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Abstract. We study the complexity of solving succinct zero-sum games,
i.e., the games whose payoff matrix M is given implicitly by a Boolean
circuit C such that M(i, j) = C(i, j). We complement the known EXP-
hardness of computing the exact value of a succinct zero-sum game by
several results on approximating the value. (1) We prove that approx-
imating the value of a succinct zero-sum game to within an additive
factor is complete for the class promise-Sp2, the “promise” version of Sp2.
To the best of our knowledge, it is the first natural problem shown com-
plete for this class. (2) We describe a ZPPNP algorithm for construct-
ing approximately optimal strategies, and hence for approximating the
value, of a given succinct zero-sum game. As a corollary, we obtain,
in a uniform fashion, several complexity-theoretic results, e.g., a ZPPNP

algorithm for learning circuits for SAT (Bshouty et al., JCSS, 1996) and
a recent result by Cai (JCSS, 2007) that Sp2 ⊆ ZPPNP. (3) We observe
that approximating the value of a succinct zero-sum game to within a
multiplicative factor is in PSPACE, and that it cannot be in promise-Sp2
unless the polynomial-time hierarchy collapses. Thus, under a reason-
able complexity-theoretic assumption, multiplicative-factor approxima-
tion of succinct zero-sum games is strictly harder than additive-factor
approximation.
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1. Introduction

1.1. Zero-Sum Games. A two-person zero-sum game is specified by a ma-
trix M . The row player chooses a row i, and, simultaneously, the column player
chooses a column j. The row player then pays the amount M(i, j) to the col-
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umn player. The goal of the row player is to minimize its loss, while the goal
of the column player is to maximize its gain.

Given probability distributions (mixed strategies) P and Q over the rows
and the columns ofM , respectively, the expected payoff is defined asM(P,Q) =∑

i,j P (i)M(i, j)Q(j). The fundamental Minmax Theorem of von Neumann
(Neu28) states that even if the two players were to play sequentially, the player
who moves last would not have any advantage over the player who moves first,
i.e.,

min
P

max
Q

M(P,Q) = max
Q

min
P
M(P,Q) = v,

where v is called the value of the game M . This means that there are strategies
P ∗ and Q∗ such that maxQM(P ∗, Q) 6 v and minP M(P,Q∗) > v. Such
strategies P ∗ and Q∗ are called optimal strategies. It is well-known that optimal
strategies, and hence the value of the game, can be found in polynomial time by
linear programming (see, e.g., (Owe82)); moreover, finding optimal strategies
is equivalent to solving linear programs, and hence is P-hard.

Sometimes it may be sufficient to approximate the value v of the given zero-
sum game M to within a small additive factor ε, and to find approximately op-
timal strategies P̃ and Q̃ such that maxQM(P̃ , Q) 6 v+ε and minP M(P, Q̃) >
v− ε. Unlike the case of exactly optimal strategies, finding approximately opti-
mal strategies can be done efficiently in parallel (GK92; GK95; LN93; PST95),
as well as sequentially in sublinear time by a randomized algorithm (GK95).

Zero-sum games also play an important role in computational complexity
and computational learning. In complexity theory, Yao (Yao77; Yao83) shows
how to apply zero-sum games to proving lower bounds on the running time of
randomized algorithms; Goldmann, H̊astad, and Razborov (GHR92) prove a
result about the power of circuits with weighted threshold gates; Lipton and
Young (LY94) use Yao’s ideas to show that estimating (to within a linear fac-
tor) the Boolean circuit complexity of a given NP language is in the second
level of the polynomial-time hierarchy Σp

2; Impagliazzo (Imp95) gets an alter-
native proof of Yao’s XOR Lemma (Yao82). In learning theory, Freund and
Schapire (FS96; FS99) show how an algorithm for playing a repeated zero-sum
game can be used for both on-line prediction and boosting.

1.2. Succinct Zero-Sum Games. A succinct two-person zero-sum game is
defined by an implicitly given payoff matrix M . That is, one is given a Boolean
circuit C such that the value M(i, j) can be obtained by evaluating the circuit
C on the input i, j. Note that the circuit C can be much smaller than the
matrix M (e.g., polylogarithmic in the size of M).
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Computing the exact value of a succinct zero-sum game is EXP-complete, as
shown, e.g., in (FKS95, Theorem 4.6). In Section 3, we give an alternative proof
of this result, by first showing that computing the exact value of an explicit
(rather than succinct) zero-sum game is P-complete. While it is well-known
that computing optimal strategies of a given explicit zero-sum game is P-hard,
the proof of the P-completeness of computing the value of the zero-sum game
does not seem to have appeared in the literature (although it may well be a
“folklore” result).

The language decision problems for several complexity classes can be ef-
ficiently reduced to the task of computing (or approximating) the value of
an appropriate succinct zero-sum game. For example, consider a language L ∈
MA (Bab85; BM88) with polynomial-time computable predicate R(x, y, z) such
that if x is in L then there exists a y such that Prz[R(x, y, z) = 1] > 2/3 and if x
is not in L then for all y, Prz[R(x, y, z) = 1] < 1/3, where |y| = |z| ∈ poly(|x|).
For every x, we define the payoff matrix Mx(w; y, z) = R(x, y, z ⊕ w) whose
rows are labeled by w’s and whose columns are labeled by the pairs (y, z)’s,
where |y| = |z| = |w| and z ⊕w denotes the bitwise XOR of the binary strings
z and w. It is easy to see that the value of the game Mx is greater than 2/3 if
x ∈ L, and is less than 1/3 if x 6∈ L.

