
Complexity-Theoretic Aspects of Interactive Proof SystemsbyLance Jeremy FortnowB.A., Mathematics and Computer ScienceCornell University(1985)Submitted to the Department of Mathematicsin partial ful�llment of the requirements for the degree ofDoctor of Philosophyat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYJune 1989c
 Massachusetts Institute of Technology 1989All rights reservedSignature of Author : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Department of MathematicsMay 5, 1989Certi�ed by : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Michael SipserAssociate Professor, MathematicsThesis SupervisorAccepted by: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Daniel KleitmanChairman, Applied Mathematics CommitteeAccepted by: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Sigurdur HelgasonChairman, Departmental Graduate Committee



AbstractIn 1985, Goldwasser, Micali and Racko� formulated interactive proof systems as a tool for de-veloping cryptographic protocols. Indeed, many exciting cryptographic results followed fromstudying interactive proof systems and the related concept of zero-knowledge. Interactiveproof systems also have an important part in complexity theory merging the well establishedconcepts of probabilistic and nondeterministic computation. This thesis will study the com-plexity of various models of interactive proof systems.A perfect zero-knowledge interactive protocol convinces a veri�er that a string is in alanguage without revealing any additional knowledge in an information theoretic sense. Thisthesis will show that for any language that has a perfect zero-knowledge proof system, itscomplement has a short interactive protocol. This result implies that there are not any perfectzero-knowledge protocols for NP-complete languages unless the polynomial-time hierarchycollapses. Thus knowledge complexity can show a language is easy to prove.Interesting models of interactive proof systems arise by restricting the power of the veri�er.This thesis examines the proof systems with a veri�er required to run in logarithmic space aswell as polynomial time. Relationships with circuit complexity and log-space Turing machinesare developed.We can increase the power of interactive proof systems by allowing many provers that cannot communicate among themselves during the protocol. This thesis shows the equivalencebetween this multi-prover model and probabilistic Turing machines with an untrustworthyoracle. We additionally give an oracle under which co-NP does not have multi-prover interac-tive protocols. This result implies an oracle where co-NP does not have standard interactiveprotocols.Another natural model occurs when the veri�er has only linear time. Towards this direc-tion, this thesis examines probabilistic machines and linear time. We show an oracle underwhich linear time probabilistic Turing machines can accept all BPP languages, an unusualcollapse of a complexity time hierarchy. We exhibit many other related relativized results. Fi-nally we show probabilistic linear time does not contain all languages accepted by interactiveproof systems.Keywords: Computational Complexity, Interactive Proof Systems, Zero-Knowledge,Probabilistic Computation, Oracles
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Chapter 1Introduction1.1 Victor and the Great PuluVictor, a venture capitalist, had everything a man could desire: money, women and power.But he felt something missing. He decided he lacked knowledge. So Victor packed up hisbags and headed to the Himalayas in search of ultimate truths.The natives pointed Victor to a tall mountain and mentioned rumors of a great man full ofwisdom. Victor, who smartly brought some climbing equipment, tackled the mountain untilhe reached a small cave near the summit. Victor found the great Pulu, grand guru of all thatis known. Victor inquired to some ultimate truths and Pulu responded,I will teach you but you must not trust my words.Victor agreed and found he learned much even though he had to verify all the sayingsof the great Pulu. Victor though lacked complete happiness and he asked if he could learnknowledge beyond what he could learn in this manner. The grand guru replied,You may ask and I will answer.Victor pondered this idea for a minute and said,Since you know all that is known, why can you not predict my questions?A silence reigned over the mountain for a short while until the Guru �nally spoke,You must use other implements|symbols of your past life.Victor thought for a while and reached into his backpack and brought out some sparechange he had unwittingly carried with him. Even the great Pulu can not predict the 
ip ofa coin. He started 
ipping the coins to ask the guru and wondered what can I learn now?In this thesis we will study the very question of what Victor can learn. On his own Victorcan only decide simple problems. With the help of Pulu, even when he can not trust theanswers, Victor found he could learn much more than before. With a coin, Victor could learneven more still. 6



We will formalize these interactions by looking at Victor as a computer with a restrictedamount of power. The things Victor can learn on his own form a class of problems, P,containing all the problems a simple computer can solve with this restricted amount of time.When Victor �rst meets and listens to Pulu, Victor can now learn problems from the classNP, problems whose answers a simple computer can verify in short amount of time.Finally when Victor pulls out his coins, we have an interactive proof system with Puluinteracting with Victor, Victor asking random questions to Pulu and Pulu responding in away to prove certain knowledge to Victor.Computer scientists do not know if Victor will indeed learn new things by 
ipping coinswith Pulu than on his own though they generally believe he will. We will look at the typesof problems Victor can solve with the help of Pulu, concentrating on some variations: whatif Pulu wished to reveal no information to Victor beyond the questions Victor asks, what ifVictor can communicate with many gurus who can not talk among themselves, and what ifwe restrict the power of Victor in di�erent ways?1.2 A Short HistoryWe now go back to the beginning of complexity theory and give a brief history of resultsleading to the development of the interactive proof system.Computational complexity theory got its start in 1965 with a paper by Hartmanis andStearns [HaS] showing simply that if computers have more time they can accept more lan-guages. About the same time, Edmonds [E] introduced the notion that an algorithm runse�ciently if it runs in time polynomial in the size of the input. Cook [C1] de�ned the class Pas the set of all languages with polynomial time algorithms. To this day we use polynomialtime as the standard for determining whether a problem has an e�cient solution.Nondeterministic time has its roots in simpler models of computation such as �nite andpush-down automata. The signi�cance of nondeterminism in computational complexity the-ory grew in 1971 when Cook [C1] showed a natural problem, satis�ability, is as hard as anyother problem in NP, nondeterministic polynomial time. Soon later Karp [Ka] discovered alarge number of well known combinatorial problems also had this property. The question ofwhether polynomial time contains all the languages solvable in nondeterministic polynomialtime (P = NP) has become the most famous of open questions in theoretical computer science.Probabilistic computation came of age in 1977 when Solovay and Strassen [SS] founda probabilistic polynomial-time algorithm to test the primality of a number; a problem stillwithout a provable deterministic polynomial-time solution. Gill [G] de�ned many of the prob-abilistic complexity classes including BPP, the problems solvable in probabilistic polynomialtime. Probabilistic computation has since played an important role for algorithm designersespecially for parallel computer models.Interactive proof systems, however, owe themselves as much to modern cryptography as tocomplexity theory. Di�e and Hellman [DH] founded modern cryptography by describing howone might use the hard problems in complexity theory to develop cryptographic protocols.Rivest, Shamir and Adleman [RSA] exhibited a scheme to implement the protocols suggestedby Di�e and Hellman. Since then cryptographers have designed many ad hoc protocols fora variety of purposes. 7
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x x x x x x x x6Input Tape

Work TapeFigure 1-1: A Turing Machine. The x represent the characters of the input string and the �represent characters on the work tape.In 1985, Goldwasser, Micali and Racko� [GMR] developed the interactive proof systemas a model for zero-knowledge protocols, protocols that proved the truth of an assumptionwithout revealing any additional information. Also in 1985, Babai [B] introduced Arthur-Merlin games, a variation of the interactive proof system with public randomness. Goldwasserand Sipser [GS] showed the equivalence of these two models.Zero-knowledge proof systems gained their popularity when Goldreich, Micali and Wigder-son [GMW1] showed under certain complexity assumptions that all of NP has zero-knowledgeprotocols. Many complicated protocols now had trivial reductions to zero-knowledge proofsystems.Interactive proof systems have gained a status as an important complexity class combiningboth nondeterministic and probabilistic computation. This thesis will concentrate on thecomplexity aspects of interactive proof systems as opposed to the cryptographic applications.1.3 De�nitionsThe basic model of a computer, the Turing Machine, consists of a �nite state control connectedto an input tape and work tape (see �gure 1-1). Both the input tape and the work tape consistsof cells which can each hold a single letter from a certain �nite alphabet �. The work tapehas an in�nite number of cells usable by the Turing machine.In this thesis we will always assume � = f0; 1g and all logarithms are base two.The �nite state control consists of a set of states including a speci�ed initial state andaccepting state, a transition function � and head pointers to the input tape and the work8



tape. The head pointers point to a speci�c cell on each tape and can be moved right or left.The transition function � take the values of the cells pointed to by the head pointers andthe current state and describes whether to move the head pointers right or left and the newstate. The transition function also may specify a change in the contents of the work tape cellpointed to by the work tape head pointer.The input of a Turing machine consists of strings, �nite concatenations of letters of thealphabet �. The length of a string is the number of letters it contains; there are 2n stringsof length n. We use jxj to represent the length of string x. We let �� designate the set of allpossible strings including the zero-length string �. A language is a set of strings. A class is aset of languages.Before the Turing machine starts computing, an input string x is placed on the input tapeone letter in each cell. The Turing machine initially has pointers to the �rst cell in the inputtape and the �rst cell on the work tape. The Turing machine computes via the transitionfunction � in each step moving the head pointers possibly changing the value of the cell inthe work tape. We say the Turing machine accepts if it ever enters the accepting state. TheTuring machine accepts a language L if it accepts as input strings exactly those strings in L.We let L(M) designate the language accepted by a Turing machine M .Sometimes we would like a Turing machine to compute a function. We add to the Turingmachine model a write only output tape initially blank. When the Turing machine wishesto output a character, the output tape head writes the character and moves one space right.The Turing machine can not perform any other functions on the output tape or head. ATuring machine outputs a string y on input x if that machine outputs exactly the charactersof y in order before it halts.For a more thorough introduction to Turing machines see [HU].1.3.1 Deterministic Time and Space ComplexityA Turing machine M accepts an input x in time t if M enters an accepting state with at mostt applications of the transition function. The machine M accepts a language L in t(n) stepsif for all x 2 L, M accepts x in t(jxj) steps. We will usually use n for jxj, the length of theinput x.Suppose we have two functions, f(n) and g(n) from positive integers to positive integers.The function f(n) is O(g(n)) if there is some constant c such that f(n) < cg(n) for all n. Thefunction f(n) is o(g(n)) if for all constants c > 0, f(n) < cg(n) for all but a �nite n.We de�ne the complexity class DTIME[f(n)] as the set of languages accepted by someTuring machine in O(f(n)) time. The complexity class P contains all the languages acceptedin polynomial time, i.e. P = [k>0DTIME[nk]A Turing machine M accepts an input x in space s if M enters an accepting state usingonly the �rst s cells of the work tape. In an analogous manner to time, we de�ne thecomplexity class DSPACE[f(n)]. The complexity class PSPACE contains all the languagesaccepted in polynomial space. The class L contains the languages accepted in logarithmicspace, DSPACE[logn]. 9



