probabilistic double-exponential and triple-exponential time. The non-deterministic time classes NE, NEE, and NEEE are de�ned analogously.Let �(n) be any unbounded nondecreasing function such that n�(n) is timeconstructible, e.g., �(n) = log� n.3. Adaptiveness versus NonadaptivenessIn this section, we study the di�erence between adaptive and nonadaptiversr's. We �nd sets of relatively low complexity that are adaptively rsr but notnonadaptively rsr.



Random-self-reducibility 5It is tempting to conjecture that any sparse adaptively rsr set is also non-adaptively rsr, in the hope that one could just look for all the elements of thatset. However, the location of those elements could make that process di�cult.In fact, we show that our main results also hold for sparse sets.Theorem 3.1. For any 1 � k(n) � n, there exists a sparse set L such that Lis in DSPACE(n�(n)) and has an oblivious, adaptive k(n)-rsr but for which anynonadaptive k0(n)-rsr will err with probability at least 1=2�k0(n)=(2k(n)+1�2)for in�nitely many inputs.Proof. First we will describe how to construct a non-sparse L. From there,the construction of a sparse L is straightforward. In this proof, there will bea 1-1 correspondence between strings of length n and the integers 1; 2; : : : ; 2n,i.e., the ith string in the lexicographic ordering corresponds to i.A step-function Bn;m;s is the languageBn;m;s = fx 2 f0; 1gnjs � xg;where 0 � s � m � 2n (i.e., m is a bound on how big s can be). Hence Bn;m;sconsists of all n-bit strings from the sth such string on. We call s the step andm the range.Note that any function on f0; 1g� whose restriction to f0; 1gn is equal toBn;m;s for somem has an oblivious, adaptive (dlog2(m+1)e)-rsr. This is becauseit takes dlog2(m + 1)e queries to �nd the step using binary search and, oncethe step is known, it is simple to determine membership in Bn;m;s.The language L will be a union of step-functions, one Bn;m;s for each inputlength n, where the range m will always be equal to 2k(n)�1 and the steps willbe determined by diagonalization against nonadaptive k0(n)-rsr's.The diagonalization is done as follows. Let M1;M2; : : : be an enumerationof all the nonadaptive k0(n)-rsr's in which every k0(n)-rsr occurs in�nitely manytimes. Assume without loss of generality that Mi's running time is boundedby ni.We diagonalize against Mi on inputs of length ni, where ni is the leastinteger such that �(ni) > i. (This choice is made in order to ensure that n�(ni)iis greater than the running time of Mi on inputs of length ni.)Since Mi asks at most k0(n) queries, there must be an x, 1 � x � m, suchthat the probability that one of Mi's k0(n) queries is equal to x is at mostk0(n)=m. Look at Mi's behavior on the �rst such input x with oracles Bni;m;xand Bni;m;x+1. Let p1 = Pr[MBni;m;xi (x) = 1];



6 Feigenbaum et al. p2 = Pr[MBni;m;x+1i (x) = 1]:Then jp1 � p2j � k0(n)=m. On the other hand, for Mi to err with probabilityat most p for both Bni;m;x and Bni;m;x+1, it must be the case that p1 � 1 � pand p2 � p, by de�nition of the step functions. Hence k0(n)=m � 1 � 2p.Let s be the one of x and x + 1 on which Mi errs with probability at leastp = 1=2 � k0(n)=2m on input x.The above construction can be carried out in deterministic space O(n�(n)).We need to run Mi several times, and all of these runs can be done on the sametape. We need O(n�(n)) additional space in order to compute probabilities ofacceptance and to search for an appropriate x.In order to make L sparse we delete from L any string that the k(n)-rsrdoes not query during its binary search and denote the resulting language byL0. This will allow the same procedure to �nd the step of L and then decidemembership in L0.In the proof that we could choose a query x and a step s on which Mierrs, we only needed the fact that the set of functions that we could choosefrom, fBni ;m;0; : : : ; Bni ;m;mg, contains, for every query x, two functions thatdi�er only in their answer for x, e.g., Bni;m;x and Bni;m;x+1. The languages L0have the same property. The function derived from Bni ;m;x2y, where x is odd,is identical to the function derived from Bni ;m;(x+1)2y except in its value at x2y.Thus, we can use the sparse functions of L0 to diagonalize against Mi's as wedid for L. 2Corollary 3.2. There exists a sparse set L 2 DSPACE(n�(n)) such that Lis obliviously, adaptively rsr but not nonadaptively rsr.Proof. Let k(n) = n and L be the sparse language L0 constructed in theproof of Theorem 3.1. Then, for any polynomial p(n), any nonadaptive p(n)-rsrM will err with probability at least 1=2 � p(n)2n+1 for in�nitely many inputs withrespect to L. Hence, there exists some input for which M errs with probabilitygreater than 1=3, which means that M is not an rsr for L. 2Corollary 3.3. For any 1 � k(n) � n, there exists a sparse set L such that Lis in DSPACE(n�(n)) and has an oblivious, adaptive k(n)-rsr but for which anyadaptive k00(n)-rsr will err with probability at least 12 � 2k00(n)�12k(n)+1�2 for in�nitelymany inputs.



