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Abstract

Kolmogorov complexity measures the ammount of information in a string as the size of the shortest
program that computes the string. The Kolmogorov structure function divides the smallest program
producing a string in two parts: the useful information present in the string, called sophistication if
based on total functions, and the remaining accidental information. We formalize a connection between
sophistication (due to Koppel) and a variation of computational depth (intuitively the useful or nonrandom
information in a string), prove the existence of strings with maximum sophistication and show that they
are the deepest of all strings.

1 Introduction

Kolmogorov [Kol65], Solomonoff [Sol64] and Chaitin [Cha66] independently defined the complexity of a string
x as the length of the shortest program that produces x. The Kolmogorov structure function divides the
smallest program producing a string, as measured by the Kolmogorov complexity, in two parts: the useful
information present in the string and the remaining accidental information. Kolmogorov represented the
useful information by a finite set of which the object is a typical element, so that the two-stage description, the
finite set together with the index of the object in that set, is as short as the shortest one-part description.
Expressing the useful information as a recursive function Koppel [Kop88, KA91, Kop91] introduced the
concept of sophistication of an object.

Bennett [Ben88] formally defined the s-significant logical depth of an object x as the time required by
a standard universal Turing machine to generate x by a program that is no more than s bits longer than
the shortest descriptions of x. Antunes et. al. [AFvMV06] considered logical depth as one instantiation of
a more general theme, computational depth, and propose several other variants. Intuitively, computational
depth measures the amount of “nonrandom” or “useful” information in a string. Formalizing this intuitive
notion is tricky. A computationally deep string x should take a lot of effort to construct from its short
description. Incompressible strings are trivially constructible from their shortest description, and therefore
computationally shallow.

Related Work

Cover [Cov85] suggests that the Kolmogorov structure function is similar to “algorithmic sufficient statistics”
and it is suggested that it is the algorithmic approach to the probabilistic notion of sufficient statistics. Later
Gács et. al. [GTV01] established this relation, generalizing the Kolmogorov structure function approach to
computable probability functions, the resulting theory is referred to as Algorithmic Statistics. Vereshchagin
and Vitányi [VV02], claimed the rightness of the Kolmogorov structure function, proving that ML, MDL,
and related methods in model selection always give a best possible model in complexity-restricted model
classes. The most general way to proceed is perhaps to express the regularity as a recursive function. The
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resulting measure has been called, by Koppel, the sophistication of the object. Koppel claimed that depth
and sophistication for all infinite strings are equivalent. However the proof uses a different definition of depth
imposing totality in the functions defining depth and defining the length of a time bound by the smallest
program describing it. Vitányi [Vit06] developed the theory of recursive functions statistics, and studied
its relation with the more restricted model class of finite sets, and computable probability distributions, in
particular with the Kolmogorov minimal sufficient statistic.

This Work

In this paper we take a fresh look at sophistication showing that there are strings with high depth but low
sophistication. This result does not contradict Koppel [Kop88] since he used a non-standard notion of logical
depth. We show that there are strings with near maximum sophistication and strings of high sophistication
encode the halting problem for smaller strings, i.e., they are the deepest of all strings.

We define a robust variation of sophistication, coarse sophistication, and show that it is roughly equivalent
to a variation of computational depth based on the busy beaver function.

2 Preliminaries

We use binary alphabet Σ = {0, 1} for encoding strings. Our computation model will be Turing machines,
and U denotes a fixed universal Turing machine. The function log denote log2, and we will use |.| for the
length of a string and also to the cardinality of a set.

Kolmogorov Complexity

We give essential definitions and basic result in Kolmogorov complexity for our needs and refer the reader
to [LV97] for more details.

Definition 2.1 A function t : N → [0,∞) is time-constructible if there exists a Turing machine that runs
in time exactly t(n) on every input of size n.

All explicit resource bounds we use in this paper are time-constructible.

Definition 2.2 Let U be a fixed universal Turing machine. Then for any string x ∈ {0, 1}∗, the Kol-
mogorov complexity of x is, C(x) = minp{|p| : U(p) = x}. For any time constructible t, the t-time-bounded
Kolmogorov complexity of x is, Ct(x) = min{|p| : U(p) = x in at most t(|x|) steps}.
A different universal machine U may affect the program size |p| by at most a constant additive factor, and
the running time t by at most a logarithmic multiplicative factor.