1.3.2 Nondeterministic Turing MachinesNondeterministic computation allows the Turing machine to make guesses. If a series ofguesses lead to an accepting state then the Turing machine accepts. Formally, we let thetransition function � have a set of possible moves for a given state. We say the nondetermin-istic Turing machine M accepts an input string x if there is a choice of transitions that causeM to enter an accepting state.We de�ne NTIME[f(n)] and NSPACE[g(n)] exactly as DTIME[f(n)] and DSPACE[g(n)]except that the Turing machines involved may be nondeterministic. The classes NL, NP andNPSPACE are the nondeterministic analogues of L, P and PSPACE.For a complexity class C, we let co-C contain all languages whose complements belong toC. For example, co-NP contains all languages whose complements are contained in nondeter-ministic polynomial time. For any two complexity classes, C and D, if C � D then co-C �co-D.Here are some basic facts relating these complexity classes (see [HU]):DTIME[f(n)] � NTIME[f(n)] � DTIME[cf(n)] (for some c)DSPACE[f(n)] � NSPACE[f(n)] � DSPACE[f(n)2]DTIME[f(n)] � DSPACE[f(n)] � DTIME[cf(n)] (for some c)DTIME[f(n)] = co-DTIME[f(n)]DSPACE[f(n)] = co-DSPACE[f(n)]NSPACE[f(n)] = co-NSPACE[f(n)] (see [I])Thus L � NL � P � NP � PSPACE = NPSPACE and NL = co-NL. None of theinclusions are known to be proper except NL 6= PSPACE.1.3.3 CompletenessThe P = NP question remains the most fundamental open problem in complexity theory. Tounderstand the complexity of NP, we often look at the hardest problems in NP called theNP-complete problems.Let f : �� ! �� be a function from strings to strings computable in polynomial time.The function f reduces a language L1 to a language L2 if x 2 L1 if and only if f(x) 2 L2.If L2 has a polynomial-time solution then L1 also has a polynomial-time solution for input xby checking if f(x) is in L2.A language L is NP-complete if L 2 NP and for all languages L0 2 NP there is apolynomial-time reduction f from L0 to L. Thus if an NP-complete problem has a polynomial-time solution then P = NP. Likewise if P = NP then L has a polynomial-time solution sinceL 2 NP. The P = NP question is equivalent to showing whether any particular NP-completeproblem has a polynomial-time solution.In 1971, Cook [C1] shows the �rst natural problem, satis�ability, is NP-complete. Sat-is�ability consists of all boolean formulas such that there exists a setting of the variable tomake the setting true. Karp [Ka] shows the NP-completeness of many famous combinatorial10
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� Work Tape � � �����>ZZZZ~����/cFigure 1-2: A Probabilistic Turing Machineproblems including traveling salesman and vertex cover. Many more results showing variousproblems NP-complete have since appeared.For a more in depth discussion of NP-completeness and a list of many of the major NP-complete problems see [GJ].We can de�ne other forms of completeness. For example we say a language L is log-spacecomplete for P if P contains L and every language in P has a log-space reduction to L.1.3.4 Probabilistic Turing MachinesSuppose we gave a deterministic Turing machine access to a coin (see �gure 1-2). Such amachine could 
ip the coin and examine di�erent possibilities based on whether the coincame up heads or tails. This machine would accept or reject depending on the outcome ofthe coin 
ips.Formally we de�ne a probabilistic Turing machine M by adding a special coin-
ip state.When M enters this state it next goes to either a heads state or a tails state, each withprobability one half. Each coin-
ip occurs independently of any other coin 
ip. We can thenanalyze the probability of M accepting on a certain input.A probabilistic Turing machine M accepts a language L if for all inputs x in L:1. If x 2 L then Pr(M accepts x) > 2=3.2. If x 62 L then Pr(M accepts x) < 1=3.There is nothing magical about 2=3 and 1=3. We can use any two constants strictlybetween 1=2 and 1 and strictly between 0 and 1=2 respectively without a�ecting the resultingcomplexity classes.A proper probabilistic machine M has one-sided error if for x 62 L, the probability thatM accepts x is zero, i.e. M does not accept x on any computation path.Note that some machines M might not accept any language; for some input x, the prob-ability that M accepts x lies between 1=3 and 2=3. We call these improper machines.The language L 2 BPTIME[f(n)] if there is a proper probabilistic machine for L thatruns in O(f(n)) steps. BPP = [k>0BPTIME[nk]. We use RTIME and R respectively for11
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� Work Tape � � �����>ZZZZ~ Oracle Tape � � �Figure 1-3: A Relativized Turing Machineone-sided error probabilistic machines. RTIME[f(n)] � NTIME[f(n)] because one can justguess the coin tosses. We use ZPTIME and ZPP for zero sided error, i.e. a language L hasZPTIME[f(n)] machine M if the probabilistic machine M always outputs the correct answerand runs in O(f(n)) expected steps. ZPTIME[f(n)] = RTIME[f(n)]\co-RTIME[f(n)].The class BPNP combines both nondeterministic and probabilistic computation. Thenondeterministic branches choose the path with the best probability of accepting and theprobabilistic branches choose each branch with equal probability. BPNP contains all thelanguages accepted by these machines using the same probabilities as probabilistic machines.1.3.5 Oracles and The Polynomial Time HierarchySometimes we would like a Turing machine to have additional information; to have a trust-worthy advisor to whom it can ask certain kinds of questions. We will often de�ne an oraclethat a Turing machine may use.An oracle A is a subset of ��. A relativized Turing machine is a machine with a specialoracle tape on which it writes a string x 2 �� (see �gure 1-3). The Turing machine thenenters an oracle query state that immediately goes to a special yes state if x 2 A and to ano state otherwise. In shorthand we say the machine makes an oracle query of x. We onlycharge the Turing machine the time it requires to write down the oracle query. We relativizenondeterministic and probabilistic Turing machines in similar ways.Equivalently, we can think of an oracle as its characteristic function A : �� ! f0; 1g whereA(x) = 1 i� x 2 A.We will use superscripts to represent access to an oracle. For example, MA represents arelativized Turing machine M with access to an oracle A. We can also relativize complexityclasses, i.e. the class NPA consists of all languages recognizable by some polynomial-timenondeterministic Turing machine with access to oracle A. Also we can relativize complexityclasses to other complexity classes: PNP = [A2NPPAWe relativize complexity classes de�ned with more than one machine, such as NP\co-NP, by12



allowing every machine access to the same oracle.If we relativize NP with NP oracles and then relativize this class with NP oracles andso on we get the polynomial-time hierarchy. Formally, we recursively de�ne the hierarchy asfollows: �0 = �0 = �0 = P�i+1 = NP�i�i+1 = co-�i+1�i+1 = P�iThe polynomial-time hierarchy, PH, consists of the union of �i for all i.Some basic facts about the hierarchy (see [St]):�1 = NP, �1 = co-NP, �1 = PP � �1 � �2 � � � � � PH � PSPACE�i � �i+1 � �i+1�i � �i+1 � �i+1None of the inclusions are known to be proper. We say the polynomial-time hierarchy collapsesif PH = �i for some i. Complexity theorists generally believe the hierarchy does not collapse.Often computer scientists write �Pi for �i to distinguish the polynomial-time hierarchyfrom the recursion theoretic arithmetic hierarchy. Throughout this thesis �i will refer to theith level of the polynomial-time hierarchy.Almost-P contains all the languages accepted by a polynomial-time machine with mostoracles. Formally, the class almost-P contains the language L if the set of all R such thatL 2 PR is measure one in the set of all possible R � ��. Often we say L is in P under arandom oracle. We can easily show Almost-P = BPP = Almost-BPP. Likewise we can de�neAlmost-NP or for any other complexity class.1.3.6 Circuits and Nonuniform ComputationInstead of computing via a machine, we can also compute via circuits. A circuit consists ofand, or and not gates as nodes of a directed graph with the input as the leaves (see �gure 1-4).The inputs take on binary values that propagates through the circuit in the obvious manner.The circuit accepts if the value of the root node is one. The size of the circuit equals thenumber of gates it contains. The depth of the circuit is the length of the longest path. Thefan-in of a gate g is the number of gates pointing to g.By using De Morgan's laws (the negation of (xi and xj) is equivalent to the or of thenegation of xi and the negation of xj) we can assume the not gates appear only directlyabove inputs without increasing the size or depth of the circuit by more than a constantfactor.A family of circuits C = fC1; C2; : : :g consists of a set of circuits where Cn has n inputs.Suppose x = x1x2 � � �xn has length n. Then x is accepted by C if Cn on x1; x2; : : : ; xn accepts.A family of circuits C accepts a language L if for all x of length n, Cn accepts exactly thosex in L.A family of circuits C has size f(n) if Cn has size at most f(n) for all n. Similarly we cande�ne depth functions. 13
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Figure 1-4: A CircuitThere need not be any relationship between the circuits belonging to the same familybesides any size and depth restrictions. Often we refer to such circuit families as nonuniformcircuits.We relativize a circuit by having a special oracle gate that takes as input a query to theoracle and returns true if that string is in the oracle.Sometimes we let Turing machines have access to advice, a small amount of additionalinformation depending only on the input size. Formally, polynomial advice consists of alist of strings a1; a2; : : : such that janj is bounded by a polynomial in n. A language Lis accepted by a polynomial-time Turing machine with polynomial advice if there exists apolynomial-time Turing machine M and polynomial advice such that i� x 2 L then Maccepts (x; ajxj). The class P/poly or nonuniform polynomial time consists of all languagesaccepted in polynomial time with polynomial advice. This class consists of exactly thoselanguages accepted by polynomial size circuits. Likewise we can de�ne NP/poly (nonuniformnondeterministic polynomial time), BPP/log and so on.Bennet and Gill [BG] have shown all languages in BPP have polynomial size circuits.Sometimes we require uniformity conditions on our circuits. A circuit family C is log-spaceuniform if there exists a log-space Turing machine that outputs Ci on input 1i. The set oflanguages accepted by polynomial size log-space uniform circuits consists of exactly thoselanguages in P.1.3.7 Interactive Proof SystemsAn interactive proof system consists of two players, an in�nitely powerful prover and a prob-abilistic polynomial-time veri�er. The prover will try to convince the veri�er of the validityof some statement. However, the veri�er does not trust the prover and will only accept if theprover manages to convince the veri�er of the validity of the statement.Formally, an interactive proof system consists of two controls, P, the prover and V, the14
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� Work Tape � � �����>ZZZZ~����/c VJJJJJ]� � �Work Tape����/c ����= ZZZZ}Communication Tape@@@@@@R ������	Figure 1-5: An Interactive Proof Systemveri�er (see �gure 1-5). Both the prover and the veri�er have access to a common readonly input tape and a read/write communication tape. Individually, the prover and veri�erhave access each to a private coin and a private work tape. The veri�er works just as aprobabilistic Turing machine. Usually we will restrict the veri�er to a polynomial number ofsteps in the length of the input. However, the prover may compute arbitrary functions of thecoin and the contents of the input, work and communication tapes. We put no restrictionson the complexity of this function. Informally we say P has probabilistic in�nite power. Theproof system accepts if the veri�er enters an accepting state. As in the case of probabilisticTuring machines, we are interested in the probability of the veri�er accepting.Communication proceeds by the veri�er sending a message to the prover on the commu-nication tape. The size of the messages is limited only in the polynomial time the veri�er hasto compute. The prover then sends a message to the veri�er likewise limited in polynomialsize since the veri�er has only polynomial time to read it. The prover and veri�er may repeatthis process a polynomial number of times until the veri�er decides whether or not to accept.An interactive proof system consists of a prover veri�er pair P$V . P and V form aninteractive protocol for a language L if:1. If x 2 L then Pr(P$V (x) accepts) � 232. If x 62 L then for all P �;Pr(P �$V (x) accepts) � 13A round of an interactive protocol is a message from the veri�er to the prover followed bya message from the prover to the veri�er. We let IP(f(n)) represent the languages acceptedby interactive proof systems bounded by f(n) rounds. AM is the class of languages acceptedby interactive protocols with a �xed constant bound on the number of rounds. Babai [B, BM]shows that one round su�ces for AM, i.e. AM = IP(1) = IP(c) for any constant c. If we haveone round with Merlin (the prover) sending his message before the veri�er 
ips any coins wehave the class MA. Babai also shows MA � AM.15



A public-coin interactive proof system allows the prover access to the veri�er's coin. Equiv-alently, we require the veri�er's messages to consist of exactly the veri�er's coin tosses sincethe previous round. Goldwasser and Sipser [GS] show the class of languages accepted by thestandard interactive proof system is the same as the class of languages accepted by a publiccoin interactive proof system. This holds for any f(n) bound on the number of rounds.Messages in a k round conversation will be described by�1; �1; �2; : : : ; �k; �kwhere the �i are messages from the prover to the veri�er at round i and the �i are messagesfrom the veri�er to the prover.r will be used for the random coin tosses of the veri�er.An interactive proof system runs an interactive protocol describing how to perform thecomputation and communication. The notation for describing protocols follows:P : These are computations performed by the prover unseen by the veri�er. The proverhas probabilistic in�nite time to make these computations.P!V : This is a message from the prover to the veri�er.V : These are computations performed by the veri�er unseen by the prover. Thesecomputations must be performed in probabilistic polynomial time.V!P : This is a message from the veri�er to the prover.Once a protocol has completed, we may wish to execute the protocol again to decreasethe amount of error. Each execution should run completely independently. Running aninteractive protocol m times in series means repeating this process for a total of m times.Running the protocol m times in parallel means the veri�er sends the �rst message for all mprotocols followed by the prover's responses for all m protocols et cetera.1.4 RelativizationSince the beginning of complexity theory, computer scientists have used techniques fromrecursion theory to solve computational complexity questions. Often these techniques havebeen successful; most of the early work in complexity theory has been proven solely usingrecursion theoretic techniques. However we now know such techniques have limitations. Weuse oracles to show recursion theoretic techniques can not settle certain complexity questions.A complexity statement, such as \NP � PSPACE", is true under an oracle A if thestatement is true when all the complexity classes are relativized to the oracle A. We say NPA� PSPACEA to mean NP � PSPACE is true under the oracle A.When we use recursion theoretic techniques to prove a statement true, the proof will workeven if all the machines involved have access to the same oracle. For example, we can prove L6= PSPACE using diagonalization, i.e. we create a language in PSPACE de�ned to be di�erentthan each possible log-space machine. This proof works even if we allow PSPACE machineand the log-space machines access to any oracle. Thus L 6= PSPACE is true under any oracleA. All results mentioned in this thesis are true under all oracles unless mentioned otherwise.We say a technique relativizes if its application is independent of any oracle access.16



Suppose we show a complexity statement is true under a certain oracle B. If we couldprove the statement false using recursion theoretic methods then the statement would be falseunder all oracles. This contradiction tells us recursion theoretic techniques will not work toprove the statement false. If we can �nd two oracles A and B such that the statement is trueunder oracle A and false under oracle B then recursion theoretic techniques will not workto settle the statement true or false. We will need other techniques, techniques that do notrelativize, to settle this statement. Most complexity statements relativized both true andfalse have remained unsettled by any techniques.In 1975, Baker, Gill and Solovay [BGS] had the �rst use of oracles to show the famous P= NP? question likely has a hard solution. They have found oracles A and B such that PA =NPA and PB 6= NPB . Thus techniques that relativize will not settle the P = NP? question.They also show the existence of oracles C, D, E and F such that:NPC 6= co-NPCPD 6= NPD = co-NPDPE 6= NPE and PE = NPE\co-NPEPF 6= NPF\co-NPF and NPF 6= co-NPFBaker, Gill and Solovay left open some questions about the polynomial-time hierarchythat remained unsolved for over a decade. In 1985, Yao [Y] showed an oracle A such that thepolynomial-time hierarchy did not collapse under A, i.e. �Ai 6= �Ai+1 for all i. In 1988, Ko[Ko] found a series of oracles A1; A2; : : : such that for each i, the polynomial-time hierarchycollapsed to the ith level under oracle Ai, i.e. �Aii�1 6= �Aii = �Aii+1 = PHAi .Racko� [R] shows some relativized results about probabilistic complexity classes. Racko�found oracles A and B such that PA = RA 6= NPA and PB 6= RB = NPB. For example, wecould not easily prove P 6= R even if we assume P 6= NP.This section gives just a small sample of the many oracle results proven over the last �fteenyears. Via oracle results, we can learn what we will have di�culty proving; particularly whichtechniques will not work. This thesis will have several examples of relativized results to showwhich questions of interactive proof systems may be hard to resolve.1.5 Basic ResultsWe have come a long way in understand the complexity of interactive proof systems sinceGoldwasser, Micali and Racko� [GMR] developed them in 1985. This section will give areview of important complexity results not covered in this thesis.In 1986, Goldwasser and Sipser [GS] showed private-coin interactive proof systems andpublic-coin interactive proof systems accepted exactly the same class of languages. In factthe class of languages accepted f(n)-round private-coin interactive proof systems containsexactly the same languages accepted by f(n)-round public-coin interactive proof systems.At the same time as interactive proof systems Babai [B] invented his Arthur-Merlin gamessimilar to interactive proof systems but using public coins for the veri�er instead of privatecoins. Goldwasser and Sipser show the equivalence between these two models.Babai [B, BM] showed a one-round proof system can accept all the languages of anyconstant-round proof system. More generally, he shows IP(cf(n)) = IP(f(n)) for any constantc. In other words we can reduce the number of rounds of an interactive protocol by any17



