Complexity-Theoretic Aspects of Interactive Proof Systems
by
Lance Jeremy Fortnow

B.A., Mathematics and Computer Science
Cornell University

(1985)

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1989

(© Massachusetts Institute of Technology 1989
All rights reserved

Signature of Author
Department of Mathematics

May 5, 1989

Certified by .o

Michael Sipser
Associate Professor, Mathematics
Thesis Supervisor

Accepted Dy ...
Daniel Kleitman
Chairman, Applied Mathematics Committee

Accepted Dy ...
Sigurdur Helgason
Chairman, Departmental Graduate Committee

Abstract

In 1985, Goldwasser, Micali and Rackofl formulated interactive proof systems as a tool for de-
veloping cryptographic protocols. Indeed, many exciting cryptographic results followed from
studying interactive proof systems and the related concept of zero-knowledge. Interactive
proof systems also have an important part in complexity theory merging the well established
concepts of probabilistic and nondeterministic computation. This thesis will study the com-
plexity of various models of interactive proof systems.

A perfect zero-knowledge interactive protocol convinces a verifier that a string is in a
language without revealing any additional knowledge in an information theoretic sense. This
thesis will show that for any language that has a perfect zero-knowledge proof system, its
complement has a short interactive protocol. This result implies that there are not any perfect
zero-knowledge protocols for NP-complete languages unless the polynomial-time hierarchy
collapses. Thus knowledge complexity can show a language is easy to prove.

Interesting models of interactive proof systems arise by restricting the power of the verifier.
This thesis examines the proof systems with a verifier required to run in logarithmic space as
well as polynomial time. Relationships with circuit complexity and log-space Turing machines
are developed.

We can increase the power of interactive proof systems by allowing many provers that can
not communicate among themselves during the protocol. This thesis shows the equivalence
between this multi-prover model and probabilistic Turing machines with an untrustworthy
oracle. We additionally give an oracle under which co-NP does not have multi-prover interac-
tive protocols. This result implies an oracle where co-NP does not have standard interactive
protocols.

Another natural model occurs when the verifier has only linear time. Towards this direc-
tion, this thesis examines probabilistic machines and linear time. We show an oracle under
which linear time probabilistic Turing machines can accept all BPP languages, an unusual
collapse of a complexity time hierarchy. We exhibit many other related relativized results. Fi-
nally we show probabilistic linear time does not contain all languages accepted by interactive
proof systems.

Keywords: Computational Complexity, Interactive Proof Systems, Zero-Knowledge,
Probabilistic Computation, Oracles

Acknowledgments

Foremost I would like to thank my advisor, Michael Sipser. Mike has collaborated on much
of my research and virtually every problem I have ever looked I have discussed with Mike.
Mike has greatly influenced my graduate career and I will be forever grateful for these four
years | have spent working with him.

I spent the first year of my graduate schooling at the University of California at Berkeley.
I started working with Mike Sipser at Berkeley and some of the research in this thesis occurred
during that period.

I greatly thank the Office of Naval Research for their generous fellowship that supported
me for my first three years in graduate school as well as indirectly covering my travel expenses
through out my graduate career. Thanks also to the American Society for Engineering Edu-
cation for efficiently administering the fellowship.

Thanks to all of the graduate students I have worked and socialized with during these
four years. In particular, Eric Schwabe has been a great friend, roommate and proofreader
since | arrived at MIT.

Thanks to Marcy Appell for her companionship over the last year and a half and the many
new experiences she has given to me (like skiing and coffee).

Finally, thanks to Juris Hartmanis, whose courses at Cornell aroused my interests in
theoretical computer science and complexity theory. If Juris had not been at Cornell, I would
probably be writing a thesis on Hopf algebras and missing out of the excitement of complexity
theory.

Contents

1 Introduction 6
1.1 Victor and the Great Pulu 6
1.2 A Short History o . o e 7
1.3 Definitions e 8

1.3.1 Deterministic Time and Space Complexity 9
1.3.2 Nondeterministic Turing Machines 10
1.3.3 Completeness L 10
1.3.4 Probabilistic Turing Machines 11
1.3.5 Oracles and The Polynomial Time Hierarchy 12
1.3.6 Circuits and Nonuniform Computation 13
1.3.7 Interactive Proof Systems o L. 14
1.4 Relativization e 16
1.5 Basic Results e 17
1.6 An Example: Graph Nonisomorphism 18

2 Perfect Zero-Knowledge 20
2.1 A Cryptographic Side of Interactive Proof Systems 20
2.2 Notation and Definitions o 20
2.3 Related Results e 21
2.4 Showing Sets are Large and Small, 22

2.4.1 Lower Bound Protocol o 22
2.4.2 Upper Bound Protocol oo 23
2.4.3 Comparison Protocol L Lo 24
2.5 Main Theorem o e e e e e 25
2.5.1 Structure of Proof 25
2.5.2 An Example: Graph Isomorphism 25
2.5.3 The Protocol 26
2.5.4 Proof of the Protocol’s Correctness 27
2.6 Extensions and Corollaries oo 28
2.7 Further Research 29

3 Logarithmic-Space Verifiers 30
3.1 Reducing the Power of the Verifier, 30
3.2 Log Space Verifiers and BPNL o000, 30
3.3 A Circuit Model for BPNL oo 31

3.4 BPNL Contains LOGCFL o s 33

3.5 Further Directions of Research 0 0 0. 33
Multiple Provers 35
4.1 Corroborating Suspectso e 35
4.2 Definitions Lo e e 35
4.3 Probabilistic Oracle Machines oo oo 36
4.4 Are there Multi-Prover Protocols for co-NP Languages? 38
4.5 Bounded Round Protocols oL oo 39
4.6 Further Research 40
Probabilistic Computation and Linear Time 41
5.1 Linear-Time Verifiers L 41
5.2 Our Results and Related Results 0. .. 42
5.3 Deterministic, Nondeterministic and Probabilistic Linear Time 42
5.4 Proof of the Main Theorem, 43
5.4.1 Structure of the Oracle L. 44
5.4.2 A Simple Case e 45
5.4.3 Influencing and Simulating Strings 46
544 Order of Encoding 46
5.4.5 Creating the Dependency Graph 48
5.4.6 Processing the Dependency Graph 49
5.4.7 Generalizing the Proof for All BPP Machines 51
5.5 Other Results o 52
5.6 Conclusions and Further Research 0. .. 53

Chapter 1

Introduction

1.1 Victor and the Great Pulu

Victor, a venture capitalist, had everything a man could desire: money, women and power.
But he felt something missing. He decided he lacked knowledge. So Victor packed up his
bags and headed to the Himalayas in search of ultimate truths.

The natives pointed Victor to a tall mountain and mentioned rumors of a great man full of
wisdom. Victor, who smartly brought some climbing equipment, tackled the mountain until
he reached a small cave near the summit. Victor found the great Pulu, grand guru of all that
is known. Victor inquired to some ultimate truths and Pulu responded,

1 will teach you but you must not trust my words.

Victor agreed and found he learned much even though he had to verify all the sayings
of the great Pulu. Victor though lacked complete happiness and he asked if he could learn
knowledge beyond what he could learn in this manner. The grand guru replied,

You may ask and I will answer.

Victor pondered this idea for a minute and said,
Since you know all that is known, why can you not predict my questions?

A silence reigned over the mountain for a short while until the Guru finally spoke,
You must use other implements—symbols of your past life.

Victor thought for a while and reached into his backpack and brought out some spare
change he had unwittingly carried with him. Even the great Pulu can not predict the flip of
a coin. He started flipping the coins to ask the guru and wondered what can I learn now?

In this thesis we will study the very question of what Victor can learn. On his own Victor
can only decide simple problems. With the help of Pulu, even when he can not trust the
answers, Victor found he could learn much more than before. With a coin, Victor could learn
even more still.

We will formalize these interactions by looking at Victor as a computer with a restricted
amount of power. The things Victor can learn on his own form a class of problems, P,
containing all the problems a simple computer can solve with this restricted amount of time.

When Victor first meets and listens to Pulu, Victor can now learn problems from the class
NP, problems whose answers a simple computer can verify in short amount of time.

Finally when Victor pulls out his coins, we have an interactive proof system with Pulu
interacting with Victor, Victor asking random questions to Pulu and Pulu responding in a
way to prove certain knowledge to Victor.

Computer scientists do not know if Victor will indeed learn new things by flipping coins
with Pulu than on his own though they generally believe he will. We will look at the types
of problems Victor can solve with the help of Pulu, concentrating on some variations: what
if Pulu wished to reveal no information to Victor beyond the questions Victor asks, what if
Victor can communicate with many gurus who can not talk among themselves, and what if
we restrict the power of Victor in different ways?

1.2 A Short History

We now go back to the beginning of complexity theory and give a brief history of results
leading to the development of the interactive proof system.

Computational complexity theory got its start in 1965 with a paper by Hartmanis and
Stearns [HaS] showing simply that if computers have more time they can accept more lan-
guages. About the same time, Edmonds [E] introduced the notion that an algorithm runs
efficiently if it runs in time polynomial in the size of the input. Cook [C1] defined the class P
as the set of all languages with polynomial time algorithms. To this day we use polynomial
time as the standard for determining whether a problem has an efficient solution.

Nondeterministic time has its roots in simpler models of computation such as finite and
push-down automata. The significance of nondeterminism in computational complexity the-
ory grew in 1971 when Cook [C1] showed a natural problem, satisfiability, is as hard as any
other problem in NP, nondeterministic polynomial time. Soon later Karp [Ka] discovered a
large number of well known combinatorial problems also had this property. The question of
whether polynomial time contains all the languages solvable in nondeterministic polynomial
time (P = NP) has become the most famous of open questions in theoretical computer science.

Probabilistic computation came of age in 1977 when Solovay and Strassen [SS] found
a probabilistic polynomial-time algorithm to test the primality of a number; a problem still
without a provable deterministic polynomial-time solution. Gill [G] defined many of the prob-
abilistic complexity classes including BPP, the problems solvable in probabilistic polynomial
time. Probabilistic computation has since played an important role for algorithm designers
especially for parallel computer models.

Interactive proof systems, however, owe themselves as much to modern cryptography as to
complexity theory. Diffie and Hellman [DH] founded modern cryptography by describing how
one might use the hard problems in complexity theory to develop cryptographic protocols.
Rivest, Shamir and Adleman [RSA] exhibited a scheme to implement the protocols suggested
by Diffie and Hellman. Since then cryptographers have designed many ad hoc protocols for
a variety of purposes.

Input Tape

X X X X X X X X
Finite
Control
o o o o o o o o o o
Work Tape

Figure 1-1: A Turing Machine. The x represent the characters of the input string and the o
represent characters on the work tape.

In 1985, Goldwasser, Micali and Rackoff [GMR] developed the interactive proof system
as a model for zero-knowledge protocols, protocols that proved the truth of an assumption
without revealing any additional information. Also in 1985, Babai [B] introduced Arthur-
Merlin games, a variation of the interactive proof system with public randomness. Goldwasser
and Sipser [GS] showed the equivalence of these two models.

Zero-knowledge proof systems gained their popularity when Goldreich, Micali and Wigder-
son [GMW1] showed under certain complexity assumptions that all of NP has zero-knowledge
protocols. Many complicated protocols now had trivial reductions to zero-knowledge proof
systems.

Interactive proof systems have gained a status as an important complexity class combining
both nondeterministic and probabilistic computation. This thesis will concentrate on the
complexity aspects of interactive proof systems as opposed to the cryptographic applications.

1.3 Definitions

The basic model of a computer, the Turing Machine, consists of a finite state control connected
to an input tape and work tape (see figure 1-1). Both the input tape and the work tape consists
of cells which can each hold a single letter from a certain finite alphabet Y. The work tape
has an infinite number of cells usable by the Turing machine.

In this thesis we will always assume ¥ = {0, 1} and all logarithms are base two.

The finite state control consists of a set of states including a specified initial state and
accepting state, a transition function é§ and head pointers to the input tape and the work

tape. The head pointers point to a specific cell on each tape and can be moved right or left.
The transition function ¢ take the values of the cells pointed to by the head pointers and
the current state and describes whether to move the head pointers right or left and the new
state. The transition function also may specify a change in the contents of the work tape cell
pointed to by the work tape head pointer.

The input of a Turing machine consists of strings, finite concatenations of letters of the
alphabet Y. The length of a string is the number of letters it contains; there are 2" strings
of length n. We use |z| to represent the length of string . We let ¥* designate the set of all
possible strings including the zero-length string e. A language is a set of strings. A class is a
set of languages.

Before the Turing machine starts computing, an input string z is placed on the input tape
one letter in each cell. The Turing machine initially has pointers to the first cell in the input
tape and the first cell on the work tape. The Turing machine computes via the transition
function 6 in each step moving the head pointers possibly changing the value of the cell in
the work tape. We say the Turing machine accepts if it ever enters the accepting state. The
Turing machine accepts a language L if it accepts as input strings exactly those strings in L.
We let L(M) designate the language accepted by a Turing machine M.

Sometimes we would like a Turing machine to compute a function. We add to the Turing
machine model a write only output tape initially blank. When the Turing machine wishes
to output a character, the output tape head writes the character and moves one space right.
The Turing machine can not perform any other functions on the output tape or head. A
Turing machine outputs a string y on input « if that machine outputs exactly the characters
of y in order before it halts.

For a more thorough introduction to Turing machines see [HU].

1.3.1 Deterministic Time and Space Complexity

A Turing machine M accepts an input z in time ¢ if M enters an accepting state with at most
t applications of the transition function. The machine M accepts a language L in t(n) steps
if for all @ € L, M accepts z in t(|z|) steps. We will usually use n for |z|, the length of the
input x.

Suppose we have two functions, f(n) and g(n) from positive integers to positive integers.
The function f(n)is O(g(n))if there is some constant ¢ such that f(n) < cg(n) for all n. The
function f(n)is o(g(n)) if for all constants ¢ > 0, f(n) < cg(n) for all but a finite n.

We define the complexity class DTIME[f(n)] as the set of languages accepted by some
Turing machine in O(f(n)) time. The complexity class P contains all the languages accepted
in polynomial time, i.e.

P = U0 DTIME[2]

A Turing machine M accepts an input z in space s if M enters an accepting state using
only the first s cells of the work tape. In an analogous manner to time, we define the
complexity class DSPACE[f(n)]. The complexity class PSPACE contains all the languages
accepted in polynomial space. The class L contains the languages accepted in logarithmic

space, DSPACE[log n].

1.3.2 Nondeterministic Turing Machines

Nondeterministic computation allows the Turing machine to make guesses. If a series of
guesses lead to an accepting state then the Turing machine accepts. Formally, we let the
transition function é have a set of possible moves for a given state. We say the nondetermin-
istic Turing machine M accepts an input string z if there is a choice of transitions that cause
M to enter an accepting state.

We define NTIME[f(n)] and NSPACE[g(n)] exactly as DTIME[f(n)] and DSPACE[g(n)]
except that the Turing machines involved may be nondeterministic. The classes NI, NP and
NPSPACE are the nondeterministic analogues of L, P and PSPACE.

For a complexity class C, we let co-C contain all languages whose complements belong to
C. For example, co-NP contains all languages whose complements are contained in nondeter-
ministic polynomial time. For any two complexity classes, C and D, if C C D then co-C C
co-D.