Definition 2.3 A string x is incompressible if C(x) ≥ |x|. We also call such x algorithmically random.

Proposition 2.1 For all nonnegative integers n, at least half of the strings of length at most n are incom-
pressible.

We extend the definition of Kolmogorov complexity to finite sets in the following way: the Kolmogorov
complexity of a set S (denoted C(S)) is the Kolmogorov complexity of a list of its elements in some given
order. As noted by Cover [Cov85], Kolmogorov proposed in 1973 at the Information Theory Symposium,
Tallin, Estonia the following function:

Definition 2.4 The Kolmogorov structure function Hk(x|n) of x ∈ Σn is defined by

Hk(x|n) = min{log |S| : x ∈ S and C(S|n) ≤ k}.
Of special interest is the value

C∗(x|n) = min{k : Hk(x|n) + k = C(x|n)}.
A program for x can be written in two stages:
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1. Use p to print the indicator function for S.

2. The desired string is the ith sequence in a lexicographic ordering of the elements of
this set.

This program has length |p| + log |S| + O(1), and C∗(x|n) is the length of the shortest program p for
which this two-stage description is as concise as the shortest one stage description. Note that x must
be maximally random (a typical element) with respect to S otherwise the two stage description could be
improved, contradicting the minimality of C(x|n). Gács et al. [GTV01] generalize the model class from finite
sets to probability distributions, where the models are computable probability density functions.

In 1982 at a seminar in the Moscow State University (see [V’y99]) Kolmogorov raised the question if
“absolutely non-random” (or non-stochastic) objects exist.

Definition 2.5 Let α and β be natural numbers. A string x ∈ Σn is called (α, β)-stochastic if there exists
a finite set S such that x ∈ S, C(S) ≤ α and C(x|S) ≥ log |S| − β.

The following theorem, proved by Shen [She83], is part of the answer for a corresponding problem posed
by Kolmogorov about the existence of “absolutely non-random” strings.

Theorem 2.1 (Shen) 1. There exists a constant c such that, for any n and any α and β with α ≥
log n + c and α + β ≥ n + 4 log n + c, all the numbers from 0 to 2n − 1 are (α, β)-stochastic.

2. There exists a constant c such that, for any n and any α and β with 2α + β < n − 6 log n − c not all
the numbers from 0 to 2n − 1 are (α, β)-stochastic.

Gács et al. [GTV01] improved Shen’s result and proved that for every n there are objects of length n with
complexity C(x|n) ≈ n such that every explicit algorithmic sufficient statistic for x has complexity about n.

Sophistication

Koppel [Kop88] used total functions to represent the useful information of infinite sequences and the resulting
measure has been called sophistication. In this work we adapt Koppel’s definition to finite strings.

Definition 2.6 ([Kop88]) The sophistication of x ∈ Σn, with a significance level c, is defined by,

sophc(x) = min
p
{|p| : p is total and there exists d such that U(p, d) = x and |p|+ |d| ≤ K(x) + c}

Computational Depth

The Kolmogorov complexity of a string x does not take into account the time necessary to produce the string
from a description of length C(x). Levin [Lev73], introduced a useful variant weighing program size and
running time.

Definition 2.7 For any strings x, y, the Levin complexity of x given y is

Ct(x|y) = min
p
{|p|+ log t : U(p, y) halts in at most t steps and outputs x}.

After some attempts, Bennett [Ben88] formally defined the s-significant logical depth of a string x as the
time required by a standard universal Turing machine to generate x by a program that is no more than s
bits longer than the shortest descriptions of x. A string x is called logically deep if it takes a relatively large
amount of time to generate it from any short description.

Definition 2.8 Let x be a string and s be a nonnegative integer. The logical depth of x at a significance
level s is

depths(x) = min
p
{t : U(p) halts and outputs x in at most t steps, and |p| < C(x) + s}
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Note that algorithmically random strings are shallow at any significance level. In particular, Chaitin’s Ω is
shallow. Deep strings are hard to find, however they can be constructed by diagonalization, see [Ben88].
Bennett has proved that a fast deterministic processes is unable to transform a shallow object into a deep
one, and that fast probabilistic processes can do so only with small probability (slow growth law).

Antunes, Fortnow, van Melkebeek and Vinodchandran [AFvMV06] consider logical depth as one instanti-
ation of this more general theme and the authors propose several other variants and show many applications.
Intuitively strings of high computational depth are low Kolmogorov complexity strings (and hence nonran-
dom), but a resource bounded machine cannot identify this fact. By considering Ct(x) − C(x) we get a
variation of Bennett’s logical depth.