Random-self-reducibility 7Proof. We can assume that the adaptive k00(n)-rsrM has the instance-hidingproperty for all the 2k(n) step-functions. Otherwise, we can diagonalize againstM by choosing a step-function for which M does not have the instance-hidingproperty.We construct a nonadaptive (2k(n)k00(n))-rsr M 0 for L as follows. M 0 �rstchooses a random string r. For each of the 2k(n) step functions, M 0 simulatesM(r). The list of queries to be made by M 0 is the concatenation of the lists ofqueries of M on each step function. When given the answers to these queries,M 0 does what M would have done if given these answers. Since M has theinstance-hiding property for each step function, M 0 has the instance-hidingproperty.Once r is �xed, the ith query of M is determined by the answers to theprevious i�1 queries. Thus, while the list of queries made byM 0 has 2k(n)k00(n)entries, at most 2k00(n)�1 of these queries are distinct. The corollary then followsfrom Theorem 3.1. 2We turn next to the question of whether we can �nd sets in NP that satisfythe conditions of Corollary 3.2. First, we prove a result about a restricted formof nonadaptive rsr's, i.e., those that are length-preserving. A length-perservingrsr requires that for every x 2 ��, the queries �(i; x; r) or qfi (x; r) have thesame length as x. We then show how the proof can be modi�ed to yield aresult about general nonadaptive rsr's.Theorem 3.4. If NE � BPE is nonempty, there exists a set in NP that hasa length-preserving, adaptive rsr but does not have a length-preserving, non-adaptive rsr.Proof. This construction uses the step-function idea from the proof ofTheorem 3.1.Let L be a set in NE � BPE and L0 be f01xjx 2 Lg, where 1x denotesthe integer whose binary representation is 1x. Note that L0 is a tally set inNP� BPP. Because L0 is in NP, the question \is 0n in L0" can be reduced toa SAT instance 'n in nc variables, for some constant c. LetL00 = [n�1fy 2 f0; 1gnc : 9 a satisfying assignment s for 'n such that s � yg:We will prove that L00 has the properties stated in the theorem. This followsfrom Claims 3.5 through 3.8.Claim 3.5. L00 is in NP.



8 Feigenbaum et al.Proof. On input x of length n, a nondeterministic procedure can computel such that n = lc. It rejects x if no such l exists. It then computes 'l, guessesan assignment s, and accepts x if s satis�es 'l and s � x. 2Claim 3.6. L00 has a length-preserving, adaptive rsr.Proof. This follows from the fact that L00 is a sequence of step-functions. 2Claim 3.7. If L00 has a length-preserving, nonadaptive rsr, then L00 2 BPP.Proof. Let M be a length-preserving, nonadaptive k(n)-rsr for L00. As-sume without loss of generality that, for all inputs x of length n, M fails withprobability at most 1=2n.We construct a probabilistic procedure M 0 which on input x �nds the stepamong the L00-instances f0; 1gn with high probability. Once the step is known,it is trivial to decide membership in L00.M 0 �rst generates m strings by taking m independent samples from M 'squery-distribution D, where m will be determined later. We call this set of mqueries the test queries. Note that all test queries have length n, because M islength-preserving.Because the restriction of L00 to f0; 1gn is a step-function, there are onlym+1 consistent ways in which to answer the test queries. We describe below aprocedure M 00 that �nds the step s in f0; 1gn with high probability when giventhe correct answers to the test queries. For now, note that M 0 can constructa list s1; s2; : : : ; sm+1 of possible steps by running M 00 on each consistent set ofanswers to the test queries. M 0 can then conclude that the correct value forthe step s is the lexicographically least si that satis�es 'l, where lc = n.It remains to specifyM 00. Because it is given the answers to the test queries,M 00 knows some interval I in which the step must lie: I is the interval boundedby the lexicographically greatest no-instance in the test set and the lexico-graphically smallest yes-instance in the test set. M 00 uses the rsr M to performa binary search for the step in the interval I. It gets the right answer withhigh probability for any particular input it needs in its binary search if all ofthe random queries M makes for that input lie outside I. Thus, we must showthat there is an m that is large enough, but still polynomial, to make I smallenough so that all of the random queries asked by M on all inputs used in thebinary search are outside of I with high probability.If the following inequality holds:PrD(y)[y 2 I] < �;