Here are some basic facts relating these complexity classes (see [HU]):

DTIME[f(n)] € NTIME[f(n)] € DTIME[¢/(")] (for some)

DSPACE[f(n)] € NSPACE[f(n)] € DSPACE[f(n)?]
DTIME[f(n)] € DSPACE[f(n)] € DTIME[¢/ ("] (for some c)
DTIME[f(n)] = co-DTIME[f(n)]
DSPACE[f(n)] = co-DSPACE[f(n)]
NSPACE[f(n)] = co-NSPACE[f(n)] (see [I])

Thus L € NL € P C NP € PSPACE = NPSPACE and NL = co-NL. None of the
inclusions are known to be proper except NL. # PSPACE.

1.3.3 Completeness

The P = NP question remains the most fundamental open problem in complexity theory. To
understand the complexity of NP, we often look at the hardest problems in NP called the
NP-complete problems.

Let f: X" — ¥* be a function from strings to strings computable in polynomial time.
The function f reduces a language Ly to a language Lq if z € Ly if and only if f(z) € Ls.
If Ly has a polynomial-time solution then Lq also has a polynomial-time solution for input x
by checking if f(z)is in Ls.

A language L is NP-complete if I € NP and for all languages L’ € NP there is a
polynomial-time reduction f from L’ to L. Thus if an NP-complete problem has a polynomial-
time solution then P = NP. Likewise if P = NP then L has a polynomial-time solution since
L € NP. The P = NP question is equivalent to showing whether any particular NP-complete
problem has a polynomial-time solution.

In 1971, Cook [C1] shows the first natural problem, satisfiability, is NP-complete. Sat-
isfiability consists of all boolean formulas such that there exists a setting of the variable to
make the setting true. Karp [Ka] shows the NP-completeness of many famous combinatorial

10

Input Tape

Work Tape - - -
Finite /
Control

Figure 1-2: A Probabilistic Turing Machine

problems including traveling salesman and vertex cover. Many more results showing various
problems NP-complete have since appeared.

For a more in depth discussion of NP-completeness and a list of many of the major NP-
complete problems see [GJ].

We can define other forms of completeness. For example we say a language L is log-space
complete for P if P contains L and every language in P has a log-space reduction to L.

1.3.4 Probabilistic Turing Machines

Suppose we gave a deterministic Turing machine access to a coin (see figure 1-2). Such a
machine could flip the coin and examine different possibilities based on whether the coin
came up heads or tails. This machine would accept or reject depending on the outcome of
the coin flips.

Formally we define a probabilistic Turing machine M by adding a special coin-flip state.
When M enters this state it next goes to either a heads state or a tails state, each with
probability one half. Fach coin-flip occurs independently of any other coin flip. We can then
analyze the probability of M accepting on a certain input.

A probabilistic Turing machine M accepts a language L if for all inputs z in L:

1. If 2 € L then Pr(M accepts z) > 2/3.
2. If & L then Pr(M accepts z) < 1/3.

There is nothing magical about 2/3 and 1/3. We can use any two constants strictly
between 1/2 and 1 and strictly between 0 and 1/2 respectively without affecting the resulting
complexity classes.

A proper probabilistic machine M has one-sided error if for @ ¢ L, the probability that
M accepts x is zero, i.e. M does not accept z on any computation path.

Note that some machines M might not accept any language; for some input z, the prob-
ability that M accepts « lies between 1/3 and 2/3. We call these improper machines.

The language L € BPTIME[f(n)] if there is a proper probabilistic machine for L that
runs in O(f(n)) steps. BPP = Up5oBPTIME[r*]. We use RTIME and R respectively for

11

Input Tape

Work Tape - - -
Finite /
Control

Oracle Tape - - -

Figure 1-3: A Relativized Turing Machine

one-sided error probabilistic machines. RTIME[f(n)] C NTIME[f(n)] because one can just
guess the coin tosses. We use ZPTIME and ZPP for zero sided error, i.e. a language L has
ZPTIME[f(n)] machine M if the probabilistic machine M always outputs the correct answer
and runs in O(f(n)) expected steps. ZPTIME[f(n)] = RTIME[f(n)]Nco-RTIME[f(n)].

The class BPNP combines both nondeterministic and probabilistic computation. The
nondeterministic branches choose the path with the best probability of accepting and the
probabilistic branches choose each branch with equal probability. BPNP contains all the
languages accepted by these machines using the same probabilities as probabilistic machines.

1.3.5 Oracles and The Polynomial Time Hierarchy

Sometimes we would like a Turing machine to have additional information; to have a trust-
worthy advisor to whom it can ask certain kinds of questions. We will often define an oracle
that a Turing machine may use.

An oracle A is a subset of ¥*. A relativized Turing machine is a machine with a special
oracle tape on which it writes a string # € ¥* (see figure 1-3). The Turing machine then
enters an oracle query state that immediately goes to a special yes state if 2 € A and to a
no state otherwise. In shorthand we say the machine makes an oracle query of z. We only
charge the Turing machine the time it requires to write down the oracle query. We relativize
nondeterministic and probabilistic Turing machines in similar ways.

Equivalently, we can think of an oracle as its characteristic function A : ¥* — {0, 1} where
A(z)=1iff z € A.

We will use superscripts to represent access to an oracle. For example, M4 represents a
relativized Turing machine M with access to an oracle A. We can also relativize complexity
classes, i.e. the class NP4 consists of all languages recognizable by some polynomial-time
nondeterministic Turing machine with access to oracle A. Also we can relativize complexity
classes to other complexity classes:

PYP = UenpP?

We relativize complexity classes defined with more than one machine, such as NPNco-NP, by

12

allowing every machine access to the same oracle.

If we relativize NP with NP oracles and then relativize this class with NP oracles and
so on we get the polynomial-time hierarchy. Formally, we recursively define the hierarchy as
follows:

20 = HO = AO =P

Y4 = NP
;41 = co-X
Ajpq = P>

The polynomial-time hierarchy, PH, consists of the union of ¥; for all 7.
Some basic facts about the hierarchy (see [St]):

21 = NP, H1 = CO-l\IP7 Al =P
PC¥, C¥,C...C PH C PSPACE
Y C A €Y
I; € Ay C Iy

None of the inclusions are known to be proper. We say the polynomial-time hierarchy collapses
if PH = %; for some ¢. Complexity theorists generally believe the hierarchy does not collapse.

Often computer scientists write Ef for X; to distinguish the polynomial-time hierarchy
from the recursion theoretic arithmetic hierarchy. Throughout this thesis 3i; will refer to the
1th level of the polynomial-time hierarchy.

Almost-P contains all the languages accepted by a polynomial-time machine with most
oracles. Formally, the class almost-P contains the language L if the set of all R such that
L € P® is measure one in the set of all possible R C ¥*. Often we say L is in P under a
random oracle. We can easily show Almost-P = BPP = Almost-BPP. Likewise we can define
Almost-NP or for any other complexity class.

1.3.6 Circuits and Nonuniform Computation

Instead of computing via a machine, we can also compute via circuits. A circuit consists of
and, or and not gates as nodes of a directed graph with the input as the leaves (see figure 1-4).
The inputs take on binary values that propagates through the circuit in the obvious manner.
The circuit accepts if the value of the root node is one. The size of the circuit equals the
number of gates it contains. The depth of the circuit is the length of the longest path. The
fan-in of a gate ¢ is the number of gates pointing to g.

By using De Morgan’s laws (the negation of (z; and z;) is equivalent to the or of the
negation of z; and the negation of z;) we can assume the not gates appear only directly
above inputs without increasing the size or depth of the circuit by more than a constant
factor.

A family of circuits C = {C,C5,...} consists of a set of circuits where (), has n inputs.
Suppose & = x12x3 - - -2, has length n. Then z is accepted by C if C), on z1, 25, ..., 2, accepts.
A family of circuits C accepts a language L if for all z of length n, €, accepts exactly those
zin L.

A family of circuits C has size f(n) if C), has size at most f(n) for all n. Similarly we can
define depth functions.

13

A\
A\
A\
A\
A\
J
A\
A\
A\
A\
A\
@

Figure 1-4: A Circuit

There need not be any relationship between the circuits belonging to the same family
besides any size and depth restrictions. Often we refer to such circuit families as nonuniform
circuits.

We relativize a circuit by having a special oracle gate that takes as input a query to the
oracle and returns true if that string is in the oracle.

Sometimes we let Turing machines have access to advice, a small amount of additional
information depending only on the input size. Formally, polynomial advice consists of a
list of strings ay,as,... such that |a,| is bounded by a polynomial in n. A language L
is accepted by a polynomial-time Turing machine with polynomial advice if there exists a
polynomial-time Turing machine M and polynomial advice such that iff € L then M
accepts (7, a,). The class P/poly or nonuniform polynomial time consists of all languages
accepted in polynomial time with polynomial advice. This class consists of exactly those
languages accepted by polynomial size circuits. Likewise we can define NP /poly (nonuniform
nondeterministic polynomial time), BPP /log and so on.

Bennet and Gill [BG] have shown all languages in BPP have polynomial size circuits.

Sometimes we require uniformity conditions on our circuits. A circuit family C is log-space
uniform if there exists a log-space Turing machine that outputs C; on input 1. The set of
languages accepted by polynomial size log-space uniform circuits consists of exactly those
languages in P.

1.3.7 Interactive Proof Systems

An interactive proof system consists of two players, an infinitely powerful prover and a prob-
abilistic polynomial-time verifier. The prover will try to convince the verifier of the validity
of some statement. However, the verifier does not trust the prover and will only accept if the
prover manages to convince the verifier of the validity of the statement.

Formally, an interactive proof system consists of two controls, P, the prover and V, the

14

Input Tape

Work Tape - - - --- Work Tape v\
\

AN

¢

Communication Tape »

Figure 1-5: An Interactive Proof System

verifier (see figure 1-5). Both the prover and the verifier have access to a common read
only input tape and a read/write communication tape. Individually, the prover and verifier
have access each to a private coin and a private work tape. The verifier works just as a
probabilistic Turing machine. Usually we will restrict the verifier to a polynomial number of
steps in the length of the input. However, the prover may compute arbitrary functions of the
coin and the contents of the input, work and communication tapes. We put no restrictions
on the complexity of this function. Informally we say P has probabilistic infinite power. The
proof system accepts if the verifier enters an accepting state. As in the case of probabilistic
Turing machines, we are interested in the probability of the verifier accepting.

Communication proceeds by the verifier sending a message to the prover on the commu-
nication tape. The size of the messages is limited only in the polynomial time the verifier has
to compute. The prover then sends a message to the verifier likewise limited in polynomial
size since the verifier has only polynomial time to read it. The prover and verifier may repeat
this process a polynomial number of times until the verifier decides whether or not to accept.

An interactive proof system consists of a prover verifier pair P<—V. P and V form an
interactive protocol for a language L if:

1. If # € L then Pr(P<V(z) accepts) >
2. If « ¢ L then for all P*,Pr(P*=V(z) accepts) <

A round of an interactive protocol is a message from the verifier to the prover followed by
a message from the prover to the verifier. We let IP(f(n)) represent the languages accepted
by interactive proof systems bounded by f(n) rounds. AM is the class of languages accepted
by interactive protocols with a fixed constant bound on the number of rounds. Babai [B, BM]
shows that one round suffices for AM, i.e. AM = IP(1) = IP(¢) for any constant c. If we have
one round with Merlin (the prover) sending his message before the verifier flips any coins we
have the class MA. Babai also shows MA C AM.

15

A public-coin interactive proof system allows the prover access to the verifier’s coin. Equiv-
alently, we require the verifier’s messages to consist of exactly the verifier’s coin tosses since
the previous round. Goldwasser and Sipser [GS] show the class of languages accepted by the
standard interactive proof system is the same as the class of languages accepted by a public
coin interactive proof system. This holds for any f(n) bound on the number of rounds.

Messages in a k round conversation will be described by

ﬁlvalvﬁ%' . '7ﬁk7ak

where the a; are messages from the prover to the verifier at round ¢ and the ; are messages
from the verifier to the prover.

r will be used for the random coin tosses of the verifier.

An interactive proof system runs an interactive protocol describing how to perform the
computation and communication. The notation for describing protocols follows:

P: These are computations performed by the prover unseen by the verifier. The prover
has probabilistic infinite time to make these computations.

P—V: This is a message from the prover to the verifier.

V: These are computations performed by the verifier unseen by the prover. These
computations must be performed in probabilistic polynomial time.

V—P: This is a message from the verifier to the prover.

Once a protocol has completed, we may wish to execute the protocol again to decrease
the amount of error. FEach execution should run completely independently. Running an
interactive protocol m times in series means repeating this process for a total of m times.
Running the protocol m times in parallel means the verifier sends the first message for all m
protocols followed by the prover’s responses for all m protocols et cetera.

1.4 Relativization

Since the beginning of complexity theory, computer scientists have used techniques from
recursion theory to solve computational complexity questions. Often these techniques have
been successful; most of the early work in complexity theory has been proven solely using
recursion theoretic techniques. However we now know such techniques have limitations. We
use oracles to show recursion theoretic techniques can not settle certain complexity questions.

A complexity statement, such as “NP C PSPACE”, is true under an oracle A if the
statement is true when all the complexity classes are relativized to the oracle A. We say NP4
C PSPACE# to mean NP C PSPACE is true under the oracle A.

When we use recursion theoretic techniques to prove a statement true, the proof will work
even if all the machines involved have access to the same oracle. For example, we can prove L
PSPACE using diagonalization, i.e. we create a language in PSPACE defined to be different
than each possible log-space machine. This proof works even if we allow PSPACE machine
and the log-space machines access to any oracle. Thus L. # PSPACE is true under any oracle
A. All results mentioned in this thesis are true under all oracles unless mentioned otherwise.
We say a technique relativizes if its application is independent of any oracle access.

16

Suppose we show a complexity statement is true under a certain oracle B. If we could
prove the statement false using recursion theoretic methods then the statement would be false
under all oracles. This contradiction tells us recursion theoretic techniques will not work to
prove the statement false. If we can find two oracles A and B such that the statement is true
under oracle A and false under oracle B then recursion theoretic techniques will not work
to settle the statement true or false. We will need other techniques, techniques that do not
relativize, to settle this statement. Most complexity statements relativized both true and
false have remained unsettled by any techniques.

In 1975, Baker, Gill and Solovay [BGS] had the first use of oracles to show the famous P
= NP? question likely has a hard solution. They have found oracles A and B such that P4 =
NP4 and PP + NP®Z. Thus techniques that relativize will not settle the P = NP? question.
They also show the existence of oracles ', D, I/ and F such that:

NPY #£ co-NPY
PP #£ NPP = co-NPP
P¥ £ NP¥ and P¥ = NPPnco-NPF
P £ NP¥nco-NP¥ and NP¥ # co-NPF

Baker, Gill and Solovay left open some questions about the polynomial-time hierarchy
that remained unsolved for over a decade. In 1985, Yao [Y] showed an oracle A such that the

polynomial-time hierarchy did not collapse under A, i.e. Ef‘ + Ef‘_l_l for all ¢. In 1988, Ko
[Ko] found a series of oracles Ay, As, ... such that for each i, the polynomial-time hierarchy

collapsed to the 7th level under oracle A;, i.e. Ef_il #+ th = Ef_lfl = PH™.

Rackoff [R] shows some relativized results about probabilistic complexity classes. Rackoff
found oracles A and B such that P4 = R4 # NP4 and PP # RP = NPB. For example, we
could not easily prove P # R even if we assume P # NP.

This section gives just a small sample of the many oracle results proven over the last fifteen
years. Via oracle results, we can learn what we will have difficulty proving; particularly which
techniques will not work. This thesis will have several examples of relativized results to show
which questions of interactive proof systems may be hard to resolve.