Class Sp2 (Can96; RS98) consists of those languages L that have polynomial-
time predicates R(x, y, z) such that if x is in L then ∃y∀z R(x, y, z) = 1 and if
x is not in L then ∃z∀y R(x, y, z) = 0. For every x, define the payoff matrix
Mx(z, y) = R(x, y, z). Now, if x ∈ L, then there is a column of all 1’s, and
hence the value of the game Mx is 1; if x 6∈ L, then there is a row of all 0’s,
and hence the value of the game is 0.

1.3. Our Results. We have three main results about the complexity of com-
puting the value of a given succinct zero-sum game.

(1) We prove that approximating the value of a succinct zero-sum game to
within an additive factor is complete for the class promise-Sp2, the “promise”
version of Sp2. To the best of our knowledge, it is the first natural problem
shown complete for this class; the existence of a natural complete problem
should make the class Sp2 more interesting to study.

(2) We describe a ZPPNP algorithm for constructing approximately optimal
strategies, and hence for approximating the value, of a given succinct zero-
sum game. As a corollary, we obtain, in a uniform fashion, several previously
known results: MA ⊆ Sp2 (RS98), Sp2 ⊆ ZPPNP (Cai07), a ZPPNP algorithm
for learning polynomial-size Boolean circuits for SAT, assuming such circuits
exist (BCG+96), and a ZPPNP algorithm for deciding if a given Boolean circuit
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computing some Boolean function f is approximately optimal for f (i.e., if there
is no significantly smaller Boolean circuit computing f) (BCG+96). We also
argue that derandomizing this ZPPNP algorithm is impossible without proving
strong circuit lower bounds.

(3) We also observe that approximating the value of a succinct zero-sum
game to within a multiplicative factor is in PSPACE, and that it is not in
promise-Sp2 unless the polynomial-time hierarchy collapses to the second level.
Thus, under a reasonable complexity-theoretic assumption, multiplicative-factor
approximation of succinct zero-sum games is strictly harder than additive-
factor approximation.

Our other results include the P-completeness of computing the exact value
of an explicit zero-sum game (complementing the well-known P-hardness of
computing the optimal strategies of explicit zero-sum games), as well promise-Sp2-
completeness of another natural problem, a variant of the Succinct Set Cover
problem.

Remainder of the paper. Section 2 contains necessary definitions and some
known results needed later in the paper. In Section 3, we show that computing
the exact value of a succinct zero-sum game is EXP-hard. In Section 4, we
prove that approximating the value of a succinct zero-sum game is complete
for the class promise-Sp2, the “promise” version of Sp2. Section 5 presents a ZPPNP

algorithm for approximately solving a given succinct zero-sum game, as well as
for finding approximately optimal strategies and give several applications of our
results by proving some old and new results in a uniform fashion. In Section 6,
we consider the problem of approximating the value of a succinct zero-sum game
to within a multiplicative factor. Section 7 argues that it may be difficult to
get a PNP algorithm for approximately solving a given succinct zero-sum game,
as it would entail superpolynomial circuit lower bounds for the class EXPNP.
In Section 8, we give an example of another promise-Sp2-complete problem, a
version of Succinct Set Cover. Section 9 contains concluding remarks.

2. Preliminaries

Let M be a given 0-1 payoff matrix with value v. For ε > 0, we say that
a row mixed strategy P̃ and a column mixed strategy Q̃ are ε-optimal if
maxQM(P̃ , Q) 6 v + ε and minP M(P, Q̃) > v − ε. For k ∈ N, we say that a
mixed strategy is k-uniform if it chooses uniformly from a multiset of k pure
strategies.

The following result by Newman (New91), Althöfer (Alt94), and Lipton
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and Young (LY94) shows that every zero-sum game has k-uniform ε-optimal
strategies for small k.

Theorem 2.1 ( New91, Alt94, LY94). LetM be a 0-1 payoff matrix on n rows
and m columns. For any ε > 0, let k > max{lnn, lnm}/(2ε2). Then there are
k-uniform ε-optimal mixed strategies for both the row and the column player
of the game M .

We use standard notation for complexity classes P, NP, ZPP, BPP, PH,
EXP, and P/poly (Pap94). We use BPPNP to denote the class of (not necessar-
ily Boolean) functions that can be computed with high probability by a prob-
abilistic polynomial-time Turing machine given access to an NP-oracle. The
error-free class, ZPPNP, denotes the class of (not necessarily Boolean) functions
that can be computed by a probabilistic Turing machine with an NP-oracle such
that the Turing machine always halts in polynomial time, and either outputs
the correct value of the function, or, with small probability, outputs Fail.

Let R(x, y) be any polynomial-time relation for |y| ∈ poly(|x|), let Rx = {y |
R(x, y) = 1} be the set of witnesses associated with x, and let LR = {x | Rx 6=
∅} be the NP language defined by R. Bellare, Goldreich, and Petrank (BGP00)
show that witnesses for x ∈ LR can be generated uniformly at random, using
an NP-oracle; the following theorem is an improvement on an earlier result by
Jerrum, Valiant, and Vazirani (JVV86).

Theorem 2.2 ( BGP00). For R, Rx, and LR as above, there is a ZPPNP algo-
rithm that takes as input x ∈ LR, and outputs a uniformly distributed element
of the set Rx, or outputs Fail; the probability of outputting Fail is bounded
by a constant strictly less than 1.

3. Computing the Value of a Succinct Zero-Sum Game

In this section, we show that computing the exact value of a given succinct zero-
sum game is EXP-hard. To this end, we first show that computing the exact
value of an explicit (rather than succinct) zero-sum game is P-hard. The EXP-
hardness of the succinct version of the problem will then follow by standard
arguments.