constant factor. We can not easily improve this result because Aiello, Goldwasser and Hastadshow, for any functions f(n) and g(n) with f(n) = o(g(n)), the existence of an oracle A suchthat IP(f(n)) 6= IP(g(n)). In particular they exhibit an oracle that separates AM from IP.Babai also showed MA � AM, though Zachos [Z] also proved the same result using hisgeneralized quanti�er swapping techniques. Santha [Sa] exhibits an oracle that separates MAfrom AM.Babai and Moran [BM] show how to decrease the error probability without increasingthe number of rounds by running the protocol several times in parallel. If x 2 L then wecan make the probability of acceptance at least 1 � 2�p(n) and for x 62 L we can make theprobability of acceptance at most 2�p(n) for any polynomial p(n).Goldreich, Mansour and Sipser [GMS] show any language that has a f(n)-round interactiveprotocol has a f(n) + 1-round interactive protocol such that if x 2 L then the veri�er alwaysaccepts. Note that this is opposite to the notion of one-sided error used to de�ne the classR. Goldreich, Mansour and Sipser also show only NP languages have interactive proofs suchthat the veri�er always rejects if x 62 L.How do the interactive proof classes compare to the polynomial-time hierarchy? Sipser andG�acs [Si] showed that BPP � �2\�2. An elegant proof of this fact by Lautemann [La] easilygeneralizes to show MA � �2 \ �2 and AM � �2 [BM]. Santha's oracle [Sa] actually showsa language in AM but not in �2 under that oracle. Feldman [Fe] shows PSPACE containsIP though the oracle created by Aiello, Goldwasser and Hastad [AGH] puts IP outside of thepolynomial-time hierarchy.Fortnow and Sipser [FS1] exhibit an oracle such that IP does not contain co-NP. Ageneralized version of this proof appears in section 4.4. Boppana, Hastad and Zachos [BHZ]show that if AM contains co-NP then the polynomial hierarchy collapses to �2.Nisan and Wigderson [NW] show the equivalence between AM and almost-NP. Goldwasserand Sipser [GS] note the equivalence of IP and BPNP and that nonuniform NP contains allof AM.1.6 An Example: Graph NonisomorphismTo help in the understanding of interactive proof systems, we will now examine in detail aninteractive protocol for graph nonisomorphism developed by Goldreich, Micali and Wigderson[GMW1].An undirected graph G = (V;E) consists of a set of vertices V = fv1; v2; : : :g and a setof edges E of unordered pairs of vertices. Let � be a permutation of the �rst n integers. Wede�ne �(G) as the graph obtained by applying the permutation � to the graph G, i.e. theedges of �(G) consist of all edges (�(u); �(v)) such that (u; v) are edges of G.The two graphs G1 and G2 are isomorphic if there exists a permutation � such thatG1 = �(G2). Let GI be the language consisting of pairs of graphs (G1; G2) such that G1and G2 are isomorphic. A nondeterministic polynomial-time machine can determine whetherthere exists an isomorphism between G1 and G2 by guessing a permutation � and verifyingthat G1 = �(G2). Let GNI consist of the pairs of nonisomorphic graphs.Since GI 2 NP then GI has a trivial interactive protocol by the prover sending to theveri�er the permutation �. GI is not known to be in P or NP-complete. GNI is not knownto be in NP; however we will exhibit an interactive protocol for graph nonisomorphism.18



Let G1 and G2 be two graphs each with n vertices. We create a prover, P , and a veri�er,V to run the following protocol:V : Pick a permutation � at random and pick i 2 f1; 2g also at random. ComputeG = �(Gi).V!P : GP!V : jV : Accept if j = i.Suppose G1 and G2 were not isomorphic. Then �(G1) could only be isomorphic to G1and not G2 and vice versa. An in�nitely powerful prover could identify which graph wasisomorphic to G and correctly respond with a j such that j = i.Now suppose G1 was isomorphic to G2. Then G will be isomorphic to both G1 and G2.Despite its in�nite power, any prover just will not have enough information to determine thegraph is isomorphic to G.If the language GNI contains (G1; G2) then the protocol will cause the veri�er to acceptwith probability one. If however the graphs are isomorphic the protocol accepts with proba-bility at most one half. Unfortunately we require in the de�nition of interactive proof systemsthat the proof system accept with probability at most one third for strings (G1; G2) not inthe language GNI.We solve this problem by running the protocol two times in series and having the veri�eraccept if both times the prover correctly determined the original graph. For nonisomorphicgraphs the probability of acceptance remains at one but for isomorphic graphs the prover cancorrectly guess the original graph both times with probability at most one fourth. Thus wenow have a three-round interactive protocol for graph nonisomorphism.Goldwasser and Sipser [GS] show us how to convert this interactive protocol into a publiccoin protocol; a surprising result because the protocol above depends on the veri�er keepingthe choice of i a secret. Since we have a bounded-round protocol, Babai [B, BM] shows ushow to convert this protocol into a two round AM protocol where the veri�er sends randompublic coins followed by the prover's response. Thus GNI � almost-NP and GNI � NP/polythough graph nonisomorphism is not known to be in NP or BPP. If GI was NP-completethen the polynomial-time hierarchy would collapse to �2.We will return to graph isomorphism in section 2.5.2.
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Chapter 2Perfect Zero-Knowledge2.1 A Cryptographic Side of Interactive Proof SystemsWhen Goldwasser, Micali and Racko� [GMR] developed interactive proof systems, they con-currently developed zero-knowledge, a restriction of interactive proof systems requiring theveri�er not learn any additional knowledge useful to him as a polynomial-time machine. Gol-dreich, Micali and Wigderson [GMW1] show if one way functions exist then all languagesin NP have zero-knowledge proofs. However, their proof relies on the fact that the veri�erhas limited power and is unable to invert these one-way functions. Perfect zero-knowledge(PZK), a stronger restriction, requires the veri�er not learn any additional information nomatter how powerful he may be. There are several languages not known to be in BPP orNP\co-NP, such as graph isomorphism [GMW1], which have perfect zero-knowledge proofsystems.Our main theorem shows for any language that has a perfect zero-knowledge proof sys-tem, its complement has a single-round interactive proof system. Thus PZK � co-AM, thecomplement of languages accepted by one-round interactive proof systems. Our result holdsin the weaker case where we only require the veri�er following the protocol will not learn anyadditional information.Combining our main theorem with a result of Boppana, Hastad and Zachos [BHZ], weshow NP-complete languages do not have perfect zero-knowledge proof systems unless thepolynomial-time hierarchy collapses to the second level. Thus it is unlikely that the result ofGoldreich, Micali and Wigderson will extend to perfect zero-knowledge.2.2 Notation and De�nitionsLet P$V represent an interactive protocol between a prover P and a veri�er V . The veri�er'sview of the conversation consists of all the messages between P and V and the random cointosses of V .Let M be a simulator for a view of the conversation between P and V . The simulator Mis a probabilistic polynomial-time machine that will output a conversation between P and Vincluding the random coin tosses r of V . Thus each run of M will produce:r; �1; �1; �2; : : : ; �k; �k20



where the �i are messages from the prover to the veri�er at round i and the �i are messagesfrom the veri�er to the prover.Let P$V [x] denote the probability distribution of views of conversations between P andV . Let M [x] denote the distribution of views of conversations created by running M on x.Let A[x] and B[x] be two distributions of strings. The distributions A[x] and B[x] arestatistically close if for any subset of strings S,������Xy2S PrA[x](y)�Xy2S PrB[x](y)������ < 1q(jxj)for all polynomials q with jxj large enough. Let J be a probabilistic polynomial-time machinethat outputs either 0 or 1. The distributions A[x] and B[x] are polynomial-time indistinguish-able if for any J , jPr(J(A[x]) = 1)� Pr(J(B[x]) = 1)j < 1r(jxj)for all polynomials r with jxj large enough. Let J(A[x]) be the output of J when run on astring chosen from the probability distribution A[x]. Note if A[x] and B[x] are statisticallyclose then they are polynomial-time indistinguishable.P$V is (computational) Zero-Knowledge (ZK) if for any veri�er V � there is a MV � suchthat for all x in L, P$V �[x] and MV � [x] are polynomial-time indistinguishable. We usezero-knowledge throughout this thesis to refer to computational zero-knowledge.P$V is Perfect Zero-Knowledge (PZK) if for any veri�er V � there is a MV � such that forall x in L, P$V �[x] = MV � [x].P$V is Statistical Zero-Knowledge (SZK) if for any veri�er V � there is a MV � such thatfor all x in L, P$V �[x] and MV � [x] are statistically close.Goldwasser, Micali and Racko� [GMR] introduced zero-knowledge as well as interactiveproof systems in 1985.Note ZK � SZK � PZK. The inclusions are not known to be proper but the main resultof this chapter gives good evidence that ZK 6= SZK.The results in this chapter only require a weaker version of zero-knowledge: a simulatoronly need exist for the given P and V and not necessarily for any V �. For the rest of thischapter we will assume this weaker model and use M for MV , the simulator for P and V .2.3 Related ResultsGoldreich, Micali and Wigderson [GMW1] show every language in NP has a zero-knowledgeinteractive proof system if a one-way function exists. This result does not relativize; thereexists an oracle such that one way functions exist but NP does not have zero-knowledgeproofs. The proof of Goldreich, Micali and Wigderson works by exhibiting a zero-knowledgeproof for a certain NP-complete problem instead of for general nondeterministic machinesand thus the proof does not relativize.Our result shows for any language L with an statistical zero-knowledge proof system, thereexists a bounded-round interactive proof system for its complement L. We can then applyseveral earlier results about bounded-round interactive proof systems described in section 1.5.21



Subsequent to our result, Aiello and Hastad [AH] have shown, using similar techniques,a bounded-round interactive proof system can simulate any statistical zero-knowledge proofsystem. This nice complement to our result combines with our result to show nonuniformNP\co-NP contains any language with a perfect zero-knowledge proof system.Brassard and Cr�epeau [BC] have shown perfect zero-knowledge for SAT using a di�erentmodel for interactive proof systems where the prover is a polynomial-time machine that knowsa satisfying assignment. Our result about perfect zero-knowledge relies on the ability of theprover to have in�nite power and does not apply to Brassard and Cr�epeau's model.2.4 Showing Sets are Large and SmallIn this chapter, we will need protocols to show sets are large and small. We create bothprotocols using Carter-Wegman Universal Hash Functions [CW].Suppose S � �N � f0Ng. For F a random binary b � N matrix, let f : �N ! �b bethe function de�ned by f(x) = Fx using regular matrix multiplication modulo two. We canthink of f in terms of linear algebra over the �eld of two elements. The distribution of fforms the uniform distribution over all possible linear functions from n-dimensional space tob-dimensional space. Let fS be the function f restricted to the domain S.If jSj � 2b then fS is likely to be onto most of �b and most elements of �b will have manypreimages.If jSj � 2b then the range of fS is a small subset of �b and most elements of fS(S) willhave only one inverse in S.Lemma 2.1 (Vector Independence) Suppose x1; x2; : : : ; xk 2 �N are linearly indepen-dent vectors over the �eld of two elements. Then f(x1); f(x2); : : : ; f(xk) are independentlyand uniformly distributed over �b.Proof Since x1; x2; : : : ; xk are linearly independent, we can extend to a basis. Let T be thetransformation matrix from this new basis to the canonical basis of �N . Then the matrixB = FT describes the function from the new basis to the canonical basis of �b. Since Tis an invertible matrix, there is a one-to-one correspondence between B and F . Thus B isdistributed uniformly over all possible binary b � N matrices. The vector f(xj) is just thejth column of B. Thus each f(xj) is independently distributed over �b. 22.4.1 Lower Bound ProtocolGoldwasser and Sipser [GS] developed the following protocol to show S is large for S recog-nizable in polynomial time:V : Pick ` independent random hash functions f1; : : : ; f` : �N ! �b and `2 pointsz1; : : : ; z`2 2 �bV!P : f1; : : : ; f`; z1; : : : ; z`2P!V : xV : Accept if x 2 S and fi(x) = zj for some i; j, 1 � i � ` and 1 � j � `222



If S is much smaller than 2b then there will probably be no x such that fi(x) = zj .However if S is large then there will probably be many x ful�lling fi(x) = zj and a in�nitelypowerful prover will have no trouble exhibiting such an x that V can verify in polynomialtime.Lemma 2.2 (Lower Bound) [GS] Using the above protocol with a given N; b; d > 0 and` > maxfb; 8g1. If jSj � 2b then Pr(P$V accepts) � 1� 2� 8̀2. If jSj � 2bd then Pr(P �$V accepts) � `3d for any P �2.4.2 Upper Bound ProtocolIf V has a random element s in S completely unknown to P then we can use the followingprotocol to show S is small:V : Pick a random N � b matrix FV!P : F; f(s) = FsP!V : sFor small S, it is unlikely more than one element of S will map to f(s) and P can determines. For large S, probably many s will map to f(s) and P can not determine which element ofS the veri�er had.Lemma 2.3 (Upper Bound) Using the above protocol with a given N; b > 0 and d > 21. If jSj � 2bd then Pr(P$V accepts) � 1� 1d2. If jSj > 8d2b then Pr(P �$V accepts) � 1d for any P �Proof Let A be the random variable equal to the number of x 6= s in S such that f(x) = f(s).Let S 0 = S � fsg. Let Ax be the indicator random variable equal to one if f(x) = f(s), zerootherwise. Then E(A) = E(Xx2S0Ax) = Xx2S0E(Ax) = Xx2S0 2�b = jSj � 12bIf jSj � 2bd then E(A) � 1d . If f(s) has only s as an inverse in jSj then P with his in�nitepower will be able to determine s. Thus Pr(P$V rejects) � Pr(A � 1) � E(A) � 1d since Ais an integral random variable.Suppose jSj > 8d2b. We can assume jSj = 8d2b + 1 without increasing the probability ofacceptance. Then E(A) = 8d. Since P � has no idea what s the veri�er V has, P � can onlyhave a 1A+1 probability of predicting the s that V has. We will show with a large probabilityA is large using the variance of A.Given x; y; s all distinct and y 6= x � s then x, y and z are linearly independent. Thenby the Vector Independence Lemma f(x), f(y) and f(s) are independently distributed over23