1.5 Basic Results

We have come a long way in understand the complexity of interactive proof systems since
Goldwasser, Micali and Rackoff [GMR] developed them in 1985. This section will give a
review of important complexity results not covered in this thesis.

In 1986, Goldwasser and Sipser [GS] showed private-coin interactive proof systems and
public-coin interactive proof systems accepted exactly the same class of languages. In fact
the class of languages accepted f(n)-round private-coin interactive proof systems contains
exactly the same languages accepted by f(n)-round public-coin interactive proof systems.

At the same time as interactive proof systems Babai [B] invented his Arthur-Merlin games
similar to interactive proof systems but using public coins for the verifier instead of private
coins. Goldwasser and Sipser show the equivalence between these two models.

Babai [B, BM] showed a one-round proof system can accept all the languages of any
constant-round proof system. More generally, he shows IP(¢f(n)) = IP(f(n)) for any constant
¢. In other words we can reduce the number of rounds of an interactive protocol by any

17

constant factor. We can not easily improve this result because Aiello, Goldwasser and Hastad
show, for any functions f(n) and ¢g(n) with f(n) = o(g(n)), the existence of an oracle A such
that IP(f(n)) # IP(g(n)). In particular they exhibit an oracle that separates AM from IP.

Babai also showed MA C AM, though Zachos [Z] also proved the same result using his
generalized quantifier swapping techniques. Santha [Sa] exhibits an oracle that separates MA
from AM.

Babai and Moran [BM] show how to decrease the error probability without increasing
the number of rounds by running the protocol several times in parallel. If z € L then we
can make the probability of acceptance at least 1 — 277(") and for « ¢ I we can make the
probability of acceptance at most 272(") for any polynomial p(n).

Goldreich, Mansour and Sipser [GMS] show any language that has a f(n)-round interactive
protocol has a f(n) 4+ 1-round interactive protocol such that if # € L then the verifier always
accepts. Note that this is opposite to the notion of one-sided error used to define the class
R. Goldreich, Mansour and Sipser also show only NP languages have interactive proofs such
that the verifier always rejects if « ¢ L.

How do the interactive proof classes compare to the polynomial-time hierarchy? Sipser and
Gécs [Si] showed that BPP C ¥5N1l;. An elegant proof of this fact by Lautemann [La] easily
generalizes to show MA C ¥, N1y and AM C Il [BM]. Santha’s oracle [Sa] actually shows
a language in AM but not in ¥y under that oracle. Feldman [Fe] shows PSPACE contains
IP though the oracle created by Aiello, Goldwasser and Hastad [AGH] puts IP outside of the
polynomial-time hierarchy.

Fortnow and Sipser [FS1] exhibit an oracle such that IP does not contain co-NP. A
generalized version of this proof appears in section 4.4. Boppana, Hastad and Zachos [BHZ]
show that if AM contains co-NP then the polynomial hierarchy collapses to Y.

Nisan and Wigderson [NW] show the equivalence between AM and almost-NP. Goldwasser
and Sipser [GS] note the equivalence of IP and BPNP and that nonuniform NP contains all
of AM.

1.6 An Example: Graph Nonisomorphism

To help in the understanding of interactive proof systems, we will now examine in detail an
interactive protocol for graph nonisomorphism developed by Goldreich, Micali and Wigderson
[GMW1].

An undirected graph G' = (V,) consists of a set of vertices V = {v1,vq,...} and a set
of edges IV of unordered pairs of vertices. Let 7 be a permutation of the first n integers. We
define 7((') as the graph obtained by applying the permutation 7 to the graph G, i.e. the
edges of 7((') consist of all edges (7(u),7(v)) such that (u,v) are edges of G.

The two graphs 7 and G5 are isomorphic if there exists a permutation 7 such that
G1 = 7(G2). Let GI be the language consisting of pairs of graphs (G1,G2) such that Gy
and G are isomorphic. A nondeterministic polynomial-time machine can determine whether
there exists an isomorphism between G and G5 by guessing a permutation 7 and verifying
that G; = 7(G3). Let GNI consist of the pairs of nonisomorphic graphs.

Since GI € NP then GI has a trivial interactive protocol by the prover sending to the
verifier the permutation 7. GI is not known to be in P or NP-complete. GNI is not known
to be in NP; however we will exhibit an interactive protocol for graph nonisomorphism.

18

Let GG7 and G5 be two graphs each with n vertices. We create a prover, P, and a verifier,
V' to run the following protocol:

V: Pick a permutation 7 at random and pick ¢ € {1,2} also at random. Compute

G = 7(Gy).
V—=P: G
P—=V: g
Vi Accept if 7 = 1.

Suppose (1 and G5 were not isomorphic. Then 7(G7) could only be isomorphic to G
and not G and vice versa. An infinitely powerful prover could identify which graph was
isomorphic to G and correctly respond with a j such that j = 4.

Now suppose (1 was isomorphic to G3. Then G will be isomorphic to both G and G5.
Despite its infinite power, any prover just will not have enough information to determine the
graph is isomorphic to G.

If the language GNI contains (G'1, G'2) then the protocol will cause the verifier to accept
with probability one. If however the graphs are isomorphic the protocol accepts with proba-
bility at most one half. Unfortunately we require in the definition of interactive proof systems
that the proof system accept with probability at most one third for strings (G1,G2) not in
the language GNI.

We solve this problem by running the protocol two times in series and having the verifier
accept if both times the prover correctly determined the original graph. For nonisomorphic
graphs the probability of acceptance remains at one but for isomorphic graphs the prover can
correctly guess the original graph both times with probability at most one fourth. Thus we
now have a three-round interactive protocol for graph nonisomorphism.

Goldwasser and Sipser [GS] show us how to convert this interactive protocol into a public
coin protocol; a surprising result because the protocol above depends on the verifier keeping
the choice of i a secret. Since we have a bounded-round protocol, Babai [B, BM] shows us
how to convert this protocol into a two round AM protocol where the verifier sends random
public coins followed by the prover’s response. Thus GNI C almost-NP and GNI C NP /poly
though graph nonisomorphism is not known to be in NP or BPP. If GI was NP-complete
then the polynomial-time hierarchy would collapse to Xs.

We will return to graph isomorphism in section 2.5.2.

19

Chapter 2

Perfect Zero-Knowledge

2.1 A Cryptographic Side of Interactive Proof Systems

When Goldwasser, Micali and Rackoff [GMR] developed interactive proof systems, they con-
currently developed zero-knowledge, a restriction of interactive proof systems requiring the
verifier not learn any additional knowledge useful to him as a polynomial-time machine. Gol-
dreich, Micali and Wigderson [GMW1] show if one way functions exist then all languages
in NP have zero-knowledge proofs. However, their proof relies on the fact that the verifier
has limited power and is unable to invert these one-way functions. Perfect zero-knowledge
(PZK), a stronger restriction, requires the verifier not learn any additional information no
matter how powerful he may be. There are several languages not known to be in BPP or
NPNco-NP, such as graph isomorphism [GMW1], which have perfect zero-knowledge proof
systems.

Our main theorem shows for any language that has a perfect zero-knowledge proof sys-
tem, its complement has a single-round interactive proof system. Thus PZK C co-AM, the
complement of languages accepted by one-round interactive proof systems. Qur result holds
in the weaker case where we only require the verifier following the protocol will not learn any
additional information.

Combining our main theorem with a result of Boppana, Hastad and Zachos [BHZ], we
show NP-complete languages do not have perfect zero-knowledge proof systems unless the
polynomial-time hierarchy collapses to the second level. Thus it is unlikely that the result of
Goldreich, Micali and Wigderson will extend to perfect zero-knowledge.

2.2 Notation and Definitions

Let PV represent an interactive protocol between a prover P and a verifier V. The verifier’s
view of the conversation consists of all the messages between P and V and the random coin
tosses of V.

Let M be a simulator for a view of the conversation between P and V. The simulator M
is a probabilistic polynomial-time machine that will output a conversation between P and V
including the random coin tosses r of V. Thus each run of M will produce:

Tvﬁlvalvﬁ% .- '7ﬁk7ak

20

where the a; are messages from the prover to the verifier at round ¢ and the ; are messages
from the verifier to the prover.
Let P—V[z] denote the probability distribution of views of conversations between P and
V. Let M|[z] denote the distribution of views of conversations created by running M on z.
Let A[z] and B[z] be two distributions of strings. The distributions A[z] and B[z] are
statistically close if for any subset of strings &,

2) _yze;gBP[af](y) = allel)

yeS

for all polynomials ¢ with |z| large enough. Let J be a probabilistic polynomial-time machine
that outputs either 0 or 1. The distributions Alz] and B[z] are polynomial-time indistinguish-

able if for any J,
1

r(l2])

for all polynomials r with |z| large enough. Let J(A[z]) be the output of J when run on a
string chosen from the probability distribution A[z]. Note if A[z] and Blz] are statistically
close then they are polynomial-time indistinguishable.

PV is (computational) Zero-Knowledge (ZK) if for any verifier V* there is a My+ such
that for all in L, P—V*[z] and My«[z] are polynomial-time indistinguishable. We use
zero-knowledge throughout this thesis to refer to computational zero-knowledge.

PV is Perfect Zero-Knowledge (PZK) if for any verifier V* there is a My« such that for
all x in L, P=V*[z] = My+«[z].

PV is Statistical Zero-Knowledge (SZK) if for any verifier V* there is a My« such that
for all in L, P—V*[z] and My+«[z] are statistically close.

Goldwasser, Micali and Rackoff [GMR] introduced zero-knowledge as well as interactive
proof systems in 1985.

Note ZK D SZK D PZK. The inclusions are not known to be proper but the main result
of this chapter gives good evidence that ZK # SZK.

The results in this chapter only require a weaker version of zero-knowledge: a simulator
only need exist for the given P and V and not necessarily for any V*. For the rest of this
chapter we will assume this weaker model and use M for My, the simulator for P and V.

[Pr(J(Afz]) = 1) = Pr(J(B[z]) = 1) <

2.3 Related Results

Goldreich, Micali and Wigderson [GMW1] show every language in NP has a zero-knowledge
interactive proof system if a one-way function exists. This result does not relativize; there
exists an oracle such that one way functions exist but NP does not have zero-knowledge
proofs. The proof of Goldreich, Micali and Wigderson works by exhibiting a zero-knowledge
proof for a certain NP-complete problem instead of for general nondeterministic machines
and thus the proof does not relativize.

Our result shows for any language L with an statistical zero-knowledge proof system, there
exists a bounded-round interactive proof system for its complement L. We can then apply
several earlier results about bounded-round interactive proof systems described in section 1.5.

21

Subsequent to our result, Aiello and Hastad [AH] have shown, using similar techniques,
a bounded-round interactive proof system can simulate any statistical zero-knowledge proof
system. This nice complement to our result combines with our result to show nonuniform
NPNco-NP contains any language with a perfect zero-knowledge proof system.

Brassard and Crépeau [BC] have shown perfect zero-knowledge for SAT using a different
model for interactive proof systems where the prover is a polynomial-time machine that knows
a satisfying assignment. Our result about perfect zero-knowledge relies on the ability of the
prover to have infinite power and does not apply to Brassard and Crépeau’s model.

2.4 Showing Sets are Large and Small

In this chapter, we will need protocols to show sets are large and small. We create both
protocols using Carter-Wegman Universal Hash Functions [CW].

Suppose S C XN — {0V}, For F' a random binary b x N matrix, let f : ¥V — %P be
the function defined by f(x) = Fz using regular matrix multiplication modulo two. We can
think of f in terms of linear algebra over the field of two elements. The distribution of f
forms the uniform distribution over all possible linear functions from n-dimensional space to
b-dimensional space. Let fs be the function f restricted to the domain S.

If |S] > 2° then fs is likely to be onto most of ¥° and most elements of X* will have many
preimages.

If |S| < 2° then the range of fs is a small subset of X% and most elements of fs(S) will
have only one inverse in §.

Lemma 2.1 (Vector Independence) Suppose z1,%q,...,2x € LNV are linearly indepen-
dent vectors over the field of two elements. Then f(x1), f(x2),..., f(zk) are independently
and uniformly distributed over X°.

Proof Since zy,z5,..., 2 are linearly independent, we can extend to a basis. Let T be the
transformation matrix from this new basis to the canonical basis of V. Then the matrix
B = FT describes the function from the new basis to the canonical basis of ¥°. Since T
is an invertible matrix, there is a one-to-one correspondence between B and F. Thus B is
distributed uniformly over all possible binary b X N matrices. The vector f(z;) is just the
jth column of B. Thus each f(z;) is independently distributed over Y. O

2.4.1 Lower Bound Protocol

Goldwasser and Sipser [GS] developed the following protocol to show § is large for S recog-
nizable in polynomial time:

V: Pick ¢ independent random hash functions fi,...,f; : ¥V — %% and €2 points
2y, 22 €50

V—=P: fi,.. fe,21,. ., 22
P—=V: zx

V: Accept if € S and f;(z) = zj for some 7,7, 1 <i<{and 1 < j < (2

22

If S is much smaller than 2° then there will probably be no z such that filz) = z;.
However if S is large then there will probably be many z fulfilling f;(z) = z; and a infinitely
powerful prover will have no trouble exhibiting such an z that V can verify in polynomial
time.

Lemma 2.2 (Lower Bound) [GS] Using the above protocol with a given N,b,d > 0 and
¢ > max{b, 8}

1. If|S| > 2° then Pr(PV accepts) > 1 — 27 ¢

2. If|S] < % then Pr(P*<V accepts) < % for any P*

2.4.2 Upper Bound Protocol

If V has a random element s in & completely unknown to P then we can use the following
protocol to show & is small:

V: Pick a random N x b matrix I
V—P: F, f(s)=Fs
P—V: s

For small 8, it is unlikely more than one element of S will map to f(s) and P can determine
s. For large S, probably many s will map to f(s) and P can not determine which element of

S the verifier had.

Lemma 2.3 (Upper Bound) Using the above protocol with a given N,b > 0 and d > 2

1. If 18] < % then Pr(P<V accepts) > 1 —

-

2. If S| > 8d2" then Pr(P*=V accepts) < % for any P

Proof Let A be the random variable equal to the number of 2 # sin S such that f(z) = f(s).
Let 8" =8 — {s}. Let A, be the indicator random variable equal to one if f(z) = f(s), zero
otherwise. Then

B(A)=E(Y A=) B(A)=) 27"= |S|Qb_ 1

zeS’ zeS’ zeS’

If |S| < % then F(A) < L. If f(s) has only s as an inverse in |S| then P with his infinite
power will be able to determine s. Thus Pr(P—V rejects) < Pr(A > 1) < E(A) < I since A
is an integral random variable.

Suppose |S| > 8d2°. We can assume |S| = 8d2° + 1 without increasing the probability of
acceptance. Then F(A) = 8d. Since P* has no idea what s the verifier V' has, P* can only
have a AL—I-I probability of predicting the s that V' has. We will show with a large probability
A is large using the variance of A.

Given z,y,s all distinct and y # 2 @ s then 2, y and z are linearly independent. Then
by the Vector Independence Lemma f(z), f(y) and f(s) are independently distributed over

23

¥°. It then follows that A, and A, are independent random variables and their covariance is
7ero.
The covariance of any two indicator random variables is never greater then the expected

value of one of them. Then VAR(A) =

Y COV(Az, Ay) = > (COV(Ap. Ap) + COV(Ay, Args)) < D 2E(A,) < 16d
z,yeS’ res! reS!