Theorem 3.1. Given a payoff matrix M of a zero-sum game, it is P-hard to
compute the value of the game M .
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Proof. The proof is by a reduction from the Monotone Circuit Value Prob-
lem. Fix a circuit with m wires (gates). We will construct a payoff matrix as
follows.

For every wire w, we have two columns w and w′ in the matrix (w′ is
intended to mean the complement of w). We will create the rows to have the
following property:

1. If the circuit is true, there is a probability distribution that can be played
by the column player that achieves a guaranteed nonnegative payoff. For
each wire w, it will place 1/m probability on w if wire w carries a 1 or
on w′ if wire w carries a 0.

2. If the circuit is false, then for every distribution on the columns, there is
a choice of a row that forces a negative payoff for the column player.

Construction of rows (unspecified payoffs are 0):

◦ For every pair of wires u and v, have a row with u and u′ have a payoff
of −1 and v and v′ have a payoff of 1. This guarantees the column player
must put the same probability on each wire.

◦ For the output wire o, have a row with the payoff of -1 for o′.

◦ For every input wire i with a value 1 have a row with a payoff of -1 for i′.

◦ For every input wire i with a value 0 have a row with a payoff of -1 for i.

◦ If wire w is the OR of wires u and v, have a row with payoffs of -1 for w
and 1 for u and 1 for v.

◦ If wire w is the AND of wires u and v, have a row with payoff of -1 for w
and 1 for u and another row with a payoff of -1 for w and 1 for v.

It is not difficult to verify that the constructed zero-sum game has a non-
negative value iff the circuit is true. �

By standard complexity-theoretic arguments, we immediately get from The-
orem 3.1 the following.

Corollary 3.2 ( FKS95). Computing the exact value of a given succinct
zero-sum game is EXP-hard.
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4. Promise-Sp
2-Completeness

A promise problem Π is a collection of pairs Π = ∪n>0(Π
+
n ,Π

−
n ), where Π+

n ,Π
−
n ⊆

{0, 1}n are disjoint subsets, for every n > 0. The strings in Π+ = ∪n>0Π
+
n are

called positive instances of Π, while the strings in Π− = ∪n>0Π
−
n are negative

instances. If Π+ ∪ Π− = {0, 1}∗, then Π defines a language.
The “promise” version of the class Sp2, denoted as promise-Sp2, consists of

those promise problems Π for which there is a polynomial-time computable
predicate R(x, y, z), for |y| = |z| ∈ poly(|x|), satisfying the following: for every
x ∈ Π+∪Π−, x ∈ Π+ ⇒ ∃y∀z R(x, y, z) = 1 and x ∈ Π− ⇒ ∃z∀y R(x, y, z) =
0.

Let C be an arbitrary Boolean circuit defining some succinct zero-sum game
with the payoff matrix MC , and let 0 6 u 6 1 and k ∈ N be arbitrary. We
define the promise problem

Succinct zero-sum Game Value (SGV)
Positive instances: (C, u, 1k) if the value of the game MC is at least u+1/k.
Negative instances: (C, u, 1k) if the value of the gameMC is at most u−1/k.

The main result of this section is the following.

Theorem 4.1. The promise problem SGV is promise-Sp2-complete.

First, we argue that every problem in promise-Sp2 is polynomial-time re-
ducible to the promise problem SGV, i.e., the problem SGV is hard for the
class promise-Sp2.

Lemma 4.2. The problem SGV is promise-Sp2-hard.

Proof. Let Π be an arbitrary promise problem in promise-Sp2. Let R(x, y, z)
be the polynomial-time computable predicate such that ∀x ∈ Π+∃y∀z R(x, y, z) =
1 and ∀x ∈ Π−∃z∀y R(x, y, z) = 0.

For any x, consider the succinct zero-sum game with the payoff matrix

Mx(z, y)
def
= R(x, y, z). Note that for every x ∈ Π+, there is a pure strategy y

for the column player that achieves the payoff 1. On the other hand, for every
x ∈ Π−, there is a pure strategy z for the row player that achieves the payoff 0.
That is, the value of the game Mx is 1 for x ∈ Π+, and is 0 for x ∈ Π−. Defining
the SGV problem on (C, u, 1k) by setting C(z, y) = R(x, y, z), u = 1/2, and
k = 3 completes the proof. �

Next, we show that the problem SGV is in the class promise-Sp2.
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Lemma 4.3. SGV∈ promise-Sp2.

Proof. Let (C, u, k) be an instance of SGV such that the value of the game
M defined by C is either at least u + 1/k, or at most u− 1/k. Let the payoff
matrix M have n rows and m columns, where n,m 6 2|C|.

Using Theorem 2.1, we can choose the parameter s ∈ poly(|C|, k) so that
the game M has s-uniform 1/(2k)-optimal strategies for both the row and the
column player. Now we define a new payoff matrix M̂ whose rows are labeled
by n̂ = ns size-s multisets from {1, . . . , n}, and whose columns are labeled by
m̂ = ms size-s multisets from {1, . . . ,m}. For 1 6 i 6 n̂ and 1 6 j 6 m̂, let
Si and Tj denote the ith and the jth multisets from {1, . . . , n} and {1, . . . ,m},
respectively. We define

M̂(i, j) =

{
1 if 1

|Si||Tj |
∑

a∈Si,b∈Tj
M(a, b) > u

0 otherwise

Consider the case where the value v of the game M is at least u + 1/k.
Then there is an s-uniform 1/(2k)-optimal strategy for the column player. Let
Tj be the size-s multiset corresponding to this strategy. By the definition of
1/(2k)-optimality, we have for every 1 6 a 6 n that

1

|Tj|
∑
b∈Tj

M(a, b) > v − 1/(2k) > u+ 1/k − 1/(2k) > u.