�b. It then follows that Ax and Ay are independent random variables and their covariance iszero.The covariance of any two indicator random variables is never greater then the expectedvalue of one of them. Then VAR(A) =Xx;y2S0 COV (Ax; Ay) = Xx2S0(COV (Ax; Ax) + COV (Ax; Ax�s)) � Xx2S0 2E(Ax) � 16dPossibly x� s 62 S which could only decrease the variance. Using Chebyshev's inequality weget: Pr(A < 2d) � Pr(jA� 8dj � 6d) � V AR(A)36d2 � 16d36d2 � 12dSo with probability at most 12d , the prover P � can determine s easily because A is smallenough; otherwise P � has at most 12d chance of guessing s, so in total P � has at most a 1dchance of determining s. 22.4.3 Comparison ProtocolSuppose we had two sets S1;S2 � �N and wanted to show jS1j � jS2j. If S1 is polynomial-time testable and V has a random element s2 of S2 then we can use the following protocol toshow jS1j � jS2j:P!V : b0 � NP!V : Use lower-bound protocol on S1 with b = b0; ` = 8nNP!V : Use upper-bound protocol on S2 with b = b0 � 3n; s = s2V : Accept if both the upper and lower bound protocols acceptLemma 2.4 (Comparison) Using the above protocol1. If jS1j � 24n+1jS2j then Pr(P$V accepts) � 1� 21�n2. If jS1j � 2n�4jS2j then Pr(P �$V accepts) � n3N329�n for any P �Proof Let d = 2n.1. Pick b0 = blog jS1jc. Then each protocol accepts with probability � 1 � 2�n, so bothwill accept with probability � 1� 21�n by the upper and lower bound lemmas.2. There are two cases depending on what b0 the prover P chooses(a) If b0 � dlog jS1je�n then by the lower bound lemma the probability of V acceptingis � n3N329�n(b) If b0 < dlog jS1je+n then by the hypothesis b0� 3n < blog jS2jc� n� 3 and by theupper-bound lemma the probability of V accepting is � 2�n. 2Using Carter-Wegman Hashing to show a set is large was introduced by Sipser [Si] andused extensively in [Si, B, GS]. To the author's knowledge this is the �rst use of an interactiveprotocol to show a set is small. 24



2.5 Main TheoremWe will start with a simple version of the theorem:Theorem 2.5 For any language L with a perfect zero-knowledge interactive proof systemthere exists an interactive proof system accepting L.2.5.1 Structure of ProofWe are given a prover and veri�er (P and V ) for the language L, and a simulator M thatproduces views of conversations between P and V and the random coin tosses of V . A prob-abilistic polynomial-time machine can simulate the computation of V checking, for example,whether or not V accepts. On x 2 L, M produces a view of a conversation from exactlythe same probability distribution as when P and V run on x. However, the de�nition ofperfect zero-knowledge has no requirements on the simulator in the case when x 62 L; threepossibilities arise:1. M will produce \garbage", something clearly not a randomly selected member of P$V [x].2. M will produce views of conversations that cause V to reject most of the time.3. M will produce a simulation that looks valid and causes V to accept. It may not bepossible in polynomial time to di�erentiate this view from one created by P and Vwhen x 2 L. However, M must produce views of conversations from a distributionquite di�erent from the distribution of views between P and V , since in the real viewsV will probably reject.We will create a new prover and veri�er, P 0 and V 0, to determine if one of these three casesoccur. The veri�er V 0 will simulate M and get a view of a conversation between P and V aswell as r, the random coin tosses of V . The veri�er V 0 will check the validity of this view andthat V accepts. If the view fails this test then it fails in cases 1 or 2 so V 0 accepts knowingx 62 L. Otherwise V 0 will send to P 0 some initial segment of the conversation. The prover P 0will then convince V 0 that the conversation came from a bad distribution by \predicting" rbetter than P 0 could have done from a good distribution.2.5.2 An Example: Graph IsomorphismIn section 1.6, we discussed graph isomorphism and showed an interactive protocol for graphnonisomorphism. In this section, we will present a perfect zero-knowledge protocol for graphisomorphism developed by Goldreich, Micali and Wigderson [GMW1] and show how ourtheorem converts this zero-knowledge protocol to an interactive protocol for graph noniso-morphism. The protocol we develop will be virtually identical to the protocol for graphnonisomorphism in [GMW1] and discussed in section 1.6; our proof, however, shows thesimilarity between the two protocols is not coincidental.Recall two graphs G1 and G2 are isomorphic if there exists a permutation � such thatG2 = �(G1). A perfect zero-knowledge protocol for graph isomorphism suggested by [GMW1]works as follows: 25



P : Generate random permutation � and computes G = �(G1)P!V : GV!P : i = 1 or 2 chosen at randomP!V : �0 chosen at random such that �0(Gi) = GIf G1 �= G2 then G will be a permutation of both G1 and G2 and P will always be able to�nd a �0. If G1 6�= G2 then G cannot be a permutation of both G1 and G2, so at least half ofthe time V will choose an i such that no �0 exists.Thus we have an interactive protocol for graph isomorphism. This protocol also is perfectzero-knowledge. The simulator M works as follows:M generates � and i at random and computes G = �(Gi), then outputs the followingview of a conversation:r: iP!V : GV!P : iP!V : �It is easy to verify when G1 �= G2, M produces exactly the same distribution of views ofconversations as P and V . Notice what happens when G1 6�= G2. The output of M alwayscauses V to accept. Thus when G1 6�= G2, M must produce views of conversations from avery di�erent distribution from what P and V produce. In fact whenever G1 6�= G2, one canalways predict r = i from the G produced by M .This leads to a new interactive protocol between a new prover and veri�er, P 0 and V 0, forgraph nonisomorphism as follows:V 0: Generate � and i at random and compute G = �(Gi)V 0!P 0: GP 0!V 0: jV 0: Accept if j = i2.5.3 The ProtocolWe have a prover and veri�er, P and V for a language L and a simulator M such that Mexactly simulates views of conversations between P and V for x in L. Let n = jxj and let kbe the number of rounds of the protocol (bounded by a polynomial in n). We can decreasethe probability of error in the protocol between P and V to 2�p(n) for any polynomial p(n)by the standard trick of running the protocol several times in parallel and having V acceptif the majority of individual protocols accept [BM]. This new protocol is still perfect zero-knowledge|we just run the simulator in parallel. Note we make use of the fact that weonly need a simulator for the real veri�er V . In general, it is not known whether perfectzero-knowledge protocols remain perfect zero-knowledge when run in parallel.Thus we can assume: 26



1. If x 2 L then Pr(P$V (x) accepts) � 1� 2�6kn2. If x 62 L then for all P �, Pr(P �$V (x) accepts) � 2�6knFor the sake of the comparison protocol, we require V immediately reject if all its coin tossesare zero. Since this will happen with an exponentially small probability it will not a�ectthe correctness of the protocol. The protocol remains perfect zero-knowledge by having thesimulator output no conversation if the veri�er's coins are all zero.A protocol between a new prover and veri�er, P 0 and V 0, works as follows:V 0: Run M and get r; �1; �1; : : : ; �k; �k. The veri�er V 0 now checks:1. the validity of the conversation, i.e. r; �1; : : : ; �k will cause V to say �1; : : : ; �k.2. the conversation causes V to accept.If either of these tests fail then V 0 can be very sure that x 62 L so V 0 quits now andaccepts. Otherwise V 0 continues.Let j = 1.V 0!P 0: �j ; �jP 0!V 0: Look at the sets R1 and R2 as de�ned below. If jR1j � 24n+1jR2j then use thecomparison protocol described in section 2.4.3 to show jR1j � jR2j. Otherwise letj = j + 1. If j � k tell V 0 to TRY NEXT ROUND, otherwise GIVE UP.The set R1 can be thought of as all the possible random strings of V after round j of theprotocol. The set R2 consists of the possible random strings of V generated by M . Moreformally:Let R be the set of all possible coin tosses of V .Let R1 = fR 2 R j R and �1; : : : ; �j�1 cause V to say �1; : : : ; �jg.Let R2 = fR 2 R j M can output R; �1; �1; : : : ; �j; �j part of a valid, acceptingconversationgNote R2 � R1 and if x 2 L then R2 � R1. Also note R1 is independent of �j .We can test containment of an element in R1 in polynomial time and if x 2 L then Mproduces the exact distribution between P and V and thus r is a random element of R2 whichP 0 does not know ful�lling the requirements of the comparison protocol. If x 62 L possiblyr is not a random element of R2 which can only increase the probability of the comparisonprotocol accepting.2.5.4 Proof of the Protocol's CorrectnessTo show the protocol of section 2.5.3 forms an interactive protocol for L, we must show:1. If x 2 L then P 0$V 0(x) accepts with probability � 232. If x 62 L then for all P̂ , P̂$V 0(x) accepts with probability � 1327



1. Suppose to the contrary x 62 L and the protocol fails to accept. If jR1j < 24n+1jR2jthen by the comparison lemma the comparison protocol will fail with an exponentially smallprobability. So jR1j � 24n+1jR2j at all rounds j with probability at least one fourth. We willderive a contradiction by demonstrating P$V is not an interactive proof system for L bypresenting a prover P � which will convince V (the original veri�er) x 2 L with probabilitygreater than 2�6kn.At round j suppose the conversation so far has been �01; �01; : : : ; �0j. P � works as follows:P �: Run M which outputs r; �1; �1; : : : ; �k; �k. Check this is a valid accepting conver-sation. If not, try again. See if �1; �1; : : : ; �j = �01; �01; : : : ; �0j . If not, try again.P �!V : �jIf x 2 L then the prover P � will eventually succeed at each round because M mustgenerate every possible conversation with some positive probability.At round j when P � has a conversation from M matching the conversation so far, R1 isthe set of possible random coin tosses of V . When P � says �j , R2 is the set of coin tossesof V that will still keep V heading towards an accepting path. Since jR2j � 25n+1jR1j, thiswill happen with probability � 2�(5n+1). So after k rounds, V will end up accepting with aprobability at least 142�(5kn+k) which is higher than the 2�6kn maximum accepting probabilitywe assumed for V and any P � when x 62 L.Note P � may require exponential expected time to complete its part of the protocol butin our model we allow an in�nitely powerful P �.2. Suppose x 2 L. The simulator M will produce views of conversations from exactly thesame distribution as P and V . Thus every conversation produced byM will be valid. Assumea prover P̂ can convince V 0 to accept with probability � 13 . The veri�er V will reject in thisconversation with an exponentially small probability causing V 0 to accept. If jR1j � 2n�4jR2jon any round then the comparison protocol will accept also with an exponentially smallprobability. Thus we can assume with probability > 14 that jR1j > 2n�4jR2j for some roundj. Since M outputs all possible conversations, R2 is just the random coin tosses of V whichmight cause V to accept in the future. So at round j of the protocol, V accepts with probabilityless than jR2jjR1j � 24�n. Since this happens at least a fourth of the time in general V acceptswith probability at most 34+24�n contradicting the fact V will accept with probability greaterthan 1� 2�6kn. 22.6 Extensions and CorollariesTheorem 2.6 Suppose P$V is an interactive proof system for a language L and there isa probabilistic polynomial-time simulator M such that M [x] is statistically close to P$V [x].Then there is a single-round interactive proof system for the complement of L.Idea of Proof This extends the main theorem in two ways. First, we do not requireM [x] = P$V [x], just they be statistically close. One can check the proof in the previoussection and notice, with some minor adjustments to the probabilities, statistically close isgood enough. 28



Second, we would like to get a single-round proof system for the complement of L. Noticein the protocol in section 2.5.3 the number of rounds depends on when P 0 decides to saySTOP. To get bounded rounds we must make the following change to the protocol:V 0: Run M k3 times independently and get k3 views of conversations; check eachconversation is valid and accepting.V 0!P 0: For each i, 1 � i � k3, send the �rst i mod k rounds of the ith conversation.P 0!V 0: Pick any conversation j and show jR1j � jR2j for the view of this conversation.The proof still works because the new protocol essentially tries all rounds in parallel. Oncewe have bounded rounds we apply the theorems of [B, GS] that imply single-round protocolscan simulate any bounded-round protocol.Some trivial corollaries that follow from results described in sections 1.5 and 2.3:Corollary 2.7 If L has an statistical zero-knowledge interactive proof system (possibly withan unbounded number of rounds) then1. the complement of L has a one-round interactive proof system.2. L is contained in the intersection of almost-NP and almost-co-NP.Corollary 2.8 If any NP-complete language has an statistical zero-knowledge interactiveproof system then the polynomial-time hierarchy collapses to the second level.Corollary 2.9 If one-way functions exist and the polynomial-time hierarchy does not collapsethen NP � ZK; but NP 6� SZK, so ZK 6= SZK.2.7 Further ResearchThere are several interesting problems remaining concerning perfect zero-knowledge, includ-ing:� What is the relationship between PZK and SZK?� Are complement of perfect or statistical zero-knowledge languages themselves perfectzero-knowledge in any sense?� Do we need cryptographic assumptions to show NP has zero-knowledge proof systems?Although this chapter shows NP probably does not have perfect zero-knowledge proofsystems; possibly we need only assume the intractability of SAT for a zero-knowledgeproof system. 29