Possibly @ & s € & which could only decrease the variance. Using Chebyshev’s inequality we
get:
VAR(A) 16d
< < —
36d2 ~ 36d% — 2d
So with probability at most 21_d7 the prover P* can determine s easily because A is small
enough; otherwise P* has at most 21_d chance of guessing s, so in total P* has at most a %

chance of determining s. O

Pr(A < 2d) < Pr(|A — 8d] > 6d) <

2.4.3 Comparison Protocol

Suppose we had two sets S;, S € ¥V and wanted to show |S;| > |Ss|. If S is polynomial-
time testable and V' has a random element s, of S then we can use the following protocol to

show |S1] > |S2):

P=V: V<N

P—V: Use lower-bound protocol on &; with b = o',{ = 8a N

P—V: Use upper-bound protocol on Sy with b = b — 3n,s = s,

V: Accept if both the upper and lower bound protocols accept

Lemma 2.4 (Comparison) Using the above protocol

1. If |S| > 248, | then Pr(P=V accepts) > 1 — 217"

2. If |81] < 27748y then Pr(P*<V accepts) < n>N3297" for any P*
Proof Let d = 2".

1. Pick ¥ = |log|S1]]. Then each protocol accepts with probability > 1 — 27", so both
will accept with probability > 1 — 2'=" by the upper and lower bound lemmas.

2. There are two cases depending on what b’ the prover P chooses

(a) If o' > [log|S1|] —n then by the lower bound lemma the probability of V' accepting
is < n3N329— 7

(b) If b’ < [log|S1|] + n then by the hypothesis ' — 3n < [log |Sz|| — n — 3 and by the
upper-bound lemma the probability of V accepting is < 27". O

Using Carter-Wegman Hashing to show a set is large was introduced by Sipser [Si] and
used extensively in [Si, B, GS]. To the author’s knowledge this is the first use of an interactive
protocol to show a set is small.

24

2.5 Main Theorem

We will start with a simple version of the theorem:

Theorem 2.5 For any language L with a perfect zero-knowledge interactive proof system
there exists an interactive proof system accepting L.

2.5.1 Structure of Proof

We are given a prover and verifier (P and V') for the language L, and a simulator M that
produces views of conversations between P and V and the random coin tosses of V. A prob-
abilistic polynomial-time machine can simulate the computation of V' checking, for example,
whether or not V accepts. On 2 € L, M produces a view of a conversation from exactly
the same probability distribution as when P and V run on . However, the definition of
perfect zero-knowledge has no requirements on the simulator in the case when z ¢ L; three
possibilities arise:

1. M will produce “garbage”, something clearly not a randomly selected member of P+

Vl]z].
2. M will produce views of conversations that cause V' to reject most of the time.

3. M will produce a simulation that looks valid and causes V to accept. It may not be
possible in polynomial time to differentiate this view from one created by P and V
when z € L. However, M must produce views of conversations from a distribution
quite different from the distribution of views between P and V, since in the real views
V' will probably reject.

We will create a new prover and verifier, P’ and V', to determine if one of these three cases
occur. The verifier V' will simulate M and get a view of a conversation between P and V' as
well as r, the random coin tosses of V. The verifier V'’ will check the validity of this view and
that V' accepts. If the view fails this test then it fails in cases 1 or 2 so V' accepts knowing
@ ¢ L. Otherwise V' will send to P’ some initial segment of the conversation. The prover P’
will then convince V' that the conversation came from a bad distribution by “predicting” r
better than P’ could have done from a good distribution.

2.5.2 An Example: Graph Isomorphism

In section 1.6, we discussed graph isomorphism and showed an interactive protocol for graph
nonisomorphism. In this section, we will present a perfect zero-knowledge protocol for graph
isomorphism developed by Goldreich, Micali and Wigderson [GMW1] and show how our
theorem converts this zero-knowledge protocol to an interactive protocol for graph noniso-
morphism. The protocol we develop will be virtually identical to the protocol for graph
nonisomorphism in [GMWI1] and discussed in section 1.6; our proof, however, shows the
similarity between the two protocols is not coincidental.

Recall two graphs (7 and G5 are isomorphic if there exists a permutation 7 such that
Gy = m(Gh). A perfect zero-knowledge protocol for graph isomorphism suggested by [GMW1]
works as follows:

25

P: Generate random permutation 7 and computes G' = 7(G1)
P=V: G
V—P: i =1 or 2 chosen at random

P—V: 7’ chosen at random such that 7'(G;) = G

If Gy 2 G5 then G will be a permutation of both Gy and GGy and P will always be able to
find a 7’. If G; 2% G5 then GG cannot be a permutation of both G and G, so at least half of
the time V will choose an 7 such that no 7’ exists.

Thus we have an interactive protocol for graph isomorphism. This protocol also is perfect
zero-knowledge. The simulator M works as follows:

M generates m and ¢ at random and computes G' = 7((G;), then outputs the following
view of a conversation:

T2
P=V: G
V—P:
P=V:

It is easy to verify when G7 = G5, M produces exactly the same distribution of views of
conversations as P and V. Notice what happens when G % G3. The output of M always
causes V' to accept. Thus when G 2 G5, M must produce views of conversations from a
very different distribution from what P and V produce. In fact whenever i 2 G5, one can
always predict » = ¢ from the G produced by M.

This leads to a new interactive protocol between a new prover and verifier, P’ and V', for
graph nonisomorphism as follows:

V’: Generate m and ¢ at random and compute GG = 7(G})
V=P G
P—V":

V' Acceptif j =1

2.5.3 The Protocol

We have a prover and verifier, P and V for a language L and a simulator M such that M
exactly simulates views of conversations between P and V for 2 in L. Let n = |z| and let k
be the number of rounds of the protocol (bounded by a polynomial in n). We can decrease
the probability of error in the protocol between P and V to 277(") for any polynomial p(n)
by the standard trick of running the protocol several times in parallel and having V' accept
if the majority of individual protocols accept [BM]. This new protocol is still perfect zero-
knowledge—we just run the simulator in parallel. Note we make use of the fact that we
only need a simulator for the real verifier V. In general, it is not known whether perfect
zero-knowledge protocols remain perfect zero-knowledge when run in parallel.
Thus we can assume:

26

1. If # € L then Pr(P<V(z) accepts) > 1 — 276k
2. If z ¢ L then for all P*, Pr(P*~V (z) accepts) < 276kn

For the sake of the comparison protocol, we require V immediately reject if all its coin tosses
are zero. Since this will happen with an exponentially small probability it will not affect
the correctness of the protocol. The protocol remains perfect zero-knowledge by having the
simulator output no conversation if the verifier’s coins are all zero.

A protocol between a new prover and verifier, P’ and V', works as follows:

V': Run M and get r, 31, aq,..., Ok, ai. The verifier V' now checks:

1. the validity of the conversation, i.e. r,ay,. .., ar will cause V to say 31, ..., Ok.

2. the conversation causes V to accept.

If either of these tests fail then V' can be very sure that 2 ¢ L so V' quits now and
accepts. Otherwise V' continues.
Let j = 1.

V=P B, a;

P'—V': Look at the sets Ry and Ry as defined below. If [Ry| > 2¥"+1|R,| then use the
comparison protocol described in section 2.4.3 to show |Rq| > |R3|. Otherwise let

j=j+1.1fj <k tell V/ to TRY NEXT ROUND, otherwise GIVE UP.

The set Ry can be thought of as all the possible random strings of V' after round j of the
protocol. The set Ry consists of the possible random strings of V' generated by M. More
formally:

Let R be the set of all possible coin tosses of V.

Let Ry ={Re€R | Rand aq,...,a;_1 cause V tosay f3,...,5;}.

Let R; ={R € R | M can output R, f1,0q,...,0;,a; part of a valid, accepting
conversation }

Note Ry C Ry and if # € L then Ry =~ R;. Also note Ry is independent of a;.

We can test containment of an element in Ry in polynomial time and if @ € L then M
produces the exact distribution between P and V and thus r is a random element of Ry which
P’ does not know fulfilling the requirements of the comparison protocol. If ¢ L possibly
r is not a random element of Ry which can only increase the probability of the comparison
protocol accepting.

2.5.4 Proof of the Protocol’s Correctness

To show the protocol of section 2.5.3 forms an interactive protocol for L, we must show:
1. If # € L then P'—V’(xz) accepts with probability > 2
2. If 2 ¢ T then for all P, P—V'(z) accepts with probability <

1
3

27

1. Suppose to the contrary ¢ L and the protocol fails to accept. If |[Ry| < 24" R,
then by the comparison lemma the comparison protocol will fail with an exponentially small
probability. So |Rq| > 24"t R,| at all rounds j with probability at least one fourth. We will
derive a contradiction by demonstrating PV is not an interactive proof system for L by
presenting a prover P* which will convince V' (the original verifier) 2 € L with probability
greater than 276%7,

At round j suppose the conversation so far has been g, af,.. ,ﬁ; P* works as follows:

P*: Run M which outputs r, 51, a1, ..., Bk, . Check this is a valid accepting conver-
sation. If not, try again. See if 31, a1,...,8; = B1,04,..., 3. If not, try again.

P =V: «a;

If 2 € L then the prover P* will eventually succeed at each round because M must
generate every possible conversation with some positive probability.

At round 7 when P* has a conversation from M matching the conversation so far, Ry is
the set of possible random coin tosses of V. When P* says a;, Ry is the set of coin tosses
of V' that will still keep V heading towards an accepting path. Since |Ry| > 2571 R[, this
will happen with probability > 2=67+1) So after k rounds, V will end up accepting with a
probability at least %2_(5’“”‘”“) which is higher than the 27" maximum accepting probability
we assumed for V' and any P* when = ¢ L.

Note P* may require exponential expected time to complete its part of the protocol but
in our model we allow an infinitely powerful P*.

2. Suppose z € L. The simulator M will produce views of conversations from exactly the
same distribution as P and V. Thus every conversation produced by M will be valid. Assume
a prover P can convince V' to accept with probability > % The verifier V' will reject in this
conversation with an exponentially small probability causing V' to accept. If [Ry| < 2774 R,|
on any round then the comparison protocol will accept also with an exponentially small
probability. Thus we can assume with probability > { that |Ry| > 2"7*|R,| for some round
j. Since M outputs all possible conversations, R, is just the random coin tosses of V' which
might cause V' to accept in the future. So at round j of the protocol, V accepts with probability

less than Igﬂ < 2477, Since this happens at least a fourth of the time in general V accepts

with probability at most %—I—Q‘l_” contradicting the fact V' will accept with probability greater
than 1 —27%" O

2.6 Extensions and Corollaries

Theorem 2.6 Suppose PV is an interactive proof system for a language L and there is
a probabilistic polynomial-time simulator M such that M|z] is statistically close to PV [z].
Then there is a single-round interactive proof system for the complement of L.

Idea of Proof This extends the main theorem in two ways. First, we do not require
M[x] = P<V]x], just they be statistically close. One can check the proof in the previous
section and notice, with some minor adjustments to the probabilities, statistically close is
good enough.

28

Second, we would like to get a single-round proof system for the complement of L. Notice
in the protocol in section 2.5.3 the number of rounds depends on when P’ decides to say
STOP. To get bounded rounds we must make the following change to the protocol:

V': Run M k® times independently and get & views of conversations; check each
conversation is valid and accepting.

V'—=P': For each i, 1 < i < k?, send the first i mod k& rounds of the ith conversation.
P'—=V': Pick any conversation j and show |R1| > |R2| for the view of this conversation.

The proof still works because the new protocol essentially tries all rounds in parallel. Once
we have bounded rounds we apply the theorems of [B, GS] that imply single-round protocols
can simulate any bounded-round protocol.

Some trivial corollaries that follow from results described in sections 1.5 and 2.3:

Corollary 2.7 If L has an statistical zero-knowledge interactive proof system (possibly with
an unbounded number of rounds) then

1. the complement of L has a one-round interactive proof system.

2. L is contained in the intersection of almost-NP and almost-co-NP.

Corollary 2.8 If any NP-complete language has an statistical zero-knowledge interactive
proof system then the polynomial-time hierarchy collapses to the second level.

Corollary 2.9 If one-way functions exist and the polynomial-time hierarchy does not collapse

then NP C ZK; but NP € SZK, so ZK # SZK.

2.7 Further Research

There are several interesting problems remaining concerning perfect zero-knowledge, includ-
ing:

o What is the relationship between PZK and SZK?

o Are complement of perfect or statistical zero-knowledge languages themselves perfect
zero-knowledge in any sense?

¢ Do we need cryptographic assumptions to show NP has zero-knowledge proof systems?
Although this chapter shows NP probably does not have perfect zero-knowledge proof
systems; possibly we need only assume the intractability of SAT for a zero-knowledge
proof system.

29

Chapter 3

Logarithmic-Space Verifiers

3.1 Reducing the Power of the Verifier

Often in complexity theory, as in real life, we would like our computers to require small work
space as well as a short amount of time. In this chapter, we look at the complexity of verifiers
not only restricted in polynomial time but logarithmic space.

Condon and Ladner [CL] first looked at these space bounded proof systems in 1986. In
1987, Condon [Col, Co2] described properties of these models with different results for public
and private coins in contrast to the Goldwasser and Sipser result [GS].

We will concentrate on one model with the verifier restricted to public coins, polynomial
time and logarithmic space. We show the equivalence of this model to adding both nondeter-
ministic and probabilistic computation to logarithmic space bounded Turing machines.

3.2 Log Space Verifiers and BPNL

We define an interactive protocol with a log-space verifier as an interactive protocol with the
following complexity for the verifier V:

1. V uses at most O(logn) space.
2. V runs in polynomial time.
3. V uses only public coins.

The class IPL contains all the languages accepted by these models using the same proba-
bilities as for the standard model described in section 1.3.7.

The last two restrictions on V' prevent the model from becoming too powerful. If we allow
V unrestricted time with public coins this model accepts exactly the class P [Col]. Anne
Condon and John Rompel independently have shown if we allow V' to use private coins then
this model accepts the same languages as standard interactive proof systems.

Analogous to BPNP, we can define a probabilistic nondeterministic version of logarithmic
space. We define the class of languages accepted by bounded-error probabilistic nondetermin-
istic polynomial-time log-space machines as BPNL and we can show the following relationship
between this model and interactive proof systems with log-space verifiers.

30

Theorem 3.1 The classes IPL and BPNL contain the same set of languages.

Proof

1. Suppose a language L has a BPNL machine M. We create a verifier that simulates M
and when M makes a nondeterministic choice we defer that choice to the prover. On
any input z, the probability of acceptance of this protocol is the same as the probability
of acceptance of M since playing optimally, the prover chooses to send the message that
leads to the highest probability of acceptance for V.

2. Suppose a language L has a IPL proof system with verifier V. We create M that simu-
lates V' but uses nondeterminism to guess the prover’s responses. Again the probabilities
of acceptance are identical. O

For the rest of this chapter we will use BPNL to refer to this class of languages.