It follows that M̂(i, j) = 1 for every 1 6 i 6 n̂. A symmetrical argument
shows that, if the value of the game M is at most u− 1/k, then there is a row
1 6 i 6 n̂ such that M̂(i, j) = 0 for all 1 6 j 6 m̂. Defining the predicate
R((C, u, 1k), j, i) = M̂(i, j) puts the problem SGV in the class promise-Sp2. �

Now we can prove Theorem 4.1.

Proof (Proof of Theorem 4.1). Apply Lemma 4.2 and Lemma 4.3. �

5. Approximating the Value of a Succinct Zero-Sum
Game

Here we will show how to approximate the value and how to learn sparse
approximately optimal strategies for a given succinct zero-sum game in ZPPNP.
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5.1. Learning to play repeated games. Our learning algorithm will be
based on the “multiplicative-weights” algorithm of Freund and Schapire (FS99)
for learning how to play repeated zero-sum games; a similar algorithm was pro-
posed earlier by Grigoriadis and Khachiyan (GK95), motivated by the classical
deterministic iterative method for solving zero-sum games due to Brown and
Robinson (Bro51; Rob51).

We first describe the repeated game setting of (FS99). Say M is a payoff
matrix. In each round t of the repeated game, the row player has a mixed
strategy Pt over the rows. With full knowledge of Pt, the column player chooses
a (pure) strategy Qt; in principle, Qt can be arbitrary, but in the adversarial
setting of zero-sum games, the column player is likely to choose Qt to maximize
its expected payoff given the current strategy Pt of the row player. After round
t, the row player suffers the loss M(Pt, Qt). The row player observes its loss
M(i, Qt) for each row i, and chooses the mixed strategy Pt+1 to use in the next
round of the game. The goal of the row player is to minimize its total loss∑T

t=1M(Pt, Qt), where T is the total number of rounds in the repeated play.
Freund and Schapire propose and analyze the following learning algorithm,

called MW for “multiplicative weights”. The algorithm MW starts with the
uniform distribution on the rows. After each round t, the new mixed strategy
of the row player is computed by the following rule:

(5.1) Pt+1(i) = Pt(i)
βM(i,Qt)

Zt
,

where Zt =
∑

i Pt(i)β
M(i,Qt) is a normalizing factor, and β ∈ [0, 1) is a pa-

rameter of the algorithm. In words, the new mixed strategy of the row player
re-weighs the rows by reducing the probability of row i proportionately to the
loss suffered by i given the current strategy Qt of the column player: the higher
the loss, the lower the new probability.

Theorem 5.2 ( FS99). For any matrix M with n rows and entries in [0, 1],
and for any sequence of mixed strategies Q1, . . . , QT played by the column
player, the sequence of mixed strategies P1, . . . , PT produced by the algorithm

MW with β =
(

1 +
√

2 lnn
T

)−1

satisfies the following:

T∑
t=1

M(Pt, Qt) 6 min
P

T∑
t=1

M(P,Qt) + 3
√
T lnn.

In other words, the algorithm MW plays only slightly worse than the algo-
rithm with full knowledge of all the mixed strategies Q1, . . . , QT to be played
by the column player.
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Now, suppose that the column player picks its mixed strategies in the most
adversarial fashion, i.e., in each round t,

Qt = arg max
Q

M(Pt, Q).

Then the probability distribution P̄ = 1
T

∑T
t=1 Pt, the average of the mixed

strategies produced by the algorithm MW of Theorem 5.2, will be an approxi-
mately optimal strategy for the game M whenever T is sufficiently large.

Theorem 5.3 ( FS99). Let M be a payoff matrix with n rows whose entries
are in [0, 1]. Let v be the value of the game M . Let the mixed strategies
P1, . . . , PT be chosen by the algorithm MW of Theorem 5.2, while the column
strategies Q1, . . . , QT are chosen so that Qt = arg maxQM(Pt, Q), for each

1 6 t 6 T . Then the mixed strategies P̄ = 1
T

∑T
t=1 Pt and Q̄ = 1

T

∑T
t=1Qt are

ε-optimal for ε = 3
√

lnn
T

, i.e., maxQM(P̄ , Q) 6 v+ε and minP M(P, Q̄) > v−ε.
Hence, we have v − ε 6M(P̄ , Q̄) 6 v + ε.

Proof. The following sequence of inequalities proves the theorem:

v = min
P

max
Q

M(P,Q) by the Minmax Theorem

6 max
Q

M(P̄ , Q)

= max
Q

1

T

T∑
t=1

M(Pt, Q) by definition of P̄

6
1

T

T∑
t=1

max
Q

M(Pt, Q)

=
1

T

T∑
t=1

M(Pt, Qt) by definition of Qt

6 min
P

1

T

T∑
t=1

M(P,Qt) + ε by Theorem 5.2

= min
P
M(P, Q̄) + ε by definition of Q̄

6 max
Q

min
P
M(P,Q) + ε

= v + ε by the Minmax Theorem.

�
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Thus, we can use the algorithm MW to approximate the value of a given
zero-sum game to within an additive factor δ, by setting T ∈ O(lnn/δ2).

5.2. Computing approximately optimal strategies in ZPPNP. Now we
will show how to adapt the algorithm MW of (FS99) to obtain a ZPPNP al-
gorithm for computing sparse, approximately optimal strategies of succinct
zero-sum games. Let M be a payoff matrix of n rows and m columns implicitly
given by some Boolean circuit C so that C(i, j) = M(i, j) for all 1 6 i 6 n and
1 6 j 6 m. Note that n,m 6 2|C|. We need to construct an algorithm that
runs in time polynomial in |C|.