Random-self-reducibility 9then the probability is at most k(n)� that at least one of the random queriesfor any given input falls in I. The binary search procedure needs at most n+1inputs. Hence, M 00 fails to get a correct answer from the binary search withprobability at most (n+ 1)(k(n)�+ 1=2n);where the 1=2n term is the probability that M fails. So, it remains to chooseappropriate values for � and m.Let s be the step and let I� be the smallest interval of the form [s�; s]such that PrD(y)[y 2 I�] � �=2. Similarly, let I+ be the smallest interval ofthe form [s; s+] such that PrD(y)[y 2 I+] � �=2. Let I 0 be the open interval(s�; s+). From the minimality of I� and I+, we get that PrD(y)[y 2 I 0] < �.Furthermore, if one test query belongs to I� and another belongs to I+, thenI � I 0. With probability at most (1 � �=2)m, none of the m random queriesbelongs to I�; hence, the probability that I 6� I 0 is at most 2(1� �=2)m. Thus,with probability at least 1� 2(1 � �=2)m, we havePrD(y)[y 2 I] < �:It follows that M 00 fails with probability at most2(1 � �=2)m + (n+ 1)(k(n)�+ 1=2n) � 1=3;if we choose � = 1=(6(n + 1)k(n)) and m = 5=�. 2Claim 3.8. If L00 2 BPP, then L 2 BPE.Proof. Assume that L00 2 BPTIME(nd), for some constant d. Then, L0belongs to BPTIME(ncd). This in turn implies that L is in BPTIME(2dc(n+2)),which is a subset of BPE. 2A similar but more intricate argument can be used to prove the followingmore general result.Theorem 3.9. If NEEE�BPEEE is nonempty, there exists a set in NP thatis adaptively rsr but not nonadaptively rsr.Sketch of proof. The reason that the construction in Theorem 3.4 doesnot work for a general nonadaptive rsr M is that M may ask queries of eithersmaller or larger sizes than the input size n. This property implies that theproof of Claim 3.7 is no longer valid.



10 Feigenbaum et al.If M only asked smaller sized queries then a simple change in the proof ofClaim 3.7 would be enough to prove the analogous claim for Theorem 3.9. Wecould modify the M 0 of the previous proof so that it computed, in a bottomupfashion, the steps for all input sizes less than n.On the other hand, if M asks queries of size greater than n, there willbe more than a polynomial number of ways to answer the test queries. Forexample, if each test query is of a di�erent size and all sizes are greater thann, there will be 2m consistent sets of answers.We solve this problem by making sure that our NP language is trivial formost input sizes. We need that any polynomial time rsr M only be able to askqueries of a constant number of sizes on which M 0 does not already know theanswers.We can assume that M 0 knows the answers for all queries of size less thann, since M 0 can use the bottomup approach described above. For a hard inputsize N , there will only be a + 1 consistent ways of answering the test queriesof size N , where a is the number of queries of size N . Hence, if there are onlya constant number of nontrivial query sizes larger than n, M 0 can enumerateall the consistent answers in polynomial time.The construction of a language with the desired property is similar to theprevious construction except that we let L be in NEEE � BPEEE. Hence, L0is a tally set in NEE� BPEE, 'n has 22cn variables, andL00 = [n�1fy 2 f0; 1g22cn : 9 a satisfying assignment s for 'n such that s � yg:Let M be an rsr that runs in time nd for some constant d. Hence, Mcan only ask queries of size at most nd. This implies that there are only aconstant number of nontrivial sizes greater than n that are represented amongM 's queries, i.e., the number of such sizes is at most (log d)=c.The rest of the proof of Theorem 3.9 is the same as that of Theorem 3.4except for small changes in the parameters. 2The above construction can be modi�ed to yield a sparse set L000 2 NP thatis adaptively rsr but not nonadaptively rsr, using the same transformation fromnonsparse to sparse set as in the proof of Theorem 3.1.Furthermore any nonadaptive rsr M for L000 can be transformed into a non-adaptive rsr for L00. To prove this, it is enough to show that L00 is polynomial-time, truth-table equivalent to L000. Given an input x, consider the elementsencountered during a binary search for x. If we know whether each of theseelements is in L000, it is easy to determine whether x is in L00. The same is true