3.3 A Circuit Model for BPNL

In this section, we describe a circuit model that captures the power of BPNL. We look at
polynomial size circuits consisting of maz and average gates instead of and and or gates. A
max or average gate can take inputs from any value between 0 and 1 and outputs some value
between 0 and 1. On inputs 1 and 23 a max gate will output max(z1,2). On inputs 21 and
zo an average gate will output 1/2(z1 4 22). Maz-ave circuits are a family of polynomial size

circuits of max and average gates C',C, ... with the following property of acceptance for a
language L:
If € {0,1}" and the bottom most inputs of C), are just 1y, ...,x,, the bits of x, then

1. If & € L then Cy(aq,...,2,) > %

2. If ¢ L then Cp(21,...,2,) < %

As with probabilistic computation we require that C, never falls between 1 and % for any

input. We call circuits with this property proper max-ave circuits. ’

One can make an analogy from max-ave circuits to BPNL by having the prover make the
choices on the max gates and the verifier randomly making a choice in the average gate. We
make this notion formal as follows:

Theorem 3.2

1. For every L in BPNL there is a log-space computable function f such that f(z) = C
where C' is a proper maz-ave circuit for L with size polynomial in |z| and no nonconstant
inputs.

2. There is @ BPNL machine M such that Pr(M accepts (C,z)) = C(z) for all z € {0,1}*
and maz-ave circuits C'.

Proof

31

1. We will show given a BPNL machine M and an input z, we can create in log-space a
circuit C' such that the probability of M accepting is the value of C'. We add a clock
to M to keep track of how many steps have gone by. Let S be the set of all possible
configurations of M. Clearly there are only a polynomial number of possibilities for
S. These configurations will form the gates of the circuit C'. Those configurations
where M nondeterministically guesses a bit form max gates over all the next possible
configurations. The configurations where M flips a coin form average gates over the next
possible configurations one step after the coin flip. We replace an accepting configuration
by the constant input one. Likewise, we replace the rejecting configurations by zero.
The other configurations form a max gate over the single gate representing the next
configuration after a single step of deterministic computation. Since we have added a
clock to M, this process can not create any cycles. By the definition of BPNL and
max-ave circuits, the probability of M accepting is the value of . We clearly can do
the above construction in log-space. Note C' does not have any nonconstant inputs.

2. We will show that we can create a prover-verifier pair to accept « with probability C'(z).
The prover and verifier will start at the top gate. For a max gate the prover picks one
of that gate’s children. For an average gate, the verifier picks one of the gate’s children
by flipping a coin. We continue this process on the gate’s child. Since C' has only a
polynomial number of gates, V' can always keep a pointer to the gate currently being
processed. The verifier will accept if we process a one input. Again the probability of
acceptance is exactly the value C'(z). We then turn (P, V) into an equivalent BPNL
machine M. O

Corollary 3.3 BPNL C P (Proven independently by Condon [Co2])

Proof Given L in BPNL and 2 in ¥*, by the previous theorem we have a reduction f(z) to
a circuit C' with no nonconstant inputs. We then compute C' by calculating the value at each
gate and accept if the value of €' is at least two thirds. O

Note this does not say max-ave circuits accept exactly the same languages as BPNL
machines. For example, a max-ave circuit can only accept monotone languages, thus no family
of max-ave circuits can exist accepting nonmonotone languages such as parity. However,
BPNL can clearly compute parity. By the above proof a BPNL machine can accept any
language accepted by log-space uniform proper max-ave circuits.

Does BPNL accept all the languages of P? We conjecture there exist polynomial-time
computable languages not in BPNL. The following theorem indicates we will not easily settle
this question by computing the value of the max-ave circuit.

Theorem 3.4 {(C,z,v)|C(z)= v} is log-space-complete for P.

Proof Ladner [L] showed {(C’,2)|C’'(z) = 1} log-space complete for P where C’ is a
normal polynomial size and-or circuit. We create (' by replacing every or gate by a max gate
and every and gate by an average gate. Then C'(2) = 1if and only if C(2) = 1. O

32

3.4 BPNL Contains LOGCFL

Clearly BPNL contains both NL and BPL. In this section we show that BPNL nontriv-
ially contains the complexity class LOGCFL, languages log-space reducible to context-free
languages [Sul, Su2].

Venkateswaran [V] showed the equivalence of LOGCFL and the class of languages accepted
by log-space uniform semi-unbounded log depth circuits, i.e. a family of and-or circuits of
O(logn) depth and bounded fan-in and’s (possibly unbounded fan-in or’s). We can assume
that the fan-in of the and’s is two.

The class LOGCFL contains NI and equality is unknown. It is also unknown whether
BPL contain LOGCFL.

Theorem 3.5 LOGCFL C BPNL

Proof lLet L € LOGCFL. For z, let ' be the appropriate log-space constructible semi-
unbounded circuit such that C'(z) = 1 iff 2 € L. The prover and verifier will start at the top
gate. If it is an or gate then the prover picks one of that gate’s children. If it is an and gate
the verifier picks one of the gates children by flipping a coin. We then continue this process
on the gate’s child. Since (' is of polynomial size, V can always keep a pointer to the gate
currently being processed. We will end up at either

1. An input z;. In this case the verifier accepts if z; = 1.
2. A negation of an input z;. In this case the verifier accepts if z; = 0.

If 2 € L then for any choices at and gates, there exist choices at or gates that cause the
circuit to accept. Thus the prover has a winning strategy for any choices of the verifier so the
verifier always accepts.

If « ¢ L then there are choices the verifier V' could make so V' would reject. Since the
circuit is only log depth and V makes one choice out of two at each gate the probability

that V would reject> 2-9(ogn) > ﬁ for some polynomial p(n). Thus Pr(P and V accept
r)<1-— ﬁ.

We then run this protocol 2p(n) times independently and in succession and V' accepts if
all runs of this protocol accept. We then get:

If 2 € L then Pr(P and V accept 2) =1 > 2
If # ¢ L then Pr(P and V accept) < (1 — %)Zp(n) e t<d

(n)
P and V form a polynomial-time log-space public-coin interactive proof system for L. O

3.5 Further Directions of Research

Several open questions remain, including;:
o We showed LOGCFL C BPNL C P. Can this gap be tightened?

o Are there other restrictions on the verifier that give rise to other interesting complexity
classes?

33

e What is the relationship of max-ave circuits to other circuit models?

e It is clear that BPL is closed under complement and Immerman [I] recently showed the
same was true for NL. Can similar techniques be used to show BPNL is closed under
complement?

34

Chapter 4

Multiple Provers

4.1 Corroborating Suspects

Consider the case of two criminal suspects who are under interrogation to see if they are guilty
of together robbing a bank. Of course they (the provers) are trying to convince Scotland Yard
(the verifier) of their innocence. Assuming that they are in fact innocent, it is clear that their
ability to convince the police of this is enhanced if they are questioned in separate rooms and
can corroborate each other’s stories without communicating.

Instead of the verifier communicating with only one prover, we will now look at the model
where the verifier can communicate with many provers that can not communicate with each
other. Ben-Or, Goldwasser, Kilian and Wigderson [BGKW] originally developed multi-prover
interactive proof systems primarily for cryptographic purposes. They show every language
accepted by a two prover interactive proof system has a perfect zero-knowledge two prover
proof system (see section 2.2 for definitions of perfect zero-knowledge). They also show two
prover systems can simulate any multi-prover system. Along the same lines of Goldreich,
Mansour and Sipser [GMS], they show any two prover system has an equivalent system that
accepts with probability one for strings in the language. Complete proofs of these results
appear in [Ki].

We give a simple characterization of the power of the multi-prover model in terms of
probabilistic oracle Turing machines. Using this characterization we give an oracle relative
to which there exists a co-NP language not accepted by any multi-prover interactive proof
system extending the result of Fortnow and Sipser [F'S1] for the standard interactive proof
system model.

4.2 Definitions

Let Py, P3,...P; be infinitely powerful machines and V be a probabilistic polynomial-time
machine, all of which share the same read-only input tape. The verifier V shares communi-
cation tapes with each P;, but different provers P; and P; have no tapes they can both access
besides the input tape. We allow k to be as large as a polynomial in the size of the input;
any larger and V' could not access all the provers.

Formally, similar to the prover of a standard interactive proof system, each P; is a function

35

from the input and the conversation it has seen so far to a message. We put no restrictions
on the complexity of this function other than that the lengths of the messages produced by
this function must be bounded by a polynomial in the size of the input.

Py, ..., Py and V form a multi-prover interactive protocol for a language L if:

1. If & € L then Pr(Py,..., Py and V on z accept) > 1 —27".
2. If @ ¢ L then for all provers P{,..., P/, Pr(P/,..., P, and V on a accept) < 27"

MIP is the class of all languages which have multi-prover interactive protocols. If k is one we
get the class IP of languages accepted by standard interactive proof systems.

Note the different probabilities used here compared to the probabilities used to define
standard interactive proof systems. Unlike the result of Babai and Moran [BM] for the
standard model, it is unknown whether we can increase the probability of error in multi-
prover proof systems by running the protocols in parallel (see section 4.5). We can reduce
the probability of error to less than 277(") for any polynomial p(n) by running the protocols
several times serially.

A round of an multi-prover interactive protocol is a message from the verifier to some or all
of the provers followed by messages from these provers to the verifier. In general, interactive
protocols can have a polynomial number of rounds. We let a;; designate a message from
prover ¢ to the verifier in round j and f3;; designate a message from the verifier to prover ¢ in
round j. We may omit the prover number for one-prover interactive protocols.

IP(j, k) is the class of languages accepted with no more than j provers in no more than
k rounds. The values 7 and k£ may depend on the input but clearly can not be larger than a
polynomial in the size of the input. We let poly designate a polynomial, i.e. IP is IP(1,poly)
and MIP is IP(poly,poly). A protocol is said to have bounded rounds if k is a constant.

4.3 Probabilistic Oracle Machines

Suppose a prover in an interactive proof system must set all his possible responses before the
protocol with the verifier takes place. We can think of the prover as an oracle attempting to
convince a probabilistic machine whether to accept a certain input string. The oracle must
be fully specified before the protocol begins.

Let M be a probabilistic polynomial-time Turing machine with access to an oracle O. A
language L is accepted by an oracle machine M iff

1. For every x € L there is an oracle O such that M© accepts 2 with probability > 1 —2""
2. For every z ¢ L and for all oracles O, MO’ accepts with probability < 277

This model differs from the standard interactive protocol model in that the oracle must
be set ahead of time while in an interactive protocol the prover may let his future answers
depend on previous ones.

Theorem 4.1 L is accepted by an oracle machine if and only if L is accepted by a multi-
prover interactive protocol.

36

Proof (Write-up due to John Rompel)

(=)
Suppose L is accepted by a multi-prover interactive proof system V. Then define M as follows:
M simulates V' with M remembering all messages. When V' sends a message to a prover,
M asks the oracle the question (z,4,7,(, B, ..., 0;;) suitably encoded and uses the response
as the (! bit of the 7' message from prover i on input x where G, .. ., 3; are the first j
messages sent from the verifier to prover i. M then accepts z if and only if V' does.

1. Let Py,..., P, be provers which cause V to accept each & € L with probability at least
1 —=27". If we let O be the oracle which encodes in the above manner the messages of
Py, ..., Py, then M© will accept each z € L with the same probability as V.

2. Suppose there were an input ¢ L and an oracle O’ such that MO accepts = with

probability more than 27". Then we could construct provers P[,..., P which cause V
to accept x with the same probability by just using O’ to create their messages. Since,
by definition, no such Py,..., P exist, neither does O’.

(=)

Suppose I is accepted by a probabilistic oracle machine M in n”* steps. We will define a
verifier, V, to simulate M using n*+! provers. The verifier first randomly chooses an ordering
of the n*t1 provers. The verifier then simulates M and whenever M asks an oracle question,
V' asks the question to each of the next n provers in the chosen ordering. If the provers
are unanimous in their answer, V uses that answer in its simulation of M; if not, V rejects
immediately. If the provers successfully answer all oracle queries, then the verifier accepts if
and only if M does. There can be at most n* questions so the 25+ provers will suffice.

1. Let O be an oracle such that M© accepts each 2 € L with probability at least 1 — 277,
If we let Pi,..., P xs1 all answer (identically) according to O, then they will cause V'
to accept each x € I with the same probability as M.

2. Consider z ¢ L; consider any provers P{,..., P/,.,. Let oracle O" answer queries as the
majority of P[,..., P!, , would.
There are two cases to consider for V accepting z: either all oracle queries in the
simulation answered consistent with O’ or some oracle query answered different than
O’ would. By the definition of acceptance for probabilistic oracle machines, we know
that the probability of the first case occurring is 27", where this probability is over the
random coins of M.

Now consider the second case. Fix some set of random coins r. Let ¢;,..., ¢, be the
oracle questions in the computation of M on x using random coins r and oracle O’. For
V to accept using an oracle answer inconsistent with O, it must be the case that, for
some i, the " set of n provers all give an answer inconsistent with O’ on ¢;. Fix i.
Since O’ gives the answer to ¢; that the majority of provers do, at most %nk"'l of the
n**1 provers will answer differently than O’. Thus the probability that the :** set of n
provers will all answer differently from O’ is at most

(4

i3

—r -
k1 =

(nn)

37

The probability that this will happen for some i is at most n* times this. Thus the total
probability that V will accept z is at most 27" + n¥27" or (0¥ + 1)277.

Finally, we define V' to simulate V' three times in series, accepting or rejecting according
to the majority of the simulations. Since the probabilities of the runs are independent, the
probability that the correct provers will cause V' to accept # € L is at least

(1-27") $3(1—-2"")?27" > 1 — 3.27%"
and the probability that any provers will cause V' to accept x ¢ L is at most
279" 43.272"(1-27") < 3. 27"

If we further modify V’, hardwiring the correct answer for n < 1, then V' forms a multi-
prover interactive proof system for L. O

This theorem gives a natural model equivalent to multiple provers and useful for proving
theorems about them.

4.4 Are there Multi-Prover Protocols for co-NP Languages?

With the extra power of multiple provers, we can not immediately rule out the possibility of

protocols for all co-NP languages. However, we can extend the result of Fortnow and Sipser
[FS1] where an oracle is given such that co-NP4 ¢ TP4,

Theorem 4.2 There exists an oracle A and a language L € co-NP# such that L ¢ MIPA.

Proof In this proof we will use the oracle machine model. It is easy to verify that the
proof in section 4.3 holds under relativizations to all oracles. Note that our machines can ask
questions about two oracles, the “prover” oracle O and the “relativization” oracle A.

We can enumerate all possible polynomial-time machines in the standard manner, letting
M; be bounded in time by n', where n is the size of the input.

For any oracle A, let

L(A)={1": A contains all strings of length n}

It is clear that L(A) € co-NP# for all oracles A.
In step ¢ we make L(A) different from every oracle machine M. Then L(A) can not have
a multi-prover interactive protocol and we have proved our theorem.

STEP q:

Pick N; large enough so 2% > 3(N;)' and no oracle questions of length N; have been
asked in any previous step. Let p; = (V;)°.

Every time M/ asks a question to A which has not been previously answered we answer
yes. If there are not any oracles O such that O and MZ»A accept on input 1V with probability
at least % then we put in the oracle A all strings of length N; and every other previously unset
string that MZ»A asks about for any oracle O. This completes step i. Note that MZ»A can only
ask questions of length less than p; so we will always be able to find N;1q in step ¢+ 1.

38

Otherwise we have some oracle O such that O and MZ»A will accept 17 with probability
at least % On any computation path (which is determined by MZA’S coin tosses), MZ»A can
ask at most p; oracle questions to A of length N;. There are 2V questions of length N;. A
counting argument shows that there is some oracle question z of length N; that appears in
no more than p; /2" of the computation paths of M. By the way we chose N; this means
the oracle question z appears in less than one third of the computation paths of MZA. Put
all strings of length N; except for & in the oracle A. Also place in the oracle A every string
queried by MZ»A on every possible communication with every possible O. The oracle O will
convince M to accept with probability greater than one third since more than a third of the
computation paths are the same as before.