Chapter 3Logarithmic-Space Veri�ers3.1 Reducing the Power of the Veri�erOften in complexity theory, as in real life, we would like our computers to require small workspace as well as a short amount of time. In this chapter, we look at the complexity of veri�ersnot only restricted in polynomial time but logarithmic space.Condon and Ladner [CL] �rst looked at these space bounded proof systems in 1986. In1987, Condon [Co1, Co2] described properties of these models with di�erent results for publicand private coins in contrast to the Goldwasser and Sipser result [GS].We will concentrate on one model with the veri�er restricted to public coins, polynomialtime and logarithmic space. We show the equivalence of this model to adding both nondeter-ministic and probabilistic computation to logarithmic space bounded Turing machines.3.2 Log Space Veri�ers and BPNLWe de�ne an interactive protocol with a log-space veri�er as an interactive protocol with thefollowing complexity for the veri�er V :1. V uses at most O(logn) space.2. V runs in polynomial time.3. V uses only public coins.The class IPL contains all the languages accepted by these models using the same proba-bilities as for the standard model described in section 1.3.7.The last two restrictions on V prevent the model from becoming too powerful. If we allowV unrestricted time with public coins this model accepts exactly the class P [Co1]. AnneCondon and John Rompel independently have shown if we allow V to use private coins thenthis model accepts the same languages as standard interactive proof systems.Analogous to BPNP, we can de�ne a probabilistic nondeterministic version of logarithmicspace. We de�ne the class of languages accepted by bounded-error probabilistic nondetermin-istic polynomial-time log-space machines as BPNL and we can show the following relationshipbetween this model and interactive proof systems with log-space veri�ers.30



Theorem 3.1 The classes IPL and BPNL contain the same set of languages.Proof1. Suppose a language L has a BPNL machine M . We create a veri�er that simulates Mand when M makes a nondeterministic choice we defer that choice to the prover. Onany input x, the probability of acceptance of this protocol is the same as the probabilityof acceptance of M since playing optimally, the prover chooses to send the message thatleads to the highest probability of acceptance for V .2. Suppose a language L has a IPL proof system with veri�er V . We create M that simu-lates V but uses nondeterminism to guess the prover's responses. Again the probabilitiesof acceptance are identical. 2For the rest of this chapter we will use BPNL to refer to this class of languages.3.3 A Circuit Model for BPNLIn this section, we describe a circuit model that captures the power of BPNL. We look atpolynomial size circuits consisting of max and average gates instead of and and or gates. Amax or average gate can take inputs from any value between 0 and 1 and outputs some valuebetween 0 and 1. On inputs x1 and x2 a max gate will output max(x1; x2). On inputs x1 andx2 an average gate will output 1=2(x1+ x2). Max-ave circuits are a family of polynomial sizecircuits of max and average gates C1; C2; : : : with the following property of acceptance for alanguage L:If x 2 f0; 1gn and the bottom most inputs of Cn are just x1; : : : ; xn, the bits of x, then1. If x 2 L then Cn(x1; : : : ; xn) � 232. If x 62 L then Cn(x1; : : : ; xn) � 13As with probabilistic computation we require that Cn never falls between 13 and 23 for anyinput. We call circuits with this property proper max-ave circuits.One can make an analogy from max-ave circuits to BPNL by having the prover make thechoices on the max gates and the veri�er randomly making a choice in the average gate. Wemake this notion formal as follows:Theorem 3.21. For every L in BPNL there is a log-space computable function f such that f(x) = Cwhere C is a proper max-ave circuit for L with size polynomial in jxj and no nonconstantinputs.2. There is a BPNL machine M such that Pr(M accepts (C; x)) = C(x) for all x 2 f0; 1g�and max-ave circuits C.Proof 31



1. We will show given a BPNL machine M and an input x, we can create in log-space acircuit C such that the probability of M accepting is the value of C. We add a clockto M to keep track of how many steps have gone by. Let S be the set of all possiblecon�gurations of M . Clearly there are only a polynomial number of possibilities forS. These con�gurations will form the gates of the circuit C. Those con�gurationswhere M nondeterministically guesses a bit form max gates over all the next possiblecon�gurations. The con�gurations whereM 
ips a coin form average gates over the nextpossible con�gurations one step after the coin 
ip. We replace an accepting con�gurationby the constant input one. Likewise, we replace the rejecting con�gurations by zero.The other con�gurations form a max gate over the single gate representing the nextcon�guration after a single step of deterministic computation. Since we have added aclock to M , this process can not create any cycles. By the de�nition of BPNL andmax-ave circuits, the probability of M accepting is the value of C. We clearly can dothe above construction in log-space. Note C does not have any nonconstant inputs.2. We will show that we can create a prover-veri�er pair to accept x with probability C(x).The prover and veri�er will start at the top gate. For a max gate the prover picks oneof that gate's children. For an average gate, the veri�er picks one of the gate's childrenby 
ipping a coin. We continue this process on the gate's child. Since C has only apolynomial number of gates, V can always keep a pointer to the gate currently beingprocessed. The veri�er will accept if we process a one input. Again the probability ofacceptance is exactly the value C(x). We then turn (P; V ) into an equivalent BPNLmachine M . 2Corollary 3.3 BPNL � P (Proven independently by Condon [Co2])Proof Given L in BPNL and x in ��, by the previous theorem we have a reduction f(x) toa circuit C with no nonconstant inputs. We then compute C by calculating the value at eachgate and accept if the value of C is at least two thirds. 2Note this does not say max-ave circuits accept exactly the same languages as BPNLmachines. For example, a max-ave circuit can only accept monotone languages, thus no familyof max-ave circuits can exist accepting nonmonotone languages such as parity. However,BPNL can clearly compute parity. By the above proof a BPNL machine can accept anylanguage accepted by log-space uniform proper max-ave circuits.Does BPNL accept all the languages of P? We conjecture there exist polynomial-timecomputable languages not in BPNL. The following theorem indicates we will not easily settlethis question by computing the value of the max-ave circuit.Theorem 3.4 f(C; x; v)jC(x) = vg is log-space-complete for P.Proof Ladner [L] showed f(C 0; x)jC 0(x) = 1g log-space complete for P where C 0 is anormal polynomial size and-or circuit. We create C by replacing every or gate by a max gateand every and gate by an average gate. Then C 0(x) = 1 if and only if C(x) = 1. 232



3.4 BPNL Contains LOGCFLClearly BPNL contains both NL and BPL. In this section we show that BPNL nontriv-ially contains the complexity class LOGCFL, languages log-space reducible to context-freelanguages [Su1, Su2].Venkateswaran [V] showed the equivalence of LOGCFL and the class of languages acceptedby log-space uniform semi-unbounded log depth circuits, i.e. a family of and-or circuits ofO(logn) depth and bounded fan-in and's (possibly unbounded fan-in or's). We can assumethat the fan-in of the and's is two.The class LOGCFL contains NL and equality is unknown. It is also unknown whetherBPL contain LOGCFL.Theorem 3.5 LOGCFL � BPNLProof Let L 2 LOGCFL. For x, let C be the appropriate log-space constructible semi-unbounded circuit such that C(x) = 1 i� x 2 L. The prover and veri�er will start at the topgate. If it is an or gate then the prover picks one of that gate's children. If it is an and gatethe veri�er picks one of the gates children by 
ipping a coin. We then continue this processon the gate's child. Since C is of polynomial size, V can always keep a pointer to the gatecurrently being processed. We will end up at either1. An input xi. In this case the veri�er accepts if xi = 1.2. A negation of an input xi. In this case the veri�er accepts if xi = 0.If x 2 L then for any choices at and gates, there exist choices at or gates that cause thecircuit to accept. Thus the prover has a winning strategy for any choices of the veri�er so theveri�er always accepts.If x 62 L then there are choices the veri�er V could make so V would reject. Since thecircuit is only log depth and V makes one choice out of two at each gate the probabilitythat V would reject� 2�O(logn) � 1p(n) for some polynomial p(n). Thus Pr(P and V acceptx) � 1� 1p(n) .We then run this protocol 2p(n) times independently and in succession and V accepts ifall runs of this protocol accept. We then get:If x 2 L then Pr(P and V accept x) = 1 > 23If x 62 L then Pr(P and V accept) � (1� 1p(n))2p(n) � e�2 < 13P and V form a polynomial-time log-space public-coin interactive proof system for L. 23.5 Further Directions of ResearchSeveral open questions remain, including:� We showed LOGCFL � BPNL � P. Can this gap be tightened?� Are there other restrictions on the veri�er that give rise to other interesting complexityclasses? 33



� What is the relationship of max-ave circuits to other circuit models?� It is clear that BPL is closed under complement and Immerman [I] recently showed thesame was true for NL. Can similar techniques be used to show BPNL is closed undercomplement?

34



Chapter 4Multiple Provers4.1 Corroborating SuspectsConsider the case of two criminal suspects who are under interrogation to see if they are guiltyof together robbing a bank. Of course they (the provers) are trying to convince Scotland Yard(the veri�er) of their innocence. Assuming that they are in fact innocent, it is clear that theirability to convince the police of this is enhanced if they are questioned in separate rooms andcan corroborate each other's stories without communicating.Instead of the veri�er communicating with only one prover, we will now look at the modelwhere the veri�er can communicate with many provers that can not communicate with eachother. Ben-Or, Goldwasser, Kilian and Wigderson [BGKW] originally developed multi-proverinteractive proof systems primarily for cryptographic purposes. They show every languageaccepted by a two prover interactive proof system has a perfect zero-knowledge two proverproof system (see section 2.2 for de�nitions of perfect zero-knowledge). They also show twoprover systems can simulate any multi-prover system. Along the same lines of Goldreich,Mansour and Sipser [GMS], they show any two prover system has an equivalent system thataccepts with probability one for strings in the language. Complete proofs of these resultsappear in [Ki].We give a simple characterization of the power of the multi-prover model in terms ofprobabilistic oracle Turing machines. Using this characterization we give an oracle relativeto which there exists a co-NP language not accepted by any multi-prover interactive proofsystem extending the result of Fortnow and Sipser [FS1] for the standard interactive proofsystem model.4.2 De�nitionsLet P1; P2; : : :Pk be in�nitely powerful machines and V be a probabilistic polynomial-timemachine, all of which share the same read-only input tape. The veri�er V shares communi-cation tapes with each Pi, but di�erent provers Pi and Pj have no tapes they can both accessbesides the input tape. We allow k to be as large as a polynomial in the size of the input;any larger and V could not access all the provers.Formally, similar to the prover of a standard interactive proof system, each Pi is a function35



from the input and the conversation it has seen so far to a message. We put no restrictionson the complexity of this function other than that the lengths of the messages produced bythis function must be bounded by a polynomial in the size of the input.P1; : : : ; Pk and V form a multi-prover interactive protocol for a language L if:1. If x 2 L then Pr(P1; : : : ; Pk and V on x accept) > 1� 2�n.2. If x 62 L then for all provers P 01; : : : ; P 0k, Pr(P 01; : : : ; P 0k and V on x accept) < 2�nMIP is the class of all languages which have multi-prover interactive protocols. If k is one weget the class IP of languages accepted by standard interactive proof systems.Note the di�erent probabilities used here compared to the probabilities used to de�nestandard interactive proof systems. Unlike the result of Babai and Moran [BM] for thestandard model, it is unknown whether we can increase the probability of error in multi-prover proof systems by running the protocols in parallel (see section 4.5). We can reducethe probability of error to less than 2�p(n) for any polynomial p(n) by running the protocolsseveral times serially.A round of an multi-prover interactive protocol is a message from the veri�er to some or allof the provers followed by messages from these provers to the veri�er. In general, interactiveprotocols can have a polynomial number of rounds. We let �ij designate a message fromprover i to the veri�er in round j and �ij designate a message from the veri�er to prover i inround j. We may omit the prover number for one-prover interactive protocols.IP(j; k) is the class of languages accepted with no more than j provers in no more thank rounds. The values j and k may depend on the input but clearly can not be larger than apolynomial in the size of the input. We let poly designate a polynomial, i.e. IP is IP(1,poly)and MIP is IP(poly,poly). A protocol is said to have bounded rounds if k is a constant.4.3 Probabilistic Oracle MachinesSuppose a prover in an interactive proof system must set all his possible responses before theprotocol with the veri�er takes place. We can think of the prover as an oracle attempting toconvince a probabilistic machine whether to accept a certain input string. The oracle mustbe fully speci�ed before the protocol begins.Let M be a probabilistic polynomial-time Turing machine with access to an oracle O. Alanguage L is accepted by an oracle machine M i�1. For every x 2 L there is an oracle O such that MO accepts x with probability > 1�2�n2. For every x 62 L and for all oracles O0, MO0 accepts with probability < 2�nThis model di�ers from the standard interactive protocol model in that the oracle mustbe set ahead of time while in an interactive protocol the prover may let his future answersdepend on previous ones.Theorem 4.1 L is accepted by an oracle machine if and only if L is accepted by a multi-prover interactive protocol. 36