Obviously, we do not have enough time to write down the mixed strategies
of the row player as they are computed by the algorithm MW by rule (5.1).
Fortunately, each such strategy Pt+1 has a succinct description: it only depends
on the t pure strategies Q1, . . . , Qt used by the column player in the previous
t rounds of the game, and each pure strategy is just an index 1 6 j 6 m of
the column of the matrix M . Thus, Pt+1 is completely defined by the circuit
C plus at most t logm bits of information. Using Theorem 2.2, we are able to
sample according to the distribution Pt+1.

Lemma 5.4. Let M be a payoff matrix specified by a Boolean circuit C. There
is a ZPPNP algorithm that, given the t column indices j1, . . . , jt corresponding
to pure strategies Q1, . . . , Qt, outputs a row index i distributed according to
the mixed strategy Pt+1 as defined by rule (5.1) of the algorithm MW.

Proof. We assume that the parameter β of the algorithm MW from Theo-
rem 5.2 is a rational number β = b1/b2, for some integers b1, b2 (by taking a suf-
ficiently good rational approximation of β, if necessary). For integers 1 6 i 6 n

and 1 6 r 6 bt2, define the relation R(j1, . . . , jt; i, r) = 1 iff r 6 β
Pt

k=1M(i,jk)bt2.
Viewing the pair (i, r) a witness of the relation R and applying Theorem 2.2,
we get a pair (i0, r0) uniformly distributed among the witnesses of R. Observe
that, for every 1 6 i 6 n, the probability of sampling a pair whose first element
is i is exactly

Pt+1(i) = β
Pt

k=1M(i,jk)/Z,

where Z =
∑n

i=1 β
Pt

k=1M(i,jk) is a normalizing factor. Thus, uniformly sampling
a witness of R and outputting the first element i0 of the sampled pair yields us
the required ZPPNP algorithm sampling according to Pt+1. �

In order to compute an approximately optimal strategy P̄ using Theo-
rem 5.3, we would need to select in each round t of the game a best possible
column strategy Qt = arg maxQM(Pt, Q) given the current mixed strategy Pt
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of the row player. It is not clear if this can be accomplished in BPPNP. How-
ever, the proof of Theorem 5.3 can be easily modified to argue that if each
Qt is chosen so that M(Pt, Qt) > maxQM(Pt, Q) − σ, for some σ > 0, then
the resulting mixed strategies P̄ and Q̄ will be (ε + σ)-optimal (rather than
ε-optimal). In other words, choosing in each round t an almost best possible
column strategy Qt is sufficient for obtaining approximately optimal strategies
P̄ and Q̄.

We now explain how to choose such almost best possible column strate-
gies Qt in BPPNP. The reader should not be alarmed by the fact that we are
considering a BPPNP algorithm, rather than a ZPPNP algorithm. This BPPNP

algorithm will only be used as a subroutine in our final, error-free ZPPNP algo-
rithm.

Fix round t, 1 6 t 6 T . We assume that we have already chosen strategies
Q1, . . . , Qt−1, and hence the mixed strategy Pt is completely specified; the base
case is for t = 1, where P1 is simply the uniform distribution over the rows of
the matrix M .

Lemma 5.5. There is a BPPNP algorithm that, given column indices j1, . . . , jt−1

of the matrix M for t > 1 and σ > 0, outputs a column index jt such that,
with high probability over the random choices of the algorithm, M(Pt, jt) >
maxjM(Pt, j)−σ. The running time of the algorithm is polynomial in t, 1/σ, |C|,
where C is the Boolean circuit that defines the matrix M .

Proof. Let σ′ = σ/2. For integer k to be specified later, form the multiset S
by sampling k times independently at random according to the distribution Pt;
this can be achieved in ZPPNP by Lemma 5.4. For any fixed column 1 6 j 6 m,
the probability that | 1

|S|
∑

i∈SM(i, j) −M(Pt, j)| > σ′ is at most 2e−2kσ′2
by

the Hoeffding bounds (Hoe63). Thus, with probability at least 1 − 2me−2kσ′2
,

we have that | 1
|S|
∑

i∈SM(i, j) −M(Pt, j)| 6 σ′ for every column 1 6 j 6 m.

Let us call such a multiset S good. Choosing k ∈ poly(logm, 1/σ), we can make
the probability of constructing a good multiset S sufficiently high.

Assuming that we have constructed a good multiset S, we can now pick j =
arg maxj

∑
i∈SM(i, j) in PNP as follows. First, we compute w∗ = maxj

∑
i∈SM(i, j)

by going through all possible integers w = 0, . . . , k, asking the NP-query: Is
there a column 1 6 j 6 m such that

∑
i∈SM(i, j) > w? The required w∗

will be the last value of w for which our query is answered positively. (To
speed up things a little, we could also do the binary search over the in-
terval of integers between 0 and k.) Once we have computed w∗, we can
do the binary search over the column indices 1 6 j 6 m, asking the NP-
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query: Is there a column j in the upper half of the current interval such
that

∑
i∈SM(i, j) = w∗? After at most logm steps, we will get the re-

quired j∗ = arg maxj
∑

i∈SM(i, j). Finally, since S is a good set, we have that
M(Pt, j

∗) > 1
|S|
∑

i∈SM(i, j∗)−σ′ > maxjM(Pt, j)− 2σ′ = maxjM(Pt, j)−σ,
as promised. �

Running the BPPNP algorithm of Lemma 5.5 for T ∈ O(lnn/σ2) steps,
we construct a sequences of pure strategies Q1, . . . , QT such that, with high
probability over the random choices of the algorithm, the mixed strategies
P̄ = 1

T

∑T
t=1 Pt (determined by rule (5.1)) and Q̄ = 1

T

∑T
t=1Qt are 2σ-optimal.