Definition 2.9 For any string x the basic computational depth of x is

bcd(x) = Ct(x)− C(x)
= min

p
{log(t) + |p| − C(x) :

U(p) outputs x in t steps}.

Basic computational depth has the advantage over logical depth that we do not need a significance level
parameter. In fact, we are adding to (the logarithm of) the running time of the program a penalty |p|−C(x)
which can be viewed as a significance level.

Logically deep strings are not easy to identify, but can be constructed by diagonalization in time larger
than 2t for depth t [Ben88]. In [AFvMV06] the authors prove that there are an exponential number of strings
with large basic computational depth. The result holds for Bennett’s notion of logical depth as well.

Theorem 2.2 There exists a constant c such that for any 0 < ε < 1 there are at least 2εn strings x of length
n satisfying

bcd(x) ≥ (1− ε)n− c log n.

3 On the Existence of Highly Sophisticated Strings

Like depth, sophistication is a measure of the non-random information in a string. We start by recasting
Definition 2.6 for finite strings.

Definition 3.1 Let c be a constant, x ∈ Σn and U the universal reference Turing machine

sophc(x) = min{|p| : p is total, exists d [U(p, d) = x and |p|+ |d| ≤ C(x) + c]}.

Initial sequences of the halting set give a nice example of a language with high depth but low sophisti-
cation.

Example 3.1 Let φ be a universal partial recursive function. Define χ = χ1χ2χ3... the characteristic
sequence of the diagonal halting set K0 = {i : φi(i) < ∞}

χi =
{

1 if i ∈ K0

0 otherwise

By the Barzdin’s Lemma (see [LV97]) log n ≤ C(χ1:n|n) ≤ log n + c′, so sophc(χ1:n) ≤ log n + c′, but
depths(χ1:n) is very high (χ1:n is very deep).

We could also have used the characteristic sequence of the recursive set constructed (by diagonalization) in
Li and Vitányi [LV97, Theorem 7.1.4] to show this gap between logical depth and sophistication.

We now prove that there exists strings x ∈ Σn such that the sophistication is close to n, i.e., highly
sophisticated strings. This result answers the question raised by Kolmogorov about the existence of “ab-
solutely non-random” (or absolutely non-stochastic) objects, Gács et al. [GTV01] proved a similar result
independently.
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Theorem 3.1 Let c be a constant, for some string x ∈ Σn,

sophc(x) > n− 2 log n− 2c.

Proof. For all p such that |p| ≤ n− 2 log n− 2c we define

rp =

{
0 if there exists a d such that |d| < n− |p| − c and U(p, d) diverges

max
d:|d|<n−|p|−c

running time of U(p, d)

Let T = max rp. Given n and p that maximizes rp we can compute T. Consider

V = {x : ∃p, d [|p| ≤ n− 2 log n− 2c, |d| ≤ n− |p| − c, U(p, d) = x in at most T steps]}.

Let z be the least, in the lexicographic order, element in {0, 1}n such that z /∈ V. Such z exists since
∀x ∈ V, C(x) ≤ |p| + |d| ≤ |p| + n − |p| − c = n − c and by a simple counting argument there must exist
at least 2n(1 − 1

2c ) strings z ∈ {0, 1}n with C(z) ≥ n − c. Since given n and p that maximizes rp we can
compute T , then by construction C(z) ≤ C(p) + 2 log n ≤ n− 2c.
Assume that sophc(z) is small, i.e., sophc(z) ≤ n− 2 log n− 2c; then, by definition there exist some total p∗

and some d∗ satisfying
|p∗| ≤ n− 2 log n− 2c and |p∗|+ |d∗| ≤ C(z) + c

but then we have that |p∗| ≤ n − 2 log n − 2c and |d∗| ≤ C(z) + c − |p∗| ≤ n − |p∗| − c so U(p∗, d∗) runs in
time ≤ T , i.e., z ∈ V. But by construction z /∈ V, so

sophc(z) > n− 2 log n− 2c.

¦
We can get a sharper result using conditional Kolmogorov complexity.

Corollary 3.1 For some string x of length n, sophc(x|n) ≥ n− 2c.