Proof (Write-up due to John Rompel)((=)Suppose L is accepted by a multi-prover interactive proof system V . Then de�neM as follows:M simulates V with M remembering all messages. When V sends a message to a prover,M asks the oracle the question (x; i; j; `; �i1; : : : ; �ij) suitably encoded and uses the responseas the `th bit of the |th message from prover i on input x where �i1; : : : ; �ij are the �rst jmessages sent from the veri�er to prover i. M then accepts x if and only if V does.1. Let P1; : : : ; Pk be provers which cause V to accept each x 2 L with probability at least1� 2�n. If we let O be the oracle which encodes in the above manner the messages ofP1; : : : ; Pk, then MO will accept each x 2 L with the same probability as V .2. Suppose there were an input x 62 L and an oracle O0 such that MO0 accepts x withprobability more than 2�n. Then we could construct provers P 01; : : : ; P 0k which cause Vto accept x with the same probability by just using O0 to create their messages. Since,by de�nition, no such P 01; : : : ; P 0k exist, neither does O0.(=))Suppose L is accepted by a probabilistic oracle machine M in nk steps. We will de�ne averi�er, V , to simulate M using nk+1 provers. The veri�er �rst randomly chooses an orderingof the nk+1 provers. The veri�er then simulates M and whenever M asks an oracle question,V asks the question to each of the next n provers in the chosen ordering. If the proversare unanimous in their answer, V uses that answer in its simulation of M ; if not, V rejectsimmediately. If the provers successfully answer all oracle queries, then the veri�er accepts ifand only if M does. There can be at most nk questions so the nk+1 provers will su�ce.1. Let O be an oracle such that MO accepts each x 2 L with probability at least 1� 2�n.If we let P1; : : : ; Pnk+1 all answer (identically) according to O, then they will cause Vto accept each x 2 L with the same probability as MO.2. Consider x 62 L; consider any provers P 01; : : : ; P 0nk+1 . Let oracle O0 answer queries as themajority of P 01; : : : ; P 0nk+1 would.There are two cases to consider for V accepting x: either all oracle queries in thesimulation answered consistent with O0 or some oracle query answered di�erent thanO0 would. By the de�nition of acceptance for probabilistic oracle machines, we knowthat the probability of the �rst case occurring is 2�n, where this probability is over therandom coins of M .Now consider the second case. Fix some set of random coins r. Let q1; : : : ; qnk be theoracle questions in the computation of M on x using random coins r and oracle O0. ForV to accept using an oracle answer inconsistent with O0, it must be the case that, forsome i, the {th set of n provers all give an answer inconsistent with O0 on qi. Fix i.Since O0 gives the answer to qi that the majority of provers do, at most 12nk+1 of thenk+1 provers will answer di�erently than O0. Thus the probability that the {th set of nprovers will all answer di�erently from O0 is at most�nk+1=2n ��nk+1n � � 2�n37



The probability that this will happen for some i is at most nk times this. Thus the totalprobability that V will accept x is at most 2�n + nk2�n or (nk + 1)2�n.Finally, we de�ne V 0 to simulate V three times in series, accepting or rejecting accordingto the majority of the simulations. Since the probabilities of the runs are independent, theprobability that the correct provers will cause V 0 to accept x 2 L is at least(1�2�n)3 + 3(1�2�n)22�n > 1� 3 � 2�2nand the probability that any provers will cause V 0 to accept x 62 L is at most2�3n + 3 � 2�2n(1�2�n) < 3 � 2�2nIf we further modify V 0, hardwiring the correct answer for n � 1, then V 0 forms a multi-prover interactive proof system for L. 2This theorem gives a natural model equivalent to multiple provers and useful for provingtheorems about them.4.4 Are there Multi-Prover Protocols for co-NP Languages?With the extra power of multiple provers, we can not immediately rule out the possibility ofprotocols for all co-NP languages. However, we can extend the result of Fortnow and Sipser[FS1] where an oracle is given such that co-NPA 6� IPA.Theorem 4.2 There exists an oracle A and a language L 2 co-NPA such that L 62 MIPA.Proof In this proof we will use the oracle machine model. It is easy to verify that theproof in section 4.3 holds under relativizations to all oracles. Note that our machines can askquestions about two oracles, the \prover" oracle O and the \relativization" oracle A.We can enumerate all possible polynomial-time machines in the standard manner, lettingMi be bounded in time by ni, where n is the size of the input.For any oracle A, letL(A) = f1n : A contains all strings of length ngIt is clear that L(A) 2 co-NPA for all oracles A.In step i we make L(A) di�erent from every oracle machine MAi . Then L(A) can not havea multi-prover interactive protocol and we have proved our theorem.STEP i:Pick Ni large enough so 2Ni > 3(Ni)i and no oracle questions of length Ni have beenasked in any previous step. Let pi = (Ni)i.Every time MAi asks a question to A which has not been previously answered we answeryes. If there are not any oracles O such that O and MAi accept on input 1Ni with probabilityat least 23 then we put in the oracle A all strings of length Ni and every other previously unsetstring that MAi asks about for any oracle O. This completes step i. Note that MAi can onlyask questions of length less than pi so we will always be able to �nd Ni+1 in step i+ 1.38



Otherwise we have some oracle O such that O and MAi will accept 1Ni with probabilityat least 23 . On any computation path (which is determined by MAi 's coin tosses), MAi canask at most pi oracle questions to A of length Ni. There are 2Ni questions of length Ni. Acounting argument shows that there is some oracle question x of length Ni that appears inno more than pi=2Ni of the computation paths of MAi . By the way we chose Ni this meansthe oracle question x appears in less than one third of the computation paths of MAi . Putall strings of length Ni except for x in the oracle A. Also place in the oracle A every stringqueried by MAi on every possible communication with every possible O. The oracle O willconvince MAi to accept with probability greater than one third since more than a third of thecomputation paths are the same as before.If there exists an oracle O that makes MAi accept 1Ni with probability greater than twothirds then L(A) does not contain 1Ni . Conversely, if no oracles exists that causes MAito accept with probability at least one third then L(A) will contain 1Ni . By the standarddiagonalization argument L(A) does not equal the language accepted by MAj for any j. 2This result implies the earlier result of Fortnow and Sipser [FS1] since the language L(A)does not have standard interactive proof systems under the oracle A.Corollary 4.3 Techniques which relativize will not settle whether MIP contains co-NP orwhether IP contains co-NP.Proof Let B be the standard oracle which makes PB = NPB [BGS]. Then co-NPB =PB and co-NPB � IPB � MIPB. Thus any proof that proves or disproves co-NP � MIP orco-NP � IP can not relativize. 24.5 Bounded Round ProtocolsFortnow, Rompel and Sipser [FRS] claimed some results about collapsing rounds: IP(1,poly)� IP(2,1) and IP(poly,poly) = IP(3,2). The \proofs" require that we can somehow decrease theerror probability by running the protocols in parallel. The approach makes the assumptionthat if the provers can be prevented from communicating among themselves through theprotocol then parallel runs of the protocol work independently like parallel runs of one proverinteractive protocols [BM].The claims of Fortnow, Rompel and Sipser remain unproven because of this faulty as-sumption. We show the assumption faulty with the following counterexample:Suppose we have the following two prover protocol:V : Pick two bits a and b uniformly and independently at random.V!P1: aV!P2: bP1!V : cP2!V : dV : Accept if (a _ c) 6= (b_ d). 39



It is easy to show the best strategy for two provers causes the veri�er to accept with probability1=2. Notice neither prover has any notion of what bit the veri�er has sent to the other prover.Now let us examine the two round version of the same protocol:V : Pick bits a1; a2 and b1; b2 uniformly and independently at random.V!P1: a1; a2V!P2: b1; b2P1!V : c1; c2P2!V : d1; d2V : Accept if (a1 _ c1) 6= (b1 _ d1) and (a2 _ c2) 6= (b2 _ d2).If the parallel runs of the protocol behave independently we would expect the optimumstrategy for the provers causes the veri�er to accept with probability (1=2)2 = 1=4. Howeverthe following strategy for the provers causes the veri�er to accept with probability 3=8:P1: If a1 = a2 = 0 respond c1 = c2 = 0 otherwise respond c1 = c2 = 1.P2: If b1 = b2 = 0 respond d1 = d2 = 0 otherwise respond d1 = d2 = 1.Note in n rounds the probability of acceptance of this protocol can not exceed (3=4)nsince the veri�er will not accept if ai = bi = 1 for any i. We can not �nd any counterexamplewithout this type of exponential decrease. However we can not prove any such decrease in ageneral setting.We conjecture the bounded round claims of Fortnow, Rompel and Sipser are true but theproofs will require new techniques.4.6 Further ResearchThere still remain many open questions including:� Can we in fact prove the results like those stated in [FRS], i.e. results that collapseunbounded rounds to bounded rounds perhaps with additional provers?� Under what conditions can we reduce the error probability without drastically increasingthe number of rounds in multi-prover interactive proof systems?� What is the relation between MIP and IP? Is there, for instance, an oracle separatingthe two classes?� What is the relationship between MIP and PSPACE? Feldman [Fe] shows that PSPACEcontains IP, but the proof does not appear to work for MIP. Peterson and Reif [PR]show if we replace the veri�er's randomness with universal choices we get exactly non-deterministic exponential time.� A public-coin interactive proof system can accept any language accepted by a interactiveproof system [GS]. What can we say about public-coin multi-prover interactive proofsystems? How do we even de�ne public-coin proof systems for multiple provers?40



Chapter 5Probabilistic Computation andLinear Time5.1 Linear-Time Veri�ersSuppose we restrict our veri�er to run in linear time. Clearly any language accepted by averi�er running in linear time will be accepted by a standard interactive proof system witha polynomial-time veri�er. Can we �nd a language accepted by a standard interactive proofsystem but not a proof system with a linear-time veri�er?In this chapter we examine the same question for simpler models of computation. In1965 in the seminal paper in complexity theory, Hartmanis and Stearns [HaS] showed forany k � 1 there exist problems with deterministic nk+1 algorithms but no deterministicalgorithms exist that run in nk steps. This hierarchy theorem answered the question for thesimple deterministic case.Interactive proof systems combine nondeterministic and probabilistic computation. In1973, Cook [C2] showed a hierarchy exists for nondeterministic computation. In contrast withdeterministic and nondeterministic computation, the existence of a probabilistic hierarchyremains unknown. The techniques that establish the deterministic and nondeterministichierarchy fail in the probabilistic case. The main result of this chapter shows a fundamentalreason for this failure.We will show this result by exhibiting an oracle A relative to which probabilistic lineartime equals BPP, probabilistic polynomial time, as well as an oracle for which they di�er.Thus techniques that relativize will not answer this question. Virtually all known techniquesfor solving problems of this type relativize, particularly the techniques that separate thedeterministic and nondeterministic time classes.This result suggests the possibility of a collapse of a complexity time hierarchy. Resultsof this nature show some fundamental di�erences in probabilistic computation versus otherforms of computation such as deterministic and nondeterministic.Assuming computers have easy access to random bits, a problem has an e�cient solutionif a probabilistic polynomial-time algorithm can solve this problem. Under the oracle A,we have the surprising situation that we can solve all problems with e�cient solutions inprobabilistic linear time. 41



We also show some other relativized results in this paper relating to probabilistic com-putation and linear time. We also give a partial answer to the original question by showingthe existence of a language accepted by an interactive proof system but not accepted inprobabilistic linear time.5.2 Our Results and Related ResultsWe show the existence of oracles under which the following hold:1. BPP = BPTIME[n] (actually we will show BPP = RTIME[n] (thus BPP � NTIME[n])and BPP = ZPTIME[n])2. BPP has linear size circuits.3. �2 � BPTIME[n]4. The negation of each of the above.We also show there must exist a language in either BPP or NP but not in BPTIME[n].This result implies there are languages accepted by interactive proof systems that are notaccepted in probabilistic linear time.Hartmanis and Stearns [HaS] with Hennie and Stearns [HeS] show for \nice" f and g suchthat g(n) = o( f(n)logn ) that DTIME[f(n)] 6� DTIME[g(n)], thus DTIME[nj] 6� DTIME[nk] for1 � k < j. Cook [C2] showed the latter result for nondeterministic time, which was improvedby Seiferas, Fischer and Meyer [SFM]. All of these results relativize to all oracles.Wilson [W] showed �2 has linear size circuits with an appropriate oracle. We extendWilson's result to show BPTIME[n] contains �2 relative to an oracle. However, his techniquesfail to help prove our main theorem since they rely on the fact that languages in �2 can dependonly on a polynomial number of oracle queries for each input. BPP does not a�ord us thatluxury.Kannan [K] showed �2\�2 does not have nk{size circuits for any �xed k. Using standardtechniques, one can show BPTIME[n] has n4{size circuits. These results relativize to alloracles. Combining these facts with the above results, we get that there are oracles that put�2 and BPP in BPTIME[n] and linear size circuits where as such oracles do not exist for�2 \ �2. The class �2 \ �2 contains BPP [Si] and �2 though the relationship between �2and BPP is unknown.One can get a trivial separation of BPTIME[n] and BPTIME[2n] by simulating all possiblecoin tosses. Karpinski and Verbeek [KV] improved this result to show BPTIME[nlogn] doesnot contain BPTIME[2n� ] for any � > 0.5.3 Deterministic, Nondeterministic andProbabilistic Linear TimeWhy does probabilistic computation behave di�erently than deterministic and nondetermin-istic computation for separating the time classes? In this section we will describe the proof42