That is, maxQM(P̄ , Q) 6 v + 2σ and minP M(P, Q̄) > v − 2σ, where v is the
value of the game M . Hence, we have with high probability that v − 2σ 6
M(P̄ , Q̄) 6 v + 2σ.

Since both the mixed strategies P̄ and Q̄ have small descriptions, they both
can be sampled by a ZPPNP algorithm. The case of Q̄ is trivial since it is a
sparse strategy on at most T columns. To sample from P̄ , we pick 1 6 t 6 T
uniformly at random, sample from Pt using the algorithm of Lemma 5.4, and
output the resulting row index.

Finally, we can prove the main theorem of this section.

Theorem 5.6. There is a ZPPNP algorithm that, given a δ > 0 and Boolean
circuit C defining a payoff matrix M of unknown value v, outputs a number
u and multisets S1 and S2 of row and column indices, respectively, such that
|S1| = k1 and |S2| = k2 for k1, k2 ∈ poly(|C|, 1/δ),

v − δ 6 u 6 v + δ,

and the multisets S1 and S2 give rise to sparse approximately optimal strategies,
i.e.,

max
j

1

k1

∑
i∈S1

M(i, j) 6 v + δ,

and

min
i

1

k2

∑
j∈S2

M(i, j) > v − δ.

The running time of the algorithm is polynomial in |C| and 1/δ.

Proof. Let us set σ = δ/12. As explained in the discussion preceding the
theorem, we can construct in BPPNP the descriptions of two mixed strategies
P̄ and Q̄ such that v − 2σ 6 M(P̄ , Q̄) 6 v + 2σ, where the running time of
the BPPNP algorithm is poly(|C|, 1/σ). That is, with high probability, both
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the strategies are approximately optimal to within the additive factor 2σ. Let
S2 be the multiset of column indices given by the sequence of pure strategies
Q1, . . . , QT used to define Q̄, where T = k2 ∈ poly(|C|, 1/σ). To construct S1,
we sample from P̄ independently k1 times. Obviously, both multisets can be
constructed in ZPPNP.

By uniformly sampling from S1, we can approximate M(P̄ , Q̄) to within
an additive factor σ in probabilistic poly(|C|, 1/σ) time with high probability,
by the Hoeffding bounds (Hoe63). That is, with high probability, the resulting
estimate u will be such that v−3σ 6 u 6 v+3σ, and the sparse mixed strategies
given by S1 and S2 will be approximately optimal to within the additive factor
3σ.

Finally, we show how to eliminate the error of our probabilistic construction.
Given the estimate u and the sparse strategies S1 and S2, we can test in PNP

whether

(5.7) max
j

1

|S1|
∑
i∈S1

M(i, j) 6 u+ 6σ,

and

(5.8) min
i

1

|S2|
∑
j∈S2

M(i, j) > u− 6σ.

If both tests (5.7) and (5.8) succeed, then we output u, S1, and S2; otherwise,
we output Fail.

To analyze correctness, we observe that, with high probability, u, S1, and
S2 are such that v − 3σ 6 u 6 v + 3σ,

max
j

1

|S1|
∑
i∈S1

M(i, j) 6 v + 3σ 6 u+ 6σ,

and, similarly,

min
i

1

|S2|
∑
j∈S2

M(i, j) > v − 3σ > u− 6σ.

Hence, with high probability, our tests (5.7) and (5.8) will succeed. Whenever
they succeed, the output u will approximate the value v of the game M to
within the additive factor 6σ < δ, while the sparse strategies given by S1 and
S2 will be approximately optimal to within the additive factor 12σ = δ, as
required. �
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5.3. Applications. In this section, we show how our Theorem 4.1 and The-
orem 5.6 can be used to derive several old and new results in a very uniform
fashion.

Theorem 5.9 ( RS98). MA ⊆ Sp2

Proof. Let L ∈ MA be any language. As we argued in Section 1.2 of the
Introduction, for every x there is a succinct zero-sum game Mx defined by a
Boolean circuit Cx such that the value of Mx is at least 2/3 if x ∈ L, and is at
most 1/3 if x 6∈ L.

Let us associate with every x the triple (Cx, 1/2, 1
8) in the format of in-

stances of SGV. By Theorem 4.1, the resulting problem SGV is in promise-Sp2,
defined by some polynomial-time predicate R. Defining the new predicate

R̂(x, y, z)
def
= R((Cx, 1/2, 1

8), y, z) shows that L ∈ Sp2, as required. �

Theorem 5.10 ( Cai07). Sp2 ⊆ ZPPNP

Proof. Let L ∈ Sp2 be any language. As we argued in Section 1.2 of the In-
troduction, the definition of Sp2 implies that for every x there exists a succinct
zero-sum game whose value is 1 if x ∈ L, and is 0 if x 6∈ L. Since approximat-
ing the value of any succinct zero-sum game to within a 1/4 is in ZPPNP by
Theorem 5.6, the result follows. �

Remark 5.11. There are some connections between our results and those in
(Cai07). Cai’s result and Lemma 4.3 together imply that the promise problem
SGV is in ZPPNP, because the main proof in (Cai07) shows that promise-Sp2
is in ZPPNP. Our Theorem 5.6 also shows that SGV is in ZPPNP, but goes
further by also producing approximately optimal strategies. Because SGV is
SP2 -hard, one of the consequences of our result is the alternative proof of Cai’s
main result (Theorem 5.10) above.