If there exists an oracle O that makes M/ accept 17V with probability greater than two
thirds then L(A) does not contain 1Vi. Conversely, if no oracles exists that causes M
to accept with probability at least one third then L(A) will contain 1Y, By the standard
diagonalization argument L(A) does not equal the language accepted by M]A for any 5. O

This result implies the earlier result of Fortnow and Sipser [F'S1] since the language L(A)
does not have standard interactive proof systems under the oracle A.

N;

Corollary 4.3 Techniques which relativize will not settle whether MIP contains co-NP or
whether IP contains co-NP.

Proof Let B be the standard oracle which makes PP = NPP [BGS]. Then co-NP? =
P? and co-NPP C IPP C MIP®. Thus any proof that proves or disproves co-NP C MIP or
co-NP C IP can not relativize. O

4.5 Bounded Round Protocols

Fortnow, Rompel and Sipser [FRS] claimed some results about collapsing rounds: IP(1,poly)
C IP(2,1) and IP(poly,poly) = 1P(3,2). The “proofs” require that we can somehow decrease the
error probability by running the protocols in parallel. The approach makes the assumption
that if the provers can be prevented from communicating among themselves through the
protocol then parallel runs of the protocol work independently like parallel runs of one prover
interactive protocols [BM].

The claims of Fortnow, Rompel and Sipser remain unproven because of this faulty as-
sumption. We show the assumption faulty with the following counterexample:

Suppose we have the following two prover protocol:
V: Pick two bits ¢ and b uniformly and independently at random.
V—P: a
V=P b
Pi—V: ¢
P,—V:d
Vi Accept if (aVe) # (bV d).

39

It is easy to show the best strategy for two provers causes the verifier to accept with probability
1/2. Notice neither prover has any notion of what bit the verifier has sent to the other prover.
Now let us examine the two round version of the same protocol:

V': Pick bits ay,aq and by, by uniformly and independently at random.
V—Pi: a1,a
V—Py: b1,by
Pi—V: 1,6
Po—V: dy,dy
Vi Accept if (a; Ve1) # (b1 V dq) and (ag V ¢2) # (by V d2).

If the parallel runs of the protocol behave independently we would expect the optimum
strategy for the provers causes the verifier to accept with probability (1/2)* = 1/4. However
the following strategy for the provers causes the verifier to accept with probability 3/8:

Pi: If ay = ag = 0 respond ¢; = ¢ = 0 otherwise respond ¢; = ¢5 = 1.
Py: If by = by = 0 respond dy = dy = 0 otherwise respond dy = dy = 1.

Note in n rounds the probability of acceptance of this protocol can not exceed (3/4)"
since the verifier will not accept if a; = b; = 1 for any 2. We can not find any counterexample
without this type of exponential decrease. However we can not prove any such decrease in a
general setting.

We conjecture the bounded round claims of Fortnow, Rompel and Sipser are true but the
proofs will require new techniques.

4.6 Further Research

There still remain many open questions including;:

e Can we in fact prove the results like those stated in [FRS], i.e. results that collapse
unbounded rounds to bounded rounds perhaps with additional provers?

e Under what conditions can we reduce the error probability without drastically increasing
the number of rounds in multi-prover interactive proof systems?

e What is the relation between MIP and IP? Is there, for instance, an oracle separating
the two classes?

e What is the relationship between MIP and PSPACE? Feldman [Fe] shows that PSPACE
contains IP, but the proof does not appear to work for MIP. Peterson and Reif [PR]
show if we replace the verifier’s randomness with universal choices we get exactly non-
deterministic exponential time.

¢ A public-coin interactive proof system can accept any language accepted by a interactive
proof system [GS]. What can we say about public-coin multi-prover interactive proof
systems? How do we even define public-coin proof systems for multiple provers?

40

Chapter 5

Probabilistic Computation and
Linear Time

5.1 Linear-Time Verifiers

Suppose we restrict our verifier to run in linear time. Clearly any language accepted by a
verifier running in linear time will be accepted by a standard interactive proof system with
a polynomial-time verifier. Can we find a language accepted by a standard interactive proof
system but not a proof system with a linear-time verifier?

In this chapter we examine the same question for simpler models of computation. In
1965 in the seminal paper in complexity theory, Hartmanis and Stearns [HaS] showed for
any k > 1 there exist problems with deterministic »**' algorithms but no deterministic
algorithms exist that run in n* steps. This hierarchy theorem answered the question for the
simple deterministic case.

Interactive proof systems combine nondeterministic and probabilistic computation. In
1973, Cook [C2] showed a hierarchy exists for nondeterministic computation. In contrast with
deterministic and nondeterministic computation, the existence of a probabilistic hierarchy
remains unknown. The techniques that establish the deterministic and nondeterministic
hierarchy fail in the probabilistic case. The main result of this chapter shows a fundamental
reason for this failure.

We will show this result by exhibiting an oracle A relative to which probabilistic linear
time equals BPP, probabilistic polynomial time, as well as an oracle for which they differ.
Thus techniques that relativize will not answer this question. Virtually all known techniques
for solving problems of this type relativize, particularly the techniques that separate the
deterministic and nondeterministic time classes.

This result suggests the possibility of a collapse of a complexity time hierarchy. Results
of this nature show some fundamental differences in probabilistic computation versus other
forms of computation such as deterministic and nondeterministic.

Assuming computers have easy access to random bits, a problem has an efficient solution
if a probabilistic polynomial-time algorithm can solve this problem. Under the oracle A,
we have the surprising situation that we can solve all problems with efficient solutions in
probabilistic linear time.

41

We also show some other relativized results in this paper relating to probabilistic com-
putation and linear time. We also give a partial answer to the original question by showing
the existence of a language accepted by an interactive proof system but not accepted in
probabilistic linear time.

5.2 Our Results and Related Results

We show the existence of oracles under which the following hold:

1. BPP = BPTIMEn] (actually we will show BPP = RTIME[n] (thus BPP C NTIME[n])
and BPP = ZPTIME[n])

2. BPP has linear size circuits.
3. Ay C BPTIME[n]
4. The negation of each of the above.

We also show there must exist a language in either BPP or NP but not in BPTIME[n].
This result implies there are languages accepted by interactive proof systems that are not
accepted in probabilistic linear time.

Hartmanis and Stearns [HaS] with Hennie and Stearns [HeS] show for “nice” f and g such
that g(n) = o(%) that DTIME[f(n)] € DTIME[g(n)], thus DTIME[#’] € DTIME[z*] for
1 <k < j. Cook [C2] showed the latter result for nondeterministic time, which was improved
by Seiferas, Fischer and Meyer [SFM]. All of these results relativize to all oracles.

Wilson [W] showed Ay has linear size circuits with an appropriate oracle. We extend
Wilson’s result to show BPTIME[n] contains Aj relative to an oracle. However, his techniques
fail to help prove our main theorem since they rely on the fact that languages in Ay can depend
only on a polynomial number of oracle queries for each input. BPP does not afford us that
luxury.

Kannan [K] showed 5 N1I; does not have n¥-size circuits for any fixed k. Using standard
techniques, one can show BPTIME[n] has n-size circuits. These results relativize to all
oracles. Combining these facts with the above results, we get that there are oracles that put
Ay and BPP in BPTIME[n] and linear size circuits where as such oracles do not exist for
Yo N1I;. The class X5 NIl contains BPP [Si] and A though the relationship between Aj
and BPP is unknown.

One can get a trivial separation of BPTIME[n] and BPTIME[2"] by simulating all possible
coin tosses. Karpinski and Verbeek [KV] improved this result to show BPTIME[#!°8"] does
not contain BPTIME[2"] for any € > 0.

5.3 Deterministic, Nondeterministic and
Probabilistic Linear Time

Why does probabilistic computation behave differently than deterministic and nondetermin-
istic computation for separating the time classes? In this section we will describe the proof

42

techniques for separating the deterministic and nondeterministic time classes and show why
these techniques fail for probabilistic computation.

The proof that DTIME[r?] € DTIME[n] works roughly as follows: Let My, Ms,... be
an enumeration of all linear-time deterministic Turing machines. Define a machine M that
on input ¢ does the following: Simulate M; on input 7 and accept if and only if M; rejects.
In quadratic time, M has more than enough time to simulate M; on input ¢. However, if a
linear-time machine M; accepts L(M) then we have a contradiction by the definition of M.

At first glance this proof seems to work for probabilistic machines. However, the proof
fails because of the enumeration of the machines. If we choose a standard enumeration of
the BPP machines, one of the M; will accept with probability 1/2 (for example the machine
that just flips a coin and accepts if heads). Since a proper probabilistic machine must accept
with probability below 1/3 or above 2/3, M will not be in BPTIME[n?] even though it runs
in quadratic time. We could try to have an enumeration of proper probabilistic linear-time
machines but such an enumeration may be computationally infeasible.

The deterministic proof does not work for the nondeterministic case either. Cook [C2]
proved NTIME[n?] € NTIME[n] using a translation lemma: If NTIME[f(n)] C NTIME[g(n)]
then for all “reasonable” superlinear h, NTIME[A(f(n))] C NTIME[A(g(n))]. A similar lemma
holds for deterministic and probabilistic computation. Cook’s proof proceeds as follows:
Assume NTIME[n?] = NTIME[n]. Then by using the translation lemma NTIME[n?] =
NTIME[r?] and thus NTIME[n?] = NTIME[n]. If we repeat this process k times, we get

NTIME[n2"] = NTIME[n]. By using an universal nondeterministic machine, we are able to
maintain the same constant at each step, i.e. a nondeterministic machine that runs in n?*
can be simulated by a machine that runs in ¢*n time for some fixed ¢. If we let & = logn, we
get NTIME[n"] = NTIME[n't1°8¢] which can be shown false by diagonalization.

Even though the translation lemma holds, this proof still fails for probabilistic compu-
tation. The difficulty comes when we try to make a universal proper probabilistic machine.
A universal proper probabilistic machine would be a proper probabilistic machine that can
simulate other proper probabilistic machines; a very difficult task as we have already seen.
Thus we can not keep the constants in check, and therefore can only repeat the translation
process a constant number of times.

We will exploit these difficulties to create the oracle to collapse BPP to BPTIME|n].

5.4 Proof of the Main Theorem

In order to construct an oracle A such that BPP4 = BPTIMEA[n] we encode within A the
answers to whether BPP# machines M accepts inputs w (for each M, and almost all w) in
a way that a BPTIME#[n] machine can find the encoding and thus perform the simulation
quickly. The difficulty that arises is that the BPP4 machine also has access to A and so can
use it to try to ensure that however we try to encode the answers the simulating machine
will be incorrect. This is in fact why analogous oracles for P and NP can not exist since the
theorems of [HaS, C2] relativize for all oracles. Our ability to construct the oracle in this case
rests on a balancing act between the power of probabilistic over deterministic computation on
one side, its still limited ability on the second side and the “forbidden” region of acceptance
probability (between 1/3 and 2/3) lastly.
We present the proof in several sections as follows:

43

1. We describe the structure of the oracle.

2. We examine a simple case in which machines and inputs only look at their own encod-
ings.

3. We define influencing strings, oracle strings that affect the acceptance by a reasonable
probability, and show proper machines can not depend on noninfluencing strings.

4. We describe the encoding process for a restrictive BPP machine.
5. We create a dependency graph for a machine and an input.
6. We process the dependency graph encoding that machine and input.

7. We generalize the proof to all BPP machines.

5.4.1 Structure of the Oracle

Let My, M5, ...bean enumeration of polynomial-time Turing machines that can make random
choices and ask queries of an oracle. M/ designates the machine with index i using oracle
A. Without loss of generality we can assume M7 (z) runs in at most n' steps. Clearly if L €
BPP# then L = L(M{*) for some 7 with M being a proper probabilistic Turing machine.

Without loss of generality we can assume M7(z) flips all its coins before it does any
other computation. Once M (z) has flipped these coins it becomes a deterministic machine
whose acceptance depends solely on the oracle questions it asks. We call the computation
after M7 (z) flips its coins a computation path of M (z). We also assume M (z) flips the
same number of coins on each computation path, so that each path has the same probability
of occurring. Since MZ»A(w) runs in polynomial time it can ask only a polynomial number of
oracle queries on any computation path.

We will create the oracle A such that for each machine M one of the two following
statements will be true:

1. MZ»A is improper.

2. There will exist a probabilistic linear-time machine SZA that accepts exactly the same
language as M.

Suppose BPP# contains a language L. Then some machine M]A must accept exactly the
language L. The machine M]A must be proper, otherwise it could not accept any language
at all, certainly not L. If we have set up the oracle A as described above then we have a
linear-time machine Sf accepting the same language as M]’«“, i.e. the language L. Thus all of
BPP collapses to probabilistic linear time under the oracle A.

We could encode whether M (z) accepts by putting the string (i,2) in the oracle A if
and only if M/ (x) accepts. The linear-time machine S/* accepts on input x if (¢,) is in A.
This idea fails to work because M7 (z) can look at its own encoding of (i,) in A.

Instead, we will encode in the oracle A whether or not M accepts using strings of the
form (¢,x,r) where r may be any of the 2511 strings of length 5|z|.

We say A properly encodes M{(z) if

44

1. If M# accepts x then for at least 2/3 of the possible r’s, (i,2,7) € A.
2. If M rejects = then for at most 1/3 of the possible r’s, (i,z,7) € A.

We call the (i,2,7)’s encoding strings of M (z).
We now have the simulating machine S/* do the following for input :

1. Pick a random r of length 5|z|.
2. Accept if (¢,2,7)is in the oracle A.

Notice that if we have properly encoded A for M/ then S# will accept exactly the same
language as MZA. We will properly encode the oracle A for all proper polynomial-time prob-
abilistic machines M7,

5.4.2 A Simple Case

Let us examine the case when M (z) only looks at strings of its own encoding, i.e. strings
of the form (¢, , 7).

An influencing string of M (z) is an oracle query that occurs on at least one sixth of
all the computation paths. An easy counting argument shows M:(z) can have at most a
polynomial number of influencing strings and thus they make up a very small fraction of all
the possible (7,z,7).

We will properly encode M/ (z)in A as follows:

Initially we will set all of the strings of the form (i,2,r) to zero, i.e. not in A. We will
then determine the probability of M (z) accepting. There are three cases:

1. M#(z) accepts with probability less than one third.
2. M (x) accepts with probability between one third and two thirds.
3. M#(z) accepts with probability greater than two thirds.

In the first case M/ (z) rejects by definition and we have set less than a third of the (7,2, 7)
in A;in fact, none of the (i,z,r) are in A. In this case we have already properly encoded A.

In the second case M/ (z), being improper, can not accept any languages, so we no longer
need to encode A for MZA, even for other inputs.

In the third case, M/ (z) accepts, but there are less than two thirds of the (i,z,r)in A.
We will properly encode A using the following algorithm:

Let S be a collection of two thirds of the (7,2,r) such that S has only noninfluencing
strings. The set S exists because the influencing (¢, z,r) form only a tiny fraction of all of
the (4,z,7).

Pick a single string from S and put that string in the oracle A. Now only one string of
the form (i,2,7)is in the oracle. Once again determine the probability of M/ (z) accepting.

If M{ () accepts with probability between one third and two thirds, then M7 is improper
and we no longer need to encode M.