Random-self-reducibility 11the other way|in this case, we need only the answers for x and the query thatis encountered just before x in the binary search.4. Number of queriesIn this section, we investigate how much each additional query increasesthe power of a random-self-reduction. We �nd a function that has relativelylow complexity for which one additional query makes the di�erence betweenbeing rsr and not being rsr. Recall that �(n) is an unbounded nondecreasingfunction such that n�(n) is time constructible, e.g., log� n.Theorem 4.1. Let k(n) be polynomially bounded. There is a function inFDSPACE(n�(n)) that is obliviously, nonadaptively (k(n) + 1)-ursr but notadaptively k(n)-rsr.Proof. In this proof, we use a 1-1 correspondence between strings of length nand the elements of the �nite �eld GF (2n). The function f will be a sequenceof univariate polynomials over GF (2n) of degree at most k(n), one for eachinput size n. It is clear that such a function has an oblivious, nonadaptive(k(n)+1)-ursr, because, for each input size, knowing the value of f at k(n)+1points allows the reduction to interpolate the polynomial and determine thevalue at any other point.As in the proof of Theorem 3.1, we construct f by diagonalizing against allk(n)-rsr's, so let Mi be the ith k(n)-rsr. We diagonalize against Mi on inputsof length ni = ��1(i).We need to �nd a polynomial p of degree k(n) such that, if f = p on inputsof length ni, then Mi fails on some such input with high probability. Assumethat Mi has the instance-hiding property for all polynomials p; if it does not,we can diagonalize against Mi by choosing a p for which Mi does not have theproperty (and hence is not an rsr). We show that even for a random p and arandom input, Mi fails with high probability. Speci�cally, we show thatPrx;r;p[Mpi (x; r) = p(x)] � k(n) + 12n ;where r is the random string used by Mi on this run. This follows from thefollowing inequalities.8x; r Prp[Mpi (x; r) = p(x)jMpi (x; r) does not query x] � 12n (4:1)



12 Feigenbaum et al.8p Prx;r[Mpi (x; r) does query x] � k(n)2n (4:2)We prove Inequality (4.1) by choosing p in the following way. Assumewithout loss of generality that no two of Mi's queries are equal. For eachquery, choose a random value for p at that point. After k(n) queries,Mi(x; r)'sanswer on input x is determined. However, all values for p(x) are still equallylikely after k(n) queries|just choose a random element of GF (2n) as the valueof p(x).To prove Inequality (4.2), we use the fact that Mi has the instance-hidingproperty for p. Let Di be the distribution for Mpi 's ith question, i.e.,8x Prr[Mpi (x; r) queries x in the ith step] = Di(x):Hence, we have the following relations:8x Prr[Mpi (x; r) queries x in any step] � k(n)Xi=1 Di(x);Prx;r[Mpi (x; r) queries x] � 12n Xx2GF (2n) k(n)Xi=1 Di(x)= 12n k(n)Xi=1 Xx2GF (2n)Di(x) = k(n)2n :25. Uniform Random-Self-Reductions withan Unbounded Number of QueriesFeigenbaum, Kannan, and Nisan [13] showed that, if S has a nonadaptive2-ursr that never errs, then S is in NP=poly. We show by contrast that, for anyunbounded k(n), there exist functions f that are nonadaptively k(n)-ursr butnot even recursive with polynomial-sized advice.Theorem 5.1. Let C be any countable class of functions. If k(n) = !(1), thenthere exists a function f that is nonadaptively k(n)-ursr but not in C=poly.Proof. The proof is a counting argument. For each function in C, there areonly an exponential number of functions that can be created by varying thepolynomial advice string over all possibilities. For each input size we construct