It may also be possible to adapt Cai’s algorithm (or the similar algorithm
of (BCG+96)) to give an alternative proof of Theorem 5.6. The implicit ver-
sion of the Multiplicative Weights algorithm that we use seems more natu-
ral, though, in a setting in which one wishes to recover approximately optimal
strategies. To adapt Cai’s algorithm for this purpose would presumably require
additional pre-processing of the input so that the multisets obtained when the
algorithm halts can be converted into probability distributions representing
approximately optimal strategies.
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The proofs of the following results utilize the notion of a zero-sum game
between algorithms and inputs proposed by Yao (Yao77; Yao83).

Theorem 5.12 ( BCG+96). If SAT is in P/poly then there is a ZPPNP algo-
rithm for learning polynomial-size circuits for SAT.

Proof. Let s′(n) ∈ poly(n) be the size of a Boolean circuit deciding the
satisfiability of any size-n Boolean formula. By the well-known self-reducibility
property of SAT, we get the existence of size s(n) ∈ poly(s′(n)) circuits that,
given a Boolean formula φ of size n as input, output either False or a truth
assignment for φ. If we start with a correct circuit for SAT, then the resulting
circuit for the search version of SAT will be such that it outputs False iff
the given formula φ is unsatisfiable, and outputs a satisfying assignment for φ
otherwise.

For any n, consider the succinct zero-sum game given by the payoff matrix
M whose rows are labeled by circuits C of size s(n), and whose columns are
labeled by the pairs (φ, x) where φ is a Boolean formula of size n and x is an
assignment to the variables of φ. We define

M(C,(φ, x)) ={
1 if φ(x) =True, and (C(φ) = False or C(φ) = y such that φ(y) =False)

0 otherwise.

In words, the matrix M is defined to penalize the row player for using incorrect
circuits for SAT.

By our assumption, there is a size-s(n) circuit C that correctly decides SAT.
Hence, the row C of the matrix M will consist entirely of 0’s, and so the value
v of the game M is 0.

Applying Theorem 5.6 to the succinct zero-sum game M (with δ = 1/4),
we obtain a ZPPNP algorithm for learning a size-k multiset S of circuits, for
k ∈ poly(s(n)), such that, for every column j of M ,

1

|S|
∑
i∈S

M(i, j) 6 1/4.

This means that, for every satisfiable Boolean formula φ of size n, at least 3/4
of the circuits in the multiset S will produce a satisfying assignment for φ.
Therefore, the following polynomial-size Boolean circuit will correctly decide
SAT: On input φ, output 1 iff at least one of the circuits in S produces a
satisfying assignment for φ. �
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Using similar ideas, we also obtain the following improvements on some
results from (LY94), which are implicit in (BCG+96).

Theorem 5.13 ( BCG+96). Let C be a Boolean circuit over n-bit inputs, and
let s be the size of the smallest possible Boolean circuit equivalent to C. There
is a ZPPNP algorithm that, given a Boolean circuit C, outputs an equivalent
circuit of size O(ns+ n log n).

Proof. For every 1 6 i 6 |C|, consider the succinct zero-sum game with the
payoff matrix Mi whose rows are labeled by size-i Boolean circuit A and whose
columns are labeled by n-bit strings x. We define Mi(A, x) = 0 if A(x) = C(x),
and Mi(A, x) = 1 if A(x) 6= C(x).

Clearly, the value of the game Mi is 0 for all i > s. Applying the ZPPNP

algorithm of Theorem 5.6 to every i = 1, . . . , |C| in turn, we can find the first
i0 6 s such that the value of the game Mi0 is at most 1/4. Similarly to the
proof of Theorem 5.12, we get a small multiset of size-i0 circuits such that their
majority agrees with C on all inputs. It is not difficult to verify that the size
of this constructed circuit is at most O(ni0 + n log n), as claimed. �

Theorem 5.13 can also be used to check in ZPPNP if a given Boolean circuit
is approximately the smallest possible, i.e., if there is no equivalent circuit of
significantly smaller size.

6. Multiplicative-Factor Approximation

In the previous sections, we studied the problem of approximating the value of
a given succinct zero-sum game to within an additive factor. It is natural to
consider the problem of multiplicative-factor approximation: Given a Boolean
circuit C computing the payoff matrix of a zero-sum game of unknown value
v, and a parameter ε (written in unary), compute w = (1± ε)v.

It follows from the work of Luby and Nisan (LN93) that approximating
the value of a given succinct zero-sum game to within a multiplicative factor ε
(written in unary) is in PSPACE. The result in (LN93) talks about explicitly
given linear programming problems where the input constraint matrix and con-
straint vector are positive; zero-sum games are a special case of such “positive
linear programming” problems. The algorithm in (LN93) uses a polynomial
number of processors and runs in time polynomial in ε and polylogarithmic in
the size of the input matrix. By scaling it up, one obtains a PSPACE algorithm
for implicitly given zero-sum games.
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We do not know whether multiplicative-factor approximation of succinct
zero-sum games can be done in the polynomial-time hierarchy. This is an
interesting open question. However, we can show that, unless the polynomial-
time hierarchy collapses to the second level, multiplicative-factor approximation
is strictly harder than additive-factor approximation.

Theorem 6.1. If the value of every succinct zero-sum game can be approxi-
mated to within some multiplicative constant factor ε < 1 in Σp

2, then PH = Σp
2.

The proof of Theorem 6.1 relies on the simple observation that if one could
approximate the value of a game to within some constant factor ε < 1, then
one could tell if the value of the game is zero or not. In turn, this would allow
one to decide every language in Πp

2. More formally, we have the following.

Lemma 6.2. The problem of approximating the value of a succinct zero-sum
game to within a multiplicative constant factor ε < 1 is Πp

2-hard.

Proof. Let L ∈ Πp
2 be an arbitrary language, and let R be a polynomial-time

computable ternary relation such that, for all inputs x, x ∈ L⇔ ∀y∃zR(x, y, z),
where |y| and |z| are polynomial in |x|. For every input x, consider the following
zero-sum game Mx:

Mx(y, z) =

{
1 if R(x, y, z) is true

0 otherwise.