techniques for separating the deterministic and nondeterministic time classes and show whythese techniques fail for probabilistic computation.The proof that DTIME[n2] 6� DTIME[n] works roughly as follows: Let M1;M2; : : : bean enumeration of all linear-time deterministic Turing machines. De�ne a machine M thaton input i does the following: Simulate Mi on input i and accept if and only if Mi rejects.In quadratic time, M has more than enough time to simulate Mi on input i. However, if alinear-time machine Mj accepts L(M) then we have a contradiction by the de�nition of M .At �rst glance this proof seems to work for probabilistic machines. However, the prooffails because of the enumeration of the machines. If we choose a standard enumeration ofthe BPP machines, one of the Mi will accept with probability 1=2 (for example the machinethat just 
ips a coin and accepts if heads). Since a proper probabilistic machine must acceptwith probability below 1=3 or above 2=3, M will not be in BPTIME[n2] even though it runsin quadratic time. We could try to have an enumeration of proper probabilistic linear-timemachines but such an enumeration may be computationally infeasible.The deterministic proof does not work for the nondeterministic case either. Cook [C2]proved NTIME[n2] 6� NTIME[n] using a translation lemma: If NTIME[f(n)] � NTIME[g(n)]then for all \reasonable" superlinear h, NTIME[h(f(n))]� NTIME[h(g(n))]. A similar lemmaholds for deterministic and probabilistic computation. Cook's proof proceeds as follows:Assume NTIME[n2] = NTIME[n]. Then by using the translation lemma NTIME[n4] =NTIME[n2] and thus NTIME[n4] = NTIME[n]. If we repeat this process k times, we getNTIME[n2k ] = NTIME[n]. By using an universal nondeterministic machine, we are able tomaintain the same constant at each step, i.e. a nondeterministic machine that runs in n2kcan be simulated by a machine that runs in ckn time for some �xed c. If we let k = logn, weget NTIME[nn] = NTIME[n1+log c] which can be shown false by diagonalization.Even though the translation lemma holds, this proof still fails for probabilistic compu-tation. The di�culty comes when we try to make a universal proper probabilistic machine.A universal proper probabilistic machine would be a proper probabilistic machine that cansimulate other proper probabilistic machines; a very di�cult task as we have already seen.Thus we can not keep the constants in check, and therefore can only repeat the translationprocess a constant number of times.We will exploit these di�culties to create the oracle to collapse BPP to BPTIME[n].5.4 Proof of the Main TheoremIn order to construct an oracle A such that BPPA = BPTIMEA[n] we encode within A theanswers to whether BPPA machines M accepts inputs w (for each M , and almost all w) ina way that a BPTIMEA[n] machine can �nd the encoding and thus perform the simulationquickly. The di�culty that arises is that the BPPA machine also has access to A and so canuse it to try to ensure that however we try to encode the answers the simulating machinewill be incorrect. This is in fact why analogous oracles for P and NP can not exist since thetheorems of [HaS, C2] relativize for all oracles. Our ability to construct the oracle in this caserests on a balancing act between the power of probabilistic over deterministic computation onone side, its still limited ability on the second side and the \forbidden" region of acceptanceprobability (between 1=3 and 2=3) lastly.We present the proof in several sections as follows:43



1. We describe the structure of the oracle.2. We examine a simple case in which machines and inputs only look at their own encod-ings.3. We de�ne in
uencing strings, oracle strings that a�ect the acceptance by a reasonableprobability, and show proper machines can not depend on nonin
uencing strings.4. We describe the encoding process for a restrictive BPP machine.5. We create a dependency graph for a machine and an input.6. We process the dependency graph encoding that machine and input.7. We generalize the proof to all BPP machines.5.4.1 Structure of the OracleLetM1;M2; : : : be an enumeration of polynomial-time Turing machines that can make randomchoices and ask queries of an oracle. MAi designates the machine with index i using oracleA. Without loss of generality we can assume MAi (x) runs in at most ni steps. Clearly if L 2BPPA then L = L(MAi ) for some i with MAi being a proper probabilistic Turing machine.Without loss of generality we can assume MAi (x) 
ips all its coins before it does anyother computation. Once MAi (x) has 
ipped these coins it becomes a deterministic machinewhose acceptance depends solely on the oracle questions it asks. We call the computationafter MAi (x) 
ips its coins a computation path of MAi (x). We also assume MAi (x) 
ips thesame number of coins on each computation path, so that each path has the same probabilityof occurring. Since MAi (x) runs in polynomial time it can ask only a polynomial number oforacle queries on any computation path.We will create the oracle A such that for each machine MAi one of the two followingstatements will be true:1. MAi is improper.2. There will exist a probabilistic linear-time machine SAi that accepts exactly the samelanguage as MAi .Suppose BPPA contains a language L. Then some machine MAj must accept exactly thelanguage L. The machine MAj must be proper, otherwise it could not accept any languageat all, certainly not L. If we have set up the oracle A as described above then we have alinear-time machine SAj accepting the same language as MAj , i.e. the language L. Thus all ofBPP collapses to probabilistic linear time under the oracle A.We could encode whether MAi (x) accepts by putting the string (i; x) in the oracle A ifand only if MAi (x) accepts. The linear-time machine SAi accepts on input x if (i; x) is in A.This idea fails to work because MAi (x) can look at its own encoding of (i; x) in A.Instead, we will encode in the oracle A whether or not MAi accepts using strings of theform (i; x; r) where r may be any of the 25jxj strings of length 5jxj.We say A properly encodes MAi (x) if 44



1. If MAi accepts x then for at least 2=3 of the possible r's, (i; x; r)2 A.2. If MAi rejects x then for at most 1=3 of the possible r's, (i; x; r) 2 A.We call the (i; x; r)'s encoding strings of MAi (x).We now have the simulating machine SAi do the following for input x:1. Pick a random r of length 5jxj.2. Accept if (i; x; r) is in the oracle A.Notice that if we have properly encoded A for MAi then SAi will accept exactly the samelanguage as MAi . We will properly encode the oracle A for all proper polynomial-time prob-abilistic machines MAi .5.4.2 A Simple CaseLet us examine the case when MAi (x) only looks at strings of its own encoding, i.e. stringsof the form (i; x; r).An in
uencing string of MAi (x) is an oracle query that occurs on at least one sixth ofall the computation paths. An easy counting argument shows MAi (x) can have at most apolynomial number of in
uencing strings and thus they make up a very small fraction of allthe possible (i; x; r).We will properly encode MAi (x) in A as follows:Initially we will set all of the strings of the form (i; x; r) to zero, i.e. not in A. We willthen determine the probability of MAi (x) accepting. There are three cases:1. MAi (x) accepts with probability less than one third.2. MAi (x) accepts with probability between one third and two thirds.3. MAi (x) accepts with probability greater than two thirds.In the �rst caseMAi (x) rejects by de�nition and we have set less than a third of the (i; x; r)in A; in fact, none of the (i; x; r) are in A. In this case we have already properly encoded A.In the second case MAi (x), being improper, can not accept any languages, so we no longerneed to encode A for MAi , even for other inputs.In the third case, MAi (x) accepts, but there are less than two thirds of the (i; x; r) in A.We will properly encode A using the following algorithm:Let S be a collection of two thirds of the (i; x; r) such that S has only nonin
uencingstrings. The set S exists because the in
uencing (i; x; r) form only a tiny fraction of all ofthe (i; x; r).Pick a single string from S and put that string in the oracle A. Now only one string ofthe form (i; x; r) is in the oracle. Once again determine the probability of MAi (x) accepting.IfMAi (x) accepts with probability between one third and two thirds, thenMAi is improperand we no longer need to encode MAi .MAi (x) can not accept with probability less than one third. Since we chose an nonin
u-encing string occurring on at most one sixth of the computation paths of MAi (x) it can not45



change its probability by more than one sixth. However MAi (x) would have to change itsprobability by more than one third to accept with probability less than one third.Thus if MAi (x) is still proper then it must accept with probability at least two thirds.We then pick another string from S, and put that string in the oracle A along with the �rststring.Once again either MAi (x) is improper or it accepts with probability more than two thirds.We continue this process until MAi becomes improper or we have added to A all of S. At thispoint MAi (x) accepts and two thirds of the (i; x; r) are in A. Thus we have properly encodedA for MAi (x).Unfortunately, this does not �nish the proof because MAi (x) may ask questions of othermachines and inputs. To handle this case we must look carefully at the dependencies amongthe machines and the encoding strings they query. The remainder of the proof handles thesedependencies.5.4.3 In
uencing and Simulating StringsFor eachMAi (x) we will look at all the oracle queries it can possibly ask on every computationpath|potentially a very large set of oracle strings. We call the oracle queries that a�ect theprobability of MAi (x) accepting by a certain nonnegligible probability in
uencing strings,a slight change from the de�nition in section 5.4.2. The remaining oracle queries we callsimulating strings. We will show that MAi (x) can not have too many in
uencing strings.Suppose MAi (x) depends on its simulating strings, i.e. one setting of these strings causesMAi (x) to accept with probability less than 1=3 and another setting causes MAi (x) to acceptwith probability more than 2=3. We can start with the �rst setting and change one oraclequery at a time to get to the second setting. Eventually MAi (x) must accept with probabilitygreater than 1=3. However since the simulating strings do not individually change the prob-ability of MAi (x) very much, the probability MAi (x) accepts can not be greater than 2=3 soMAi is no longer a proper probabilistic machine.We now give an outline of the rest of the proof using in
uencing and simulating strings:For every machine Mi and input x, we try all possible settings of the oracle queries of A in ane�ort to make MAi (x) accept with an improper probability. If we succeeded in making MAiimproper we set all other encoding strings of Mi to zero. Otherwise Mi depends only on itsin
uencing strings, we just set these arbitrarily in A to determine MAi (x). We have not settoo many strings; in particular we have not set very many of the (i; x; r)'s. We then use theunset (i; x; r)'s to encode MAi (x) consistent with whether it accepts.5.4.4 Order of EncodingFor any given proper MAi , we need only properly encode oracle A for all but a �nite number ofinputs forMAi . The linear-time probabilistic machine SAi that merely chooses a random r andaccepts if the oracle A contains (i; x; r), will work for all the inputs properly encoded by A.We create a linear-time machine TAi that accepts the same language as MAi by \hardwiring"the answers of the �nite number of inputs not properly encoded by A.We will use a �nite injury argument. For a given MAi , we might not properly encodeMAi on some �nite number of inputs. We will determine which inputs we will not properlyencode as the construction happens, making sure only that a �nite number of inputs are not46



properly encoded. For example, suppose we can set the encoding strings of MAi , strings ofthe form (i; x; r), in order to make MAj improper for i > j. Then we do not have to considerMAj again. Since there is only i� 1 machines with a lower index than i, we can only set theencoding strings in this way for a �nite number of times.We will encode machines and inputs in order of input size. For inputs of length n, we willencode machines M1;M2; : : : ;Mlog log logn. Thus for machine i, we will not encode any of the�nite number of inputs of size smaller than 222i .For each MAi (x) we will either1. Set enough of the oracle A to determine whether MAi (x) accepts and appropriately setthe encoding strings of MAi (x) in A.2. Make MAi improper.3. Make some MAj improper for some j < i.At all times we carefully set the oracle questions in A as to not use too many encodingquestions for any machine and/or input except for �nite injury in cases 2 and 3.For each machine and input we will look at its in
uencing and simulating strings. If amachine depends on simulating strings of a higher indexed machine by the earlier argumentwe can set these strings to make the machine improper; since we only changed strings of ahigher index we use the �nite injury argument. If a machine has simulating strings of a lowerindex we recursively encode those machines|note we limit ourselves to log log logn indices.Ideally we would like to just set all the in
uencing strings in A immediately. Unfortunately,in
uencing strings of di�erent inputs may take up a large part of the encoding strings of someMi(x). This may happen during the recursion of simulating strings. We show we only have toworry about in
uencing strings of encodings of smaller inputs; the others we will immediatelyset. We recursively encode those machines, showing the recursive depth can not be too deepto prevent the encoding of the original machine. Note we never set the simulating strings ofa machine unless either we can make that machine improper or we encode a machine whoseencoding strings are the simulating strings of another machine.For now we will make the following restriction on how Mi works. We assume Mi does notmake oracle queries dependent on the answers of previous queries. In other words, for anygiven computation path, Mi has a �xed set of oracle queries to decide whether to accept orreject. This set can have at most jxji oracle queries, the running time of Mi on x. We willshow later how to extend this proof to the general case where Mi's oracle queries can dependon previous queries.We encode MAi (x) in two phases. First we will determine which encoding strings Mi(x)depends on. Then we properly encode these machines until we have encoded MAi (x). We dothis through use of a dependency graph.Before we encode any machines we set all oracle strings not used for encoding to zero.Since we encode in order of input size, we have previously determined all of the followingoracle strings:1. Nonencoding strings of the oracle.2. Encoding strings of the form (j; y; r) for all j, y and r such that j > log log log jyj sincewe only encode the �rst log log log n machines for inputs of length n.47