M7 (z) can not accept with probability less than one third. Since we chose an noninflu-
encing string occurring on at most one sixth of the computation paths of M () it can not

45

change its probability by more than one sixth. However M (2) would have to change its
probability by more than one third to accept with probability less than one third.

Thus if MZ»A($) is still proper then it must accept with probability at least two thirds.
We then pick another string from 5, and put that string in the oracle A along with the first
string.

Once again either MZA($) is improper or it accepts with probability more than two thirds.
We continue this process until M/ becomes improper or we have added to A all of 5. At this
point M (z) accepts and two thirds of the (i,z,r) are in A. Thus we have properly encoded
A for MA ().

Unfortunately, this does not finish the proof because MZA($) may ask questions of other
machines and inputs. To handle this case we must look carefully at the dependencies among
the machines and the encoding strings they query. The remainder of the proof handles these
dependencies.

5.4.3 Influencing and Simulating Strings

For each MZA($) we will look at all the oracle queries it can possibly ask on every computation
path—potentially a very large set of oracle strings. We call the oracle queries that affect the
probability of MZ»A(w) accepting by a certain nonnegligible probability influencing strings,
a slight change from the definition in section 5.4.2. The remaining oracle queries we call
simulating strings. We will show that M/ (z) can not have too many influencing strings.

Suppose M(x) depends on its simulating strings, i.e. one setting of these strings causes
M7 (z) to accept with probability less than 1/3 and another setting causes M/ () to accept
with probability more than 2/3. We can start with the first setting and change one oracle
query at a time to get to the second setting. Eventually M7 (z) must accept with probability
greater than 1/3. However since the simulating strings do not individually change the prob-
ability of MA(x) very much, the probability M/ (z) accepts can not be greater than 2/3 so
MZ»A is no longer a proper probabilistic machine.

We now give an outline of the rest of the proof using influencing and simulating strings:
For every machine M; and input x, we try all possible settings of the oracle queries of A in an
effort to make MZA($) accept with an improper probability. If we succeeded in making MZ»A
improper we set all other encoding strings of M; to zero. Otherwise M; depends only on its
influencing strings, we just set these arbitrarily in A to determine M:(z). We have not set
too many strings; in particular we have not set very many of the (¢, z,7)’s. We then use the
unset (i,,7)’s to encode M (z) consistent with whether it accepts.

5.4.4 Order of Encoding

For any given proper M, we need only properly encode oracle A for all but a finite number of
inputs for MZA. The linear-time probabilistic machine SZA that merely chooses a random r and
accepts if the oracle A contains (¢, z,r), will work for all the inputs properly encoded by A.
We create a linear-time machine 77 that accepts the same language as M by “hardwiring”
the answers of the finite number of inputs not properly encoded by A.

We will use a finite injury argument. For a given MZA, we might not properly encode
MZ»A on some finite number of inputs. We will determine which inputs we will not properly
encode as the construction happens, making sure only that a finite number of inputs are not

46

properly encoded. For example, suppose we can set the encoding strings of MZA, strings of
the form (¢, z,7), in order to make M]A improper for ¢ > j. Then we do not have to consider
M]A again. Since there is only ¢ — 1 machines with a lower index than ¢, we can only set the
encoding strings in this way for a finite number of times.

We will encode machines and inputs in order of input size. For inputs of length n, we will

encode machines My, My, ..., Miogloglogn- Thus for machine ¢, we will not encode any of the

finite number of inputs of size smaller than 92%"
For each M (z) we will either

1. Set enough of the oracle A to determine whether M (z) accepts and appropriately set
the encoding strings of M (z) in A.

2. Make MZ»A improper.
3. Make some M]A improper for some j < 1.

At all times we carefully set the oracle questions in A as to not use too many encoding
questions for any machine and/or input except for finite injury in cases 2 and 3.

For each machine and input we will look at its influencing and simulating strings. If a
machine depends on simulating strings of a higher indexed machine by the earlier argument
we can set these strings to make the machine improper; since we only changed strings of a
higher index we use the finite injury argument. If a machine has simulating strings of a lower
index we recursively encode those machines—mnote we limit ourselves to logloglogn indices.

Ideally we would like to just set all the influencing strings in A immediately. Unfortunately,
influencing strings of different inputs may take up a large part of the encoding strings of some
M;(z). This may happen during the recursion of simulating strings. We show we only have to
worry about influencing strings of encodings of smaller inputs; the others we will immediately
set. We recursively encode those machines, showing the recursive depth can not be too deep
to prevent the encoding of the original machine. Note we never set the simulating strings of
a machine unless either we can make that machine improper or we encode a machine whose
encoding strings are the simulating strings of another machine.

For now we will make the following restriction on how M; works. We assume M; does not
make oracle queries dependent on the answers of previous queries. In other words, for any
given computation path, M; has a fixed set of oracle queries to decide whether to accept or
reject. This set can have at most |z|' oracle queries, the running time of M; on x. We will
show later how to extend this proof to the general case where M;’s oracle queries can depend
on previous queries.

We encode M(z) in two phases. First we will determine which encoding strings M;(x)
depends on. Then we properly encode these machines until we have encoded MZ»A(w). We do
this through use of a dependency graph.

Before we encode any machines we set all oracle strings not used for encoding to zero.
Since we encode in order of input size, we have previously determined all of the following
oracle strings:

1. Nonencoding strings of the oracle.

2. Encoding strings of the form (j,y,r) for all j, y and r such that j > logloglog|y| since
we only encode the first logloglog n machines for inputs of length n.

47

3. Encoding strings of all inputs of size less than n = |z| since these string have been
previously encoded.

4. Encoding strings of all machines previously made improper.

As we will see in this proof, we may have determined strings in A in addition to those listed
above.

5.4.5 Creating the Dependency Graph

We will create a finite dependency graph to help us properly encode MZA(w). The nodes of the
dependency graph represent a machine and an input. Directed edges go from one machine
and input to another if the first machine on that input asks oracle queries of encoding strings
of the other machine and input. Nodes will be of the form (j,y) representing machine M;
on input y. We call j the index of node (j,y) and y the input. We define an ordering of the
nodes by (j,y) < (k,z) if j < kor j = k and y < z for some ordering of input strings such
that |y| < |z| implies y < z.

In the simple case we assumed the dependency graph had only self loops, i.e. machines
and inputs only look at their own encoding strings. If the dependency graph had no cycles,
we could properly encode all the nodes by encoding the leaves and then work our way back
to the root. However, the dependency graph may have cycles, in which case we will require
more work to process this graph.

To create the dependency graph G for M/ (z) we first start with the single node (i,).
Let us place the graph on a two dimensional grid with indices increasing from left to right and
inputs increasing from bottom to top. We place (7,z) in the lower right corner. We ezpand a
node (7,y) by adding an edge to (k, z) (creating the node if necessary) if for some selection of
random coins M;(y) asks an as yet undetermined encoding string of My(z). We recursively
expand node (k, z) if one of the following holds:

1. k< j,i.e. node (k, z) is to the left of node (j,y)

2. k <iand |z| < |y| and |z| < |w| for some node (I, w) of G’ with [> k, i.e. node (k, z) is
to the left of the original node (i,2), is below (j,y) and is below some node at least as
far right as (k, z). We need this condition to prevent the indices from increasing without

bound.

We get the dependency graph G by expanding the single node (¢, 2). We will see this graph
contains the structure of the recursive encodings necessary to encode M;(z). A node (j,y)
depends on node (h, z) if there is an edge from (j,y) to (h, z). Likewise, M;(y) depends on
Mp(2)if (j,y) depends on (h, z).

Note that all nodes of (G represent machines with as yet undetermined encoding strings.
If (7,4) is a node of G then 1 < j <logloglogn and |y| > n. If (j,y) is an expanded node of
G other than (7,z) then 7 < 1.

Lemma 5.1 If (j,y) € G then |y| < n'°8".

Proof A Turing machine can not ask an oracle question longer than the amount of time it
has to write it down. If (k, 2) is a node of G then M has running time at most |z[loglosloglz|

48

since k < logloglog n and Mj, runs in time at most n* for inputs of size n. By the definition of
G, we only expand a node with a larger input if the index is smaller. If f(j) is the maximum
size of the inputs of all the nodes of index at least j then f(j — 1) < f(j)losloslos /() We
know f(i) = n since (¢,) is the only expanded node of G of index i¢. We can bound the
recurrence using lemma 5.2 to show f(j) < n!°8” for all j such that 1 < j < i. Thus for all
expanded nodes (j,y), |y| < n'°8". Since we create unexpanded nodes only from expanded
nodes, we can actually show for all nodes (j,y) of G, |y| < n'°8". O

Lemma 5.2 Suppose we have a function f(j) with the following conditions:
1. f(i) = n for some i, 1 <i<logloglogn
2. f(j—1) < f(j)lostoglos f0) for all j, 1 < j < i

Then f(j) < n'°8™ for all j, 1 < j <.

Proof By induction on j. True for j = ¢ by assumption. Assume f(k) < nl°8" for all k,
J < k <1. We will show the lemma true for j.
For all £ with j < k <4,

f(k _ 1) < f(k)logloglogf(k) < f(k)logloglog(nbg") _ f(k)g(n)
for g(n) = loglog log(n'°8™) = 1 4 logloglog n. Then we have
JG) < JpT < ol

by repeatedly exponentiating f(i) = n by g(n) for i — j times. To bound the exponent, we
note

log g(n)l°eloeloen — Jogloglog nlog g(n) = logloglog nlog(1 + logloglog n) < loglog n.

Thus g(n)leloslosn < logn and thus f(j) < nl°8" O

Since we restrict the length of y between n and 7'°6™ and j between 1 and logloglog 7,
there can be only a finite number of nodes (j,y) of G.

5.4.6 Processing the Dependency Graph

After we create the dependency graph G for MZA($) as described above, we will process each
expanded node (7,y) of G from smallest node to (¢,2) in the order also described above,
possibly changing G at each step.

As we process each node (7, y) of ¢ we will either

1. Set enough of the oracle A to determine M;(y). We then encode M;(y) in A appropri-
ately with its unset encoding strings. We remove node (j,y) from G, along with all its
associated edges.

2. Make M; improper. At this point we stop trying to encode M;(z), invoking the finite
injury argument since j < 7.

49

3. Put node (j,y) on hold. We will restructure the dependency graph so (j,y) only has
edges to nodes (k, z) with k£ > j and |z| > |y].

As we process each node (j,y) of G all previously processed nodes not removed will be
on hold. These held nodes depend solely on a larger index or input than (j,y). We will
combine node (j,y) with all the held nodes it depends on into one single node. We will show
the probabilistic machine corresponding to this node can not have too much power. This
machine also depends solely on encodings of a larger index or input. We show we can apply
one of the three actions above and then we process the next node. When we process node
(i,2) it can not be put on hold because |z| = n and no nodes of GG have input of length less
than n. We have then succeeded in encoding M/ () or making it improper or making some
machine with a smaller index improper.

When does a node (k, z) become unheld? The node (k, z) becomes unheld when we encode
all of the nodes (k, z) depends on. However some of these nodes might themselves be put on
hold. Suppose (k, z) depends on (j,y) and we decide to put (7, y) on hold, i.e. My(z) depends
on M;(y), which in turn depends on larger indices. Clearly then My (z) depends only on what
M;(y) depends on. Possibly (k, z) never becomes unheld to achieve the goal of encoding (¢,).
We will keep the following invariant: When we process node (4, y), all held nodes only have
edges to unprocessed nodes.

We now give a more precise description of how we process node (j,y):

L. Convert M;(y) to M7 (y), a new machine that combines M;(y) with all the machines
related to the held nodes (j,y) depends on. We describe the combining process below.
We remove all edges from (j,y) to the held nodes. The machine M7 (y) depends only
on encodings relating to larger nodes.

2. We try to set the oracle to make Mj*A(y) accept with an improper probability.

3. If unsuccessful, we examine the influencing and simulating strings of M*(y). We argue
that the simulating strings can not affect the output of Mj*A(y), and we remove the
related edges from G. We set all the influencing strings of encodings of inputs at least
as long as y to zero, also removing those edges from G.

4. If there are no more influencing strings then we have determined Mj*A(y). Properly
encode the oracle. Recompute every machine related to a held node with an edge
to (j,y). If we have now determined those machines, properly encode the oracle and
remove those nodes from (. Finally, remove node (j,y) from G and all its remaining
associated edges.

5. If influencing edges remain, we then place node (j,y) on hold. We combine every
machine with a hold on (j,y) with M7 (y) replacing edges to (j,y) with edges to the
influencing nodes of (j,y).

We combine a machine M with a set of machines M as follows: We simulate M choosing
the random coin tosses at random. When M asks an oracle query about the encoding of a
machine M’ € M, we would like to respond with whether M’ accepts. We could simulate
M’ and respond to the oracle query with the output of M’. However with any given set of
coin tosses, M may ask several oracle queries and each simulation could fail with probability

50

up to one third. Thus we could have a large probability of getting wrong answers on some
of the oracle queries. Instead we simulate M’ n times independently and take the majority
answer, which gives us an exponentially small error. If we can show the number of oracle
queries M can ask on any given set of coin tosses is much less than exponential then M will
have a negligible probability of making a mistake on any computation path.

We call this combined machine M*. If M runs in time f(n) and the maximal running
time of a machine in M is g(n) then an upper bound on the time of M* is nf(n)g(f(n)): A
maximum of f(n) oracle queries of length at most f(n) each simulated n times.

Since we only do O(logloglogn) steps of combining on any given machine we can show
using similar calculations as lemma 5.2 that every M* machine takes no more than O(n!°8")
steps for every node in the graph generated by (i,2) with |z| = n.

Define an influencing string of an oracle as an oracle query that appears on at least 273
of the paths.

Lemma 5.3 If M runs in time t(n) then for any given x of length n, M(x) has at most
t(n)Q% influencing strings.

Proof Suppose M(z) has ¢ computation paths. If M(z) has more than #(n)22 influencing
strings then these influencing strings account for more than ct(n) oracle queries. However we
can have at most ct(n) oracle queries because at most ¢(n) queries can be asked on each of
the ¢ computation paths. O

No M7 (y) for (j,y) generated by (i,2) will have more than 2" influencing strings for
n =zl

Note no simulating string can affect the probability of a machines acceptance by more
than 277. Thus if the output of a machine depends on settings of the simulating strings,
then we can make the machine improper, because changing a single simulating string can not
change a machine from accepting to rejecting or vice versa.

We need to show the oracle has room to encode M]A(y) Let m = |y|. Recall we encode
M]A(y) in oracle strings of the form (j,y,r) where r can be any of the 2°™ strings of length
5m. If we used any of these strings to make a machine improper then we set the remaining
encoding strings to zero, invoking the finite injury argument. Notice the only other encoding
strings of M;(y) that have been previously set are influencing strings from machines on inputs
of length at most m. These are logloglogm machines each asking at most 2™ influencing
strings on 2™%! inputs of size at most m. Influencing strings take up a grand total of at
most 22 F1loglog log m of the encoding strings of (j, y,) less than 2727 of the 25™ encoding
strings available. The noninfluencing strings consist of more than 1272 > % of the encoding
strings available and thus we can properly encode whether M/ (z) accepts.

5.4.7 Generalizing the Proof for All BPP Machines

We will give a sketch of the modifications of this proof necessary if we allow the probabilistic
machines to base their oracle queries on answers to previous oracle queries. The computation
paths on a machine M will now contain branches both for coin tosses and oracle queries. We
create G using all possible branches of both types. When we work our way processing each
node (j,y) of G we do the following:

51

1. We create M*(j,y) as before.

2. We will try all possible oracle settings of A to try to make M*4(j,y) improper. If we
succeed then we longer need to continue processing G.