We claim that if x ∈ L, then the value of the game Mx is greater than
0; and if x 6∈ L, then the value of Mx is 0. Indeed, if x 6∈ L, then the row
player has a pure strategy y that achieves the payoff 0 for any strategy z of
the column player. On the other hand, if x ∈ L, then the uniform distribution
over the columns achieves the payoff at least 2−|z| > 0 for any strategy y of the
row player.

It follows that an algorithm for approximating the value of a succinct zero-
sum game to within a multiplicative factor ε < 1 can be used to decide the
language L, which proves the lemma. �

Proof (Proof of Theorem 6.1). By the assumption of the theorem and by
Lemma 6.2, we get that Πp

2 ⊆ Σp
2, implying the collapse PH = Σp

2. �
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7. Learning approximately optimal strategies in PNP?

The learning algorithm we presented in Section 5.2 is randomized. It is nat-
ural to ask whether it can be efficiently derandomized. Here we observe that
achieving such derandomization is likely to be fairly difficult as it would imply
new strong circuit lower bounds. More precisely, we have the following.

Theorem 7.1. If there is a PNP algorithm for approximating the value of any
given succinct zero-sum game to within an additive factor, then EXPNP 6⊂
P/poly.

For the proof of Theorem 7.1, we will need the following results.

Theorem 7.2 ( BH92). If EXPNP ⊂ P/poly, then EXPNP = EXP.

Theorem 7.3 ( BFL91). If EXP ⊂ P/poly, then EXP = MA.

Proof (Proof of Theorem 7.1). Our proof is by contradiction. If EXPNP ⊂
P/poly, then EXPNP = EXP = MA ⊆ Sp2 by combining Theorem 7.2, Theo-
rem 7.3, and Theorem 5.9. Since approximating the value of a succinct zero-
sum game is complete for promise-Sp2 by Theorem 4.1, the assumed existence of
a PNP algorithm for that problem would imply the collapse Sp2 = PNP. Hence,
we would get EXPNP = PNP, which is impossible by diagonalization. �

8. A Version of Succinct Set Cover is
Promise-Sp

2-complete

In this Section, we demonstrate another natural problem that is complete for
promise-Sp2. Our problem is a variant of the Succinct Set Cover problem intro-
duced by Umans (Uma99).

An instance of Succinct Set Cover (SSC) is given by a 0-1 incidence matrix
A with rows (“sets”) indexed by {0, 1}m and columns (“elements”) indexed by
{0, 1}n. The matrix is presented as a circuit C where C(i, j) outputs the (i, j)
entry of A, which is 1 iff element j is in set i. The goal is to find the smallest
set cover, i.e., a set I such that ∀j∃i ∈ I C(i, j) = 1.

We define the promise problem n/ log n-SSC whose positive instances are
(C, 1k) such that there is a set cover of size at most k, and whose negative
instances are (C, 1k) such that there is no set cover of size less than k(n/ log n).
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Theorem 8.1. n/ log n-SSC is promise-Sp2-complete.

Proof. First, it is promise-Sp2-hard. Given any relation R(x, y, z) defining a
promise-Sp2 problem and an input x, just take A to be A(i, j) = R(x, i, j). If
R(x, y, z) has an all-1 row, then there is a set cover of size 1. If R(x, y, z) has
an all-0 column, then there is no set cover of any size.

Now we prove that n/ log n-SSC is in promise-Sp2. We are given an instance
(C, 1k). The game matrix M has rows indexed by {0, 1}n and columns indexed
by k-subsets of {0, 1}m. Entry M(i; j1, j2, . . . , jk) is 1 iff there is a 1 6 ` 6 k
for which C(j`, i) = 1.

It is clear that if we start with a positive instance, then there is an all-1
column, and so the value of the game is 1. On the other hand, if we start with
a negative instance, then there is no cover of size k(n/ log n), and we claim
that there exists a set I of rows with |I| = poly(n,m, k) such that ∀J∃i ∈
I M(i; J) = 0. Thus, by playing the uniform distribution over the rows in I,
the row player achieves the value at most 1− 1/|I|.

Now we prove our claim. First, observe that there must exist a i such that
PrJ [M(i; J) = 0] > 1/n. Indeed, suppose otherwise, i.e., that every i is covered
by a random column of M with probability greater than 1 − 1/n. Then the
probability that a fixed i is not covered by any of n/ log n columns of M , chosen
independently and uniformly at random, is less than 1/nn/ logn = 2−n. Thus,
there exists a set of n/ log n columns of M that covers all i’s. This means
that the original Succinct Set Cover instance has a set cover of size k(n/ log n),
contradicting our assumption.

Let us add this i to our set I, and delete all columns J for which M(i; J) = 0.
Repeating this procedure poly(n, k,m) times will eliminate all columns of M ,
yielding the requisite set I. �

9. Conclusions

We have shown that the problem of approximating the value of a succinctly
given zero-sum game is complete for the “promise” version of the class Sp2. This
appears to be the first natural problem proved to capture the complexity of Sp2;
however, it is not the only one, as demonstrated in Section 8.

We presented a ZPPNP algorithm for learning the approximate value and
approximately optimal sparse strategies for the given succinct zero-sum game.
Our algorithm allowed us to prove a few results from (BCG+96; Cai07; LY94)
in a completely uniform fashion, via the connection between zero-sum games
and computational complexity discovered by Yao (Yao77; Yao83). Finally, we
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also argued that our ZPPNP algorithm cannot be derandomized unless there is
a major progress in proving circuit lower bounds for EXPNP.
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