4 Coarse Sophistication

Koppel’s definition of sophistication, Definition 3.1, may not be stable. Small changes in c could cause
large changes in sophc(x). In this section, we consider a new notion of coarse sophistication that incorporate
the “constant” as a penalty in the formula to obtain a more robust measure.

Definition 4.1 The coarse sophistication of a string x ∈ Σn, is defined as

csoph(x) = min{2|p|+ |d| − C(x) : U(p, d) = x and p is total.}

Think of this definition as |p| for sophistication plus a penalty |p| + |d| − C(x) for how far away we are
from the minimal program. The choice of using |p| + |d| − C(x) instead of some other penalty function is
admittedly arbitrary but it seems natural and does lead to some interesting consequences.

Some “sensibility” is lost as now csoph(x) is upper bounded by |x|
2 .

Theorem 4.1 There is a constant c such that for all x ∈ Σn, csoph(x) ≤ n
2 + c.

Proof. If C(x) ≤ n
2 then by definition csoph(x) ≤ n

2 + c.
If C(x) > n

2 then considering the print(x) program we have csoph(x) ≤ n
2 + c. ¦

There are strings for which this upper bound is tight.

Theorem 4.2 For some string x of length n, csoph(x) > n
2 − 4 log n.
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Proof. For all p such that |p| ≤ n− 2 log n we define

rp =

{
0 if exists d : |d| < n− |p| such that U(p, d) diverges

max
d:|d|<n−|p|

running time of U(p, d)

Let S = max rp. Given n and p that maximizes rp we can compute S. Consider

V = {x : exists p, d [|p| ≤ n

2
− 2 log n, |d| ≤ n− 2|p| − 2 log n, U(p, d) = x in at most S steps]}.

Let z be the least, in the lexicographic order, element in {0, 1}n such that z /∈ V. Such z exists since for all
x ∈ V, C(x) < |p| + |d| + 2 log n ≤ |p| + 2 log n + n − 2|p| − 2 log n = n − |p| < n and by a simple counting
argument there exists random strings. By construction we know that

C(z) ≤ C(p) + 2 log n ≤ n

2
.

Assume that csoph(z) is small, i.e., csoph(z) ≤ n
2 − 4 log n; the program p∗ which defines the sophistication

is such that
|p∗| ≤ n

2
− 2 log n

and there exists d∗ such that
2|p∗|+ |d∗| − C(z) ≤ n

2
− 2 log n

but then we have that
|d∗| ≤ n

2
− 2 log n + C(z)− 2|p∗| ≤ n− 2 log n− 2|p∗|

so U(p∗, d∗) runs in time ≤ S, i.e., z ∈ V. But by construction z /∈ V, so

csoph(z) >
n

2
− 4 log n.

¦
We investigate the computational power of coarse sophistication, relating coarse sophistication with the

halting problem. We prove that with the knowledge of the sophistication of a string and some extra log n

bits we can solve the halting problem for all programs of length smaller than csoph(x)
2 − 2 log n.

Theorem 4.3 For all x ∈ Σn, given x and O(log n) bits we can solve the halting problem for all programs
q such that |q| < csoph(x)

2 − 2 log n.

Proof. With the given O(log n) bits find the minimum program p such that U(p) = x, and consider
S its running time. Suppose that there is some q such that |q| < csoph(x)

2 − 2 log n and U(q) converges in
time v > S. Consider the program w such that U(w, p) first computes v and then simulates U(p) for v steps,
producing x. Now w is total and there is a constant c such that |w| = |q|+ c, and

csoph(x) ≤ 2|w|+ |p| − C(x)
≤ 2|q|+ 2c + |p| − C(x)
≤ csoph(x)− 2 log n + 2c + |p| − C(x)
< csoph(x)− 2 log n + 2c

so such an input can not exist. ¦
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5 Coarse Sophistication vs Busy Beaver Computational Depth

The main drawback of basic computational depth is the fact that it is only suitable for strings whose
program runs in time at most exponential in the length of the string. This motivate the definition of busy
beaver computational depth, preserving the intuition of basic computational depth and capturing all possible
running times. Besides, using properly the Busy Beaver function, we can scale down computational depth
from running time to program length. Often the busy beaver function, BB(n), is defined to be the largest
number which can be computed by an n-state Turing machine. Although many variations on the definition
of busy beaver have been used, we recast the original definition (see Daley [Dal82]) as follows:

Definition 5.1 The busy beaver function is defined BB : N → N as

BB(n) = max
p:|p|≤n

{Running time of U(p) when defined}

Definition 5.2 The busy beaver computational depth of x ∈ Σn, is defined as

depthbb(x) = min{|p| − C(x) + k : U(p) = x in t steps and t ≤ BB(k)}

As in basic computational depth, depthbb also incorporate a significance level in the formula; |p| − C(x) is
a penalty measuring how far away we are from the minimal program. It is important to note that, instead
of using the running time, depthbb uses the inverse Busy Beaver of the running time. However, as for coarse
sophistication, some “sensibility” is lost, depthbb is nearly upper bounded by n

2 .