3. Look at the machine where it takes oracle query branches as though they were zero.
We argue the simulating strings of this model can not affect the output of the original
machine. As before, we set to zero influencing strings of an encoding of an input of
length at least |y|. If there are other influencing strings, we will put the machine on
hold and combine the appropriate machines.

4. We encode (j,y). In this case we may have introduced ones into A. We then recompute
as well as combine all machines that had a hold on (j,y).

The remainder of the proof follows as before.

5.5 Other Results
Corollary 5.4 BPP = ZPTIME[n] = RTIME[n] C NTIME[n] for some oracle A.

Proof Note in the proof of the main theorem we only introduce ones into the oracle when
we make a machine improper or when we encode a machine. Except for a finite number
of injuries, if MA(z) rejects then we will encode M/ (z) entirely with zeros. A linear-time
machine that picks an encoding string at random will never accept in this case so the oracle we
created actually collapses BPP to RTIME[n]. If BPP = RTIME[n] then BPP = co-RTIME[n]
and thus BPP = ZPTIME[n]. O

Corollary 5.5 For some oracle A, BPP has linear size circuits.

Proof Fix a probabilistic machine M;. Look at all 2" inputs of length n. For any (¢,z,7)
all but 2727 of the r’s correctly encode M7 (). Thus there exists some 7' such that (4, z, ")
correctly encodes M/ (z) for all = of length n. We can easily build a linear size circuit that
determines if (i,2,7") € A. O

Theorem 5.6 For some oracle A, Ay C BPTIME[n].

Proof Let My, Ms,,... be a list of Ay machines, i.e. polynomial-time nondeterministic
machines with access to a NP oracle. We set up the oracle A as in the proof of the main
theorem but we encode our machines in a different way.

Look at the computation of M;(z) on undetermined oracle queries. Using techniques of
Wilson [W] we note there exists a setting of polynomial many oracle questions that determines
M (z). We set the oracle in this way to determine M (x). We then encode (i,z,r) properly.
There are logloglog n machines on 2" inputs each requiring at most a polynomial number of
oracle queries to be set. We have hardly used any of the 2°" oracle questions available. Thus
we will have no problem encoding M#(z). O

Note Ay ¢ RTIME[n] under any oracle, because Ay C RTIME[n] would imply NP =
NTIME[n], which contradicts Cook’s result [C2].

52

Theorem 5.7 For some oracle B, the class BPTIME[n] does not contain DTIME[n?].

Proof Let My, M5, ... be an enumeration of linear time probabilistic Turing machines.
We can assume M; runs in time at most in for inputs of length n. In step ¢ we do the
following:

Let n = ¢ 4+ 1. Set all strings of the oracle B of length less than n? to zero. Simulate
MP on input 1”. The machine MP can ask questions of length at most in < n? and thus is
completely determined. If MP(1") accepts with probability less than 1/2 than we put 1"* in
B otherwise we leave 17° out of B.

Let the language L = {1”|1”2 € B}. A deterministic quadratic time machine with ac-
cess to B can clearly accept L but the standard diagonalization argument shows no linear
probabilistic time machine can accept L. O

Under this oracle B, BPTIME[n] does not contain either BPP or A;. We can use a similar
argument to create oracles where NTIME[r] does not contain BPP and BPP does not have
linear size circuits.

Finally we will show the impossibility of simultaneously collapsing both BPP and NP to
probabilistic linear time even though we can do either individually.

Theorem 5.8 The following two statements can not both be true:

BPP = BPTIME[x]
NP C BPTIME[n]

Proof Assume both statements are true. Then NP would be contained in BPP. By a result
of Zachos [Z], NP C BPP implies the entire polynomial-time hierarchy collapses to BPP
and thus to BPTIME[r]. Then all languages in the polynomial-time hierarchy have nl-size
circuits which contradicts Kannan’s result [K] that X5 NIl does not have n*-size circuits for
any fixed k. O

Note this proof relativizes; thus no oracle A exists that collapses both BPP and NP to
probabilistic linear time even though we can collapse each individually.

Any complexity class that contains both NP and BPP can not be collapsed to BPTIME[n].
In particular, the set of all languages accepted by interactive proof systems must contain
languages not recognizable in probabilistic linear time since IP contains both NP and BPP.

5.6 Conclusions and Further Research

This chapter shows the collapse of both BPP and A; to both BPTIME[r] and linear size
circuits with appropriate oracles. Also, X5 N Il; can not be collapsed to either BPTIME[n]
or linear size circuits. Probabilistic linear time does not contain all languages accepted by
interactive proof systems. However, it is unknown whether interactive proof systems can
have linear size circuits. We believe an oracle exists under which all languages accepted by
interactive proof systems have linear size circuits.

Ideally the questions in this paper should be resolved in the unrelativized world. This
chapter shows solving such problems will be hard but not necessarily impossible. However it
would likely require new techniques to solve them. We conjecture none of the collapses occur
in the unrelativized world.

53

This thesis does not address the original question stated in section 5.1: Do interactive proof
systems with a linear-time verifier accept a strictly smaller set of languages than interactive
proof systems with a polynomial-time verifier? This question was the original motivation of
the research of this chapter but has remained unsolved.

This chapter introduces several techniques for oracle construction. These methods may
be useful in the construction of oracles for other problems.

This chapter gives an example of how probabilistic computation appears different than
deterministic and nondeterministic computation. Perhaps there exist other results that may
help to understand the differences and similarities in the nature of probabilistic computation
and other types of computation such as interactive proof systems.

54

Bibliography

[AGH]

[AH]

[AKLLR]

[BM]

[BGS]

[BGKW)]

[BHZ]

[BC]

[CW]

[Col]

Aiello, W., S. Goldwasser and J. Hastad, “On the power of Interaction”, Combi-
natorica, to appear. Extended abstract available in Proc. 27th FOCS, 1986, pp.
368-379.

Aiello, W. and J. Hastad, “Statistical Zero-Knowledge Languages can be Recog-
nized in Two Rounds”, JCSS, to appear. Extended abstract available in Proc. 28th
FOCS, 1987, pp. 439-448.

Aleliunas, R., R. Karp, R. Lipton, L. Lovasz, and C. Rackoff, “Random Walks,
Universal Transversal Sequences, and the Complexity of Maze Problems”, Proc.
20th FOCS, 1979, pp. 218-223.

Babai, L., “Trading Group Theory for Randomness”, Proc. 17th STOC, 1985, pp.
421-429.

Babai, L. and S. Moran, “Arthur-Merlin games: A Randomized Proof System, and
a Hierarchy of Complexity Classes”, JCSS5 36 2, 1988, pp. 254-276.

Baker, T., J. Gill and R. Solovay, “Relativizations of the P = NP question”, STAM
J. Comput., 4 4, 1975, 431-442.

Ben-Or, M., S. Goldwasser, J. Kilian and A. Wigderson, “Multi-Prover Interactive
Proofs: How to Remove Intractability Assumptions”, Proc. 20th STOC, 1988, pp.
113-131.

Bennet C. and J. Gill, “Relative to a Random Oracle, P4 # NP4 # co-NP# with
Probability One”, STAM J. Comput., 10, 1981, pp. 96-113.

Boppana, R., J. Hastad and S. Zachos, “Does co-NP Have Short Interactive
Proofs?”, Information Processing Letters, 25 2, 1987, pp. 127-132.

Brassard, G. and C. Crépeau, “Non-Transitive Transfer of Confidence: A Perfect
Zero-Knowledge Interactive Protocol for SAT and Beyond”, Proc. 27th FOCS,
1986, pp. 188-195.

Carter, J.L. and M.N. Wegman, “Universal Classes of Hash Functions”, JCS5 18
2, 1979, pp.143-154.

Condon, A., Computational Models of Games, PhD Dissertation, Department of
Computer Science, University of Washington at Seattle, 1987.

55

[FRS]

[FS1]

[FS2]

[GMS]

[GMW1]

Condon, A., “Space Bounded Probabilistic Game Automata”, proc. 3rd Structure
in Complexity Theory Conf., 1988, pp. 162-174.

Condon, A., and R. Ladner, “Probabilistic Game Automata”, Proc. 1st Structure
i Complexity Theory Conf., 1986, pp. 144-162.

Cook, S., “The Complexity of Theorem Proving Procedures”, Proc. 3rd STOC,
1971, pp. 151-158.

Cook, S., “A hierarchy for Nondeterministic Time Complexity”, JCSS 7 4, 1973,
pp.343-353.

Diffie, W. and M. Hellman, “New Directions in Cryptography”, IEFE Trans. on
Inform. Theory IT-22 6, 1976, pp. 644-654.

Edmonds, J., “Paths, Trees and Flowers”, Canad. Jour. Math. 17, 1965, pp. 449-
4167.

Feldman, P., “The Optimum Prover Lives in PSPACE”, manuscript.

Feldman, P. and S. Micali, “Optimal Algorithms for Byzantine Agreement”, Proc.
20th STOC, 1988, pp. 148-161.

Fortnow, L., “The Complexity of Perfect Zero-Knowledge”. In S. Micali, editor,
Randomness and Computation, Volume 5 of Advances in Computing Research, JAI
Press, 1988. Extended Abstract available in Proc. 19" Symposium on Theory of
Computing, 1987, pp. 204-209.

Fortnow, L., J. Rompel and M. Sipser, “On the Power of Multi-Prover Interactive
Protocols”, Proc. 3" Structure in Complexity Theory Conference, 1988, pp. 156-
161.

Fortnow, L. and M. Sipser, “Are There Interactive Protocols for co-NP Lan-
guages?”, Information Processing Letters 28, North-Holland, 1988, pp. 249-251.

Fortnow, L. and M. Sipser, “Probabilistic Computation and Linear Time”, Proc.
21st Symposium on Theory of Computing, 1989, to appear.

Garey, M. and D. Johnson, “Computers and Intractability: A Guide to the Theory
of NP-Completeness”, W.H. Freeman and Co., 1979.

Gill, J., “Computation Complexity of Probabilistic Turing Machines”, STAM .J.
Comp. 6 4, 1977, pp. 675-695.

Goldreich, O., Y. Mansour and M. Sipser, “Interactive Proof Systems: Provers
that never Fail and Random Selection”, Proc. 28th FOCS, 1987, pp. 449-461.

Goldreich, O., S. Micali and A. Wigderson, “Proofs that Yield Nothing But their
Validity and a Methodology of Cryptographic Protocol Design”, Proc. 27th FOCS,
1986, pp. 174-187.

56

[GMW?2] Godreich, O., S. Micali and A. Wigderson, “How to Play any Mental Game”, Proc.

[GMR]

[KV]

[Ki]

[Ko]

18th STOC, 1987, pp. 218-229.

Goldwasser, S., S. Micali and C. Rackofl, “The Knowledge Complexity of Inter-
active Proof-Systems”, STAM Journal on Computing 18 1, 1989, pp. 186-208. Ex-
tended abstract available in Proc. 17th STOC, 1985, pp. 291-304.

Goldwasser, S. and M. Sipser, “Private Coins versus Public Coins in Interactive
Proof Systems”. In S. Micali, editor, Randomness and Computation, Volume 5
of Advances in Computing Research, JAI Press, to appear. Extended Abstract
available in Proc. 18th STOC, 1986, pp. 59-68.

Hartmanis, J. and R. Stearns, “On the Computational Complexity of Algorithms”,
Trans. AMS 117, 1965, pp. 285-306.

Hennie, F. and R. Stearns, “T'wo-tape Simulation of Multitape Turing Machines”,
JACM 13 4, 1966, pp. 533-546.

Hopecroft, J. and J. Ullman, “Introdcution to Automata Theory, Languages and
Computation”, Addison-Wesley, 1979.

Immerman, I., “Nondeterministic Space is Closed Under Complement”, Proc. 3rd
Structure in Complexity Theory Conf., 1988, pp. 112-115.

Kannan, R., “Circuit-Size Lower Bounds and Nonreducibility to Sparse Sets”, In-
formation and Control 55 1-3, 1982, pp. 40-56.

Karp, R., “Reducibility among Combinatorial Problems”, in R. Miller and J.
Thatcher, eds. Complexity of Computer Computations, Plenum Press, 1972, pp.
85-103.

Karpinski, M. and R. Verbeek, “Randomness, Provability, and the Separation of
Monte Carlo Time and Space”, LNCS 270, 1988, pp. 189-207.

Kilian, J., Uses of Randomness in Algorithms and Protocols, PhD Dissertation,
Massachusetts Institute of Technology, 1989.

Ko, K., “Relativized Polynomial Time Hierarchies Having Exactly K Levels”, Proc.
20th STOC, 1988, pp. 245-253.

Ladner, R., “The Circuit Value Problem is Log Space Complete for P”, SIGACT
News, 7 1, Jan. 1975, pp. 18-20.

Lautemann, C., “BPP and the polynomial hierarchy”, Information Processing Let-
ters 17 4, 1983, 215-217.

Nisan, N. and A. Wigderson, “Hardness vs. Randomness”, Proc. 29th FOCS, 1988,
pp- 2-11.

Peterson, G. and J. Reif, “Multiple-Person Alternation”, Proc. 20th FOCS, 1979,
pp. 348-363.

57

[RSA]

[Sa]

[SFM]

[S5]

[St]

[Sul]

[Su2]

Rackoff, C., “Relativized Questions Involving Probabilistic Algorithms”, Proc. 10th
STOC, 1978, pp. 338-342.

Rivest, R., A. Shamir and L. Adleman, “A Method for Obtaining Digital Signatures
and Public Key Cryptosystems”, CACM, 21, Feb. 1978, pp. 120-126.

Santha, M., “Relativized Arthur-Merlin versus Merlin-Arthur Games”, Information
and Computation 80 1, 1989, pp. 44-49.

Seiferas, J., M. Fischer and A. Meyer, “Separating Nondeterministic Time Com-
plexity Classes”, JACM 25 1, 1978, pp. 146-167.

Sipser, M., “A Complexity Theoretic Approach to Randomness”, Proc. 15th STOC,
1983, pp. 330-335.

Solovay, S. and V. Strassen, “A Fast Monte-Carlo Test for Primality”, SIAM J.
Comp. 6, 1977, pp.84-85.

Stockmeyer, L., “The Polynomial-time Hierarchy”, Theoretical Computer Science
3, 1977, pp. 1-22.

Sudborough, L., “Time and Tape Bounded Auxiliary Pushdown Automata”, Math-
ematical Foundations of Computer Science, 1977, pp. 493-503.

Sudborough, 1., “On the Tape Complexity of Deterministic Context Free Lan-
guages”, JACM, 25 3, 1978, pp. 405-414.

Venkateswaran, H., “Properties that Characterize LOGCFL”, Proc. 19th STOC,
1987, pp. 141-150.

Wilson, C., “Relativized Circuit Complexity”, 24" FOCS, 1983, pp. 329-334.

Yao, A., “Separating the Polynomial-Time Hierarchy by Oracles”, Proc. 26th
FOCS, 1985, pp. 1-10.

Zachos, S., “Probabilistic Quantifiers, Adversaries, and Complexity Classes: An
Overview”. In A. Selman, editor, Proc. 1st Structure in Complexity Theory, Volume
223 of Lecture Notes in Computer Science, Springer-Verlag, 1986, pp. 383-400.

58