Random-self-reducibility 13superexponentially many functions that all have the same nonadaptive k(n)-ursr. The existence of an f with the desired property then follows by a standarddiagonalization argument. 2Lemma 5.2. Given n � 0 and k(n) � log log n, let m = dlog k(n)e. Thereexists a family Fn of functions g : f0; 1gn ! f0; 1gm and a probabilisticpolynomial-time machineM such that M , when restricted to inputs in f0; 1gn,is a nonadaptive k(n)-ursr for any function in Fn, and jFnj > 2nk(n)�2 for largen.Proof. Any g in Fn will correspond to an l-variable polynomial p of degreeat most k(n)�1 over some �nite �eld GF (q). This type of function is known tohave a k(n)-ursr, as long as k(n) � q [4, 17]. To prove Lemma 5.2, we need tocount the number of such functions and to embed (GF (q))l into f0; 1gn. Thepurpose of the embedding is to create a function de�ned on f0; 1gn and to havethe rsr produce queries that are distributed uniformly over f0; 1gn; the naturaldomain for the polynomials is (GF (q))l. The embedding will determine theparameters q and l.Let q = 2m and l = bn=mc. Note that q � k(n), which is required by thestandard reduction in [4, 17]. Write down 2n�lm copies of (GF (q))l. Thereare ql = 2lm elements in (GF (q))l so there are a total of 2n elements in thismultiset consisting of 2n�lm copies. Assign an n-bit string to each element in themultiset. This assignment is the embedding of (GF (q))l into f0; 1gn. We nowde�ne the rsr. Given an l-variable polynomial p, we evaluate the correspondingfunction g on f0; 1gn as follows. To �nd g(x), where x 2 f0; 1gn, �rst �nd theelement y 2 (GF (q))l that is mapped to x by the embedding. Evaluate p(y)to get an element z of GF (q); z corresponds to an element of f0; 1gm in thenatural way used in Theorem 4.1. To perform the rsr of g on input x, �rst�nd y and perform the [4, 17] ursr of p on input y; this produces uniformlyrandom queries y1, : : :, yk(n). For each yi, pick a copy of (GF (q))l uniformlyat random, take the xi 2 f0; 1gn that corresponds to yi in that copy in theembedding, and evaluate g(xi). This procedure results in g-queries that aredistributed uniformly over f0; 1gn.In order to estimate the number of such functions, note �rst that two dif-ferent polynomials p and p0 de�ne di�erent functions. We use the expression qtas a lower bound on the number of l-variable polynomials over GF (q) of degreeat most k(n) � 1, where t is the number of multilinear monomials of degree



14 Feigenbaum et al.k(n)� 1. There are exactly t = � lk(n)�1� such monomial, and lk(n)� 1! > (b ndlogk(n)ec � k(n))k(n)(k(n)� 1)! > nk(n)�2because k(n) � log log n. Thus, (k(n) � 1)! < n and (b ndlogk(n)ec � k(n))k(n) >nk(n)�1. Hence, our lower bound on the number of l-variable polynomials isqnk(n)�2 > 2nk(n)�2 . 26. Open Questions and Subsequent Related WorkTheorem 4.1 shows that there are functions that are (k(n) + 1)-rsr but notk(n)-rsr. Is this also true of sets? Similarly, does Theorem 5.1 hold for sets aswell as functions?Theorem 5.1 and Feigenbaum, Kannan, and Nisan's result about 2-ursr'stogether suggest the following question: Is there a set that is O(1)-ursr but notin NP=poly?In Section 3, we provided one hypothesis that guarantees the existence ofsets in NP that are adaptively rsr but not nonadaptively rsr, namely NEEE 6�BPEEE. Subsequently, Hemaspaandra, Naik, Ogiwara, and Selman [16], usinga suggestion of Beigel, improved this result by showing that if NE 6� BPE, thensuch sets exist. AcknowledgementsThese results �rst appeared in our Technical Memorandum [12]. They werepresented in preliminary form at the 7th IEEE Structure in Complexity TheoryConference, Boston MA, June 1992.Lance Fortnow's work was supported in part by NSF Grant CCR-9009936.Daniel Spielman's work was done while he was a student at Yale College anda summer intern at AT&T Bell Laboratories.
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