Theorem 5.1 There is a constant c such that for all x ∈ Σn, depthbb(x) ≤ n
2 + BB−1(n) + c.

Proof. If C(x) ≤ n
2 , considering the minimum program producing x we have depthbb(x) ≤ n

2 .
If C(x) > n

2 , considering the print(x) program we have depthbb(x) ≤ n
2 + BB−1(n) + c. ¦

There are strings for which this upper bound is tight.

Theorem 5.2 For some string x of length n, depthbb(x) > n
2 − 2 log n

Proof. Let V be the set of all x ∈ Σn such that there exists p and k such that |p| ≤ n
2 − 2 log n,

k ≤ n− 2 log n− |p|, U(p) = x in t steps and t ≤ BB(k).
Consider z that is the least, in the lexicographic order, element in Σn such that z /∈ V. Such z exists since

for all x ∈ V, C(x) < |p|+2 log n ≤ n
2 . We can approximate BB from below so V is r.e. and by construction

we know that the size of V is smaller than 2
n
2−2 log n so C(z) < n

2 .
Assume depthbb(z) ≤ n

2 − 2 log n, then by definition exists a p and k such that

k + |p| − C(z) ≤ n

2
− 2 log n and U(p) = x in t steps and t ≤ BB(k),

i.e.,
k ≤ n− 2 log n− |p| and U(p) = x in t steps and t ≤ BB(k)

proving that z ∈ V . But by construction z /∈ V, so depthbb(z) > n
2 − 2 log n. ¦

We now prove the equivalence between coarse sophistication and busy beaver computational depth.

Theorem 5.3 For all x ∈ Σn, |csoph(x)− depthbb(x)| ≤ O(log n).

Proof. We use ps to denote the program associated with csoph and pd with depthbb.

- We start proving that depthbb(x) ≤ csoph(x) + O(log n).
For all d such that |d| ≤ n, let t be the maximum running time of U(ps, d), then using ps and log n
bits to describe d we get t ≤ BB(|ps|+ O(log n)). So we get an upper bound on the depth of x

depthbb(x) ≤ |ps|+ |d| − C(x) + |ps|+ O(log n)
≤ csoph(x) + O(log n)
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- Now we prove that csoph(x) ≤ depthbb(x) + O(log n).
We denote the running time of a program p by rt(p). Let q be the first program of length k =
BB−1(rt(pd)) that satisfies

|q| = k, rt(q) ≥ rt(pd) and for all u : |u| = k, rt(u) > rt(pd) ⇒ rt(q) ≤ rt(u)

that is, the running time of q immediately follows the running time of pd. Consider the set

A = {v : |v| = |pd|, rt(v) < rt(q) and for all u : |u| = k, rt(u) > rt(v) ⇒ rt(u) > rt(q)}.

Given q, n, |pd| and k, A is recursive since rt(q) is used as the time limit for the running time of all
programs. By symmetry of information we have

C(v|q) ≤ C(q|v) + C(v)− C(q) + O(log n).

But, given v we can use its running time to get q, because q is the first program of length k whose
running time immediately follows the running time of pd, so C(q|v) ≤ O(log n) and C(v|q) ≤ |pd| −
k + O(log n).
As A is recursive we have |A| ≤ 2|pd|−k+O(log n) and we can point pd with its index i in A. Note that
for every p ∈ A, rt(p) < rt(q), i.e., it halts. Now consider the code of the machine that with input
< q, n, |pd|, k > and i constructs the set A and picks pd that given as input to the universal Turing
machine produces x. Then

csoph(x) ≤ 2|q|+ O(log n) + |i| − C(x)
≤ 2k + O(log n) + |pd| − k − C(x)
≤ k + |pd| − C(x) + O(log n)
≤ depthbb(x) + O(log n)

¦
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