3. Encoding strings of all inputs of size less than n = jxj since these string have beenpreviously encoded.4. Encoding strings of all machines previously made improper.As we will see in this proof, we may have determined strings in A in addition to those listedabove.5.4.5 Creating the Dependency GraphWe will create a �nite dependency graph to help us properly encode MAi (x). The nodes of thedependency graph represent a machine and an input. Directed edges go from one machineand input to another if the �rst machine on that input asks oracle queries of encoding stringsof the other machine and input. Nodes will be of the form (j; y) representing machine Mjon input y. We call j the index of node (j; y) and y the input. We de�ne an ordering of thenodes by (j; y) < (k; z) if j < k or j = k and y < z for some ordering of input strings suchthat jyj < jzj implies y < z.In the simple case we assumed the dependency graph had only self loops, i.e. machinesand inputs only look at their own encoding strings. If the dependency graph had no cycles,we could properly encode all the nodes by encoding the leaves and then work our way backto the root. However, the dependency graph may have cycles, in which case we will requiremore work to process this graph.To create the dependency graph G for MAi (x) we �rst start with the single node (i; x).Let us place the graph on a two dimensional grid with indices increasing from left to right andinputs increasing from bottom to top. We place (i; x) in the lower right corner. We expand anode (j; y) by adding an edge to (k; z) (creating the node if necessary) if for some selection ofrandom coins Mj(y) asks an as yet undetermined encoding string of Mk(z). We recursivelyexpand node (k; z) if one of the following holds:1. k < j, i.e. node (k; z) is to the left of node (j; y)2. k < i and jzj < jyj and jzj < jwj for some node (l; w) of G with l � k, i.e. node (k; z) isto the left of the original node (i; x), is below (j; y) and is below some node at least asfar right as (k; z). We need this condition to prevent the indices from increasing withoutbound.We get the dependency graph G by expanding the single node (i; x). We will see this graphcontains the structure of the recursive encodings necessary to encode Mi(x). A node (j; y)depends on node (h; z) if there is an edge from (j; y) to (h; z). Likewise, Mj(y) depends onMh(z) if (j; y) depends on (h; z).Note that all nodes of G represent machines with as yet undetermined encoding strings.If (j; y) is a node of G then 1 � j � log log logn and jyj � n. If (j; y) is an expanded node ofG other than (i; x) then j < i.Lemma 5.1 If (j; y) 2 G then jyj < nlogn.Proof A Turing machine can not ask an oracle question longer than the amount of time ithas to write it down. If (k; z) is a node of G then M has running time at most jzjlog log log jzj48



since k � log log logn andMk runs in time at most nk for inputs of size n. By the de�nition ofG, we only expand a node with a larger input if the index is smaller. If f(j) is the maximumsize of the inputs of all the nodes of index at least j then f(j � 1) � f(j)log log log f(j). Weknow f(i) = n since (i; x) is the only expanded node of G of index i. We can bound therecurrence using lemma 5.2 to show f(j) < nlogn for all j such that 1 � j � i. Thus for allexpanded nodes (j; y), jyj < nlogn. Since we create unexpanded nodes only from expandednodes, we can actually show for all nodes (j; y) of G, jyj < nlogn. 2Lemma 5.2 Suppose we have a function f(j) with the following conditions:1. f(i) = n for some i, 1 � i � log log logn2. f(j � 1) � f(j)log log log f(j) for all j, 1 � j � iThen f(j) < nlogn for all j, 1 � j � i.Proof By induction on j. True for j = i by assumption. Assume f(k) < nlogn for all k,j < k � i. We will show the lemma true for j.For all k with j < k � i,f(k � 1) � f(k)log log log f(k) < f(k)log log log(nlog n) = f(k)g(n)for g(n) = log log log(nlogn) = 1 + log log log n. Then we havef(j) � f(i)g(n)i�j � ng(n)log log log nby repeatedly exponentiating f(i) = n by g(n) for i � j times. To bound the exponent, wenotelog g(n)log log logn = log log logn log g(n) = log log log n log(1 + log log logn) < log logn:Thus g(n)log log logn < logn and thus f(j) < nlogn 2Since we restrict the length of y between n and nlogn and j between 1 and log log log n,there can be only a �nite number of nodes (j; y) of G.5.4.6 Processing the Dependency GraphAfter we create the dependency graph G for MAi (x) as described above, we will process eachexpanded node (j; y) of G from smallest node to (i; x) in the order also described above,possibly changing G at each step.As we process each node (j; y) of G we will either1. Set enough of the oracle A to determine Mj(y). We then encode Mj(y) in A appropri-ately with its unset encoding strings. We remove node (j; y) from G, along with all itsassociated edges.2. Make Mj improper. At this point we stop trying to encode Mi(x), invoking the �niteinjury argument since j � i. 49



3. Put node (j; y) on hold. We will restructure the dependency graph so (j; y) only hasedges to nodes (k; z) with k > j and jzj > jyj.As we process each node (j; y) of G all previously processed nodes not removed will beon hold. These held nodes depend solely on a larger index or input than (j; y). We willcombine node (j; y) with all the held nodes it depends on into one single node. We will showthe probabilistic machine corresponding to this node can not have too much power. Thismachine also depends solely on encodings of a larger index or input. We show we can applyone of the three actions above and then we process the next node. When we process node(i; x) it can not be put on hold because jxj = n and no nodes of G have input of length lessthan n. We have then succeeded in encoding MAi (x) or making it improper or making somemachine with a smaller index improper.When does a node (k; z) become unheld? The node (k; z) becomes unheld when we encodeall of the nodes (k; z) depends on. However some of these nodes might themselves be put onhold. Suppose (k; z) depends on (j; y) and we decide to put (j; y) on hold, i.e. Mk(z) dependson Mj(y), which in turn depends on larger indices. Clearly then Mk(z) depends only on whatMj(y) depends on. Possibly (k; z) never becomes unheld to achieve the goal of encoding (i; x).We will keep the following invariant: When we process node (j; y), all held nodes only haveedges to unprocessed nodes.We now give a more precise description of how we process node (j; y):1. Convert Mj(y) to M�j (y), a new machine that combines Mj(y) with all the machinesrelated to the held nodes (j; y) depends on. We describe the combining process below.We remove all edges from (j; y) to the held nodes. The machine M�j (y) depends onlyon encodings relating to larger nodes.2. We try to set the oracle to make M�Aj (y) accept with an improper probability.3. If unsuccessful, we examine the in
uencing and simulating strings of M�j (y). We arguethat the simulating strings can not a�ect the output of M�Aj (y), and we remove therelated edges from G. We set all the in
uencing strings of encodings of inputs at leastas long as y to zero, also removing those edges from G.4. If there are no more in
uencing strings then we have determined M�Aj (y). Properlyencode the oracle. Recompute every machine related to a held node with an edgeto (j; y). If we have now determined those machines, properly encode the oracle andremove those nodes from G. Finally, remove node (j; y) from G and all its remainingassociated edges.5. If in
uencing edges remain, we then place node (j; y) on hold. We combine everymachine with a hold on (j; y) with M�j (y) replacing edges to (j; y) with edges to thein
uencing nodes of (j; y).We combine a machine M with a set of machines M as follows: We simulate M choosingthe random coin tosses at random. When M asks an oracle query about the encoding of amachine M 0 2 M, we would like to respond with whether M 0 accepts. We could simulateM 0 and respond to the oracle query with the output of M 0. However with any given set ofcoin tosses, M may ask several oracle queries and each simulation could fail with probability50



up to one third. Thus we could have a large probability of getting wrong answers on someof the oracle queries. Instead we simulate M 0 n times independently and take the majorityanswer, which gives us an exponentially small error. If we can show the number of oraclequeries M can ask on any given set of coin tosses is much less than exponential then M willhave a negligible probability of making a mistake on any computation path.We call this combined machine M�. If M runs in time f(n) and the maximal runningtime of a machine in M is g(n) then an upper bound on the time of M� is nf(n)g(f(n)): Amaximum of f(n) oracle queries of length at most f(n) each simulated n times.Since we only do O(log log log n) steps of combining on any given machine we can showusing similar calculations as lemma 5.2 that every M� machine takes no more than O(nlogn)steps for every node in the graph generated by (i; x) with jxj = n.De�ne an in
uencing string of an oracle as an oracle query that appears on at least 2�n2of the paths.Lemma 5.3 If M runs in time t(n) then for any given x of length n, M(x) has at mostt(n)2n2 in
uencing strings.Proof Suppose M(x) has c computation paths. If M(x) has more than t(n)2n2 in
uencingstrings then these in
uencing strings account for more than ct(n) oracle queries. However wecan have at most ct(n) oracle queries because at most t(n) queries can be asked on each ofthe c computation paths. 2No M�j (y) for (j; y) generated by (i; x) will have more than 2n in
uencing strings forn = jxj.Note no simulating string can a�ect the probability of a machines acceptance by morethan 2�n2 . Thus if the output of a machine depends on settings of the simulating strings,then we can make the machine improper, because changing a single simulating string can notchange a machine from accepting to rejecting or vice versa.We need to show the oracle has room to encode MAj (y). Let m = jyj. Recall we encodeMAj (y) in oracle strings of the form (j; y; r) where r can be any of the 25m strings of length5m. If we used any of these strings to make a machine improper then we set the remainingencoding strings to zero, invoking the �nite injury argument. Notice the only other encodingstrings ofMj(y) that have been previously set are in
uencing strings from machines on inputsof length at most m. These are log log logm machines each asking at most 2m in
uencingstrings on 2m+1 inputs of size at most m. In
uencing strings take up a grand total of atmost 22m+1 log log logm of the encoding strings of (j; y; r) less than 2�2m of the 25m encodingstrings available. The nonin
uencing strings consist of more than 1�2�2m > 23 of the encodingstrings available and thus we can properly encode whether MAi (x) accepts.5.4.7 Generalizing the Proof for All BPP MachinesWe will give a sketch of the modi�cations of this proof necessary if we allow the probabilisticmachines to base their oracle queries on answers to previous oracle queries. The computationpaths on a machine M will now contain branches both for coin tosses and oracle queries. Wecreate G using all possible branches of both types. When we work our way processing eachnode (j; y) of G we do the following: 51



1. We create M�(j; y) as before.2. We will try all possible oracle settings of A to try to make M�A(j; y) improper. If wesucceed then we longer need to continue processing G.3. Look at the machine where it takes oracle query branches as though they were zero.We argue the simulating strings of this model can not a�ect the output of the originalmachine. As before, we set to zero in
uencing strings of an encoding of an input oflength at least jyj. If there are other in
uencing strings, we will put the machine onhold and combine the appropriate machines.4. We encode (j; y). In this case we may have introduced ones into A. We then recomputeas well as combine all machines that had a hold on (j; y).The remainder of the proof follows as before.5.5 Other ResultsCorollary 5.4 BPP = ZPTIME[n] = RTIME[n] � NTIME[n] for some oracle A.Proof Note in the proof of the main theorem we only introduce ones into the oracle whenwe make a machine improper or when we encode a machine. Except for a �nite numberof injuries, if MAi (x) rejects then we will encode MAi (x) entirely with zeros. A linear-timemachine that picks an encoding string at random will never accept in this case so the oracle wecreated actually collapses BPP to RTIME[n]. If BPP = RTIME[n] then BPP = co-RTIME[n]and thus BPP = ZPTIME[n]. 2Corollary 5.5 For some oracle A, BPP has linear size circuits.Proof Fix a probabilistic machine Mi. Look at all 2n inputs of length n. For any (i; x; r)all but 2�2n of the r's correctly encode MAi (x). Thus there exists some r0 such that (i; x; r0)correctly encodes MAi (x) for all x of length n. We can easily build a linear size circuit thatdetermines if (i; x; r0) 2 A. 2Theorem 5.6 For some oracle A, �2 � BPTIME[n].Proof Let M1;M2; : : : be a list of �2 machines, i.e. polynomial-time nondeterministicmachines with access to a NP oracle. We set up the oracle A as in the proof of the maintheorem but we encode our machines in a di�erent way.Look at the computation of Mi(x) on undetermined oracle queries. Using techniques ofWilson [W] we note there exists a setting of polynomial many oracle questions that determinesMAi (x). We set the oracle in this way to determine MAi (x). We then encode (i; x; r) properly.There are log log logn machines on 2n inputs each requiring at most a polynomial number oforacle queries to be set. We have hardly used any of the 25n oracle questions available. Thuswe will have no problem encoding MAi (x). 2Note �2 6� RTIME[n] under any oracle, because �2 � RTIME[n] would imply NP =NTIME[n], which contradicts Cook's result [C2].52



Theorem 5.7 For some oracle B, the class BPTIME[n] does not contain DTIME[n2].Proof Let M1;M2; : : : be an enumeration of linear time probabilistic Turing machines.We can assume Mi runs in time at most in for inputs of length n. In step i we do thefollowing:Let n = i + 1. Set all strings of the oracle B of length less than n2 to zero. SimulateMBi on input 1n. The machine MBi can ask questions of length at most in < n2 and thus iscompletely determined. If MBi (1n) accepts with probability less than 1=2 than we put 1n2 inB otherwise we leave 1n2 out of B.Let the language L = f1nj1n2 2 Bg. A deterministic quadratic time machine with ac-cess to B can clearly accept L but the standard diagonalization argument shows no linearprobabilistic time machine can accept L. 2Under this oracle B, BPTIME[n] does not contain either BPP or �2. We can use a similarargument to create oracles where NTIME[n] does not contain BPP and BPP does not havelinear size circuits.Finally we will show the impossibility of simultaneously collapsing both BPP and NP toprobabilistic linear time even though we can do either individually.Theorem 5.8 The following two statements can not both be true:BPP = BPTIME[n]NP � BPTIME[n]Proof Assume both statements are true. Then NP would be contained in BPP. By a resultof Zachos [Z], NP � BPP implies the entire polynomial-time hierarchy collapses to BPPand thus to BPTIME[n]. Then all languages in the polynomial-time hierarchy have n4{sizecircuits which contradicts Kannan's result [K] that �2 \�2 does not have nk{size circuits forany �xed k. 2Note this proof relativizes; thus no oracle A exists that collapses both BPP and NP toprobabilistic linear time even though we can collapse each individually.Any complexity class that contains both NP and BPP can not be collapsed to BPTIME[n].In particular, the set of all languages accepted by interactive proof systems must containlanguages not recognizable in probabilistic linear time since IP contains both NP and BPP.5.6 Conclusions and Further ResearchThis chapter shows the collapse of both BPP and �2 to both BPTIME[n] and linear sizecircuits with appropriate oracles. Also, �2 \ �2 can not be collapsed to either BPTIME[n]or linear size circuits. Probabilistic linear time does not contain all languages accepted byinteractive proof systems. However, it is unknown whether interactive proof systems canhave linear size circuits. We believe an oracle exists under which all languages accepted byinteractive proof systems have linear size circuits.Ideally the questions in this paper should be resolved in the unrelativized world. Thischapter shows solving such problems will be hard but not necessarily impossible. However itwould likely require new techniques to solve them. We conjecture none of the collapses occurin the unrelativized world. 53



This thesis does not address the original question stated in section 5.1: Do interactive proofsystems with a linear-time veri�er accept a strictly smaller set of languages than interactiveproof systems with a polynomial-time veri�er? This question was the original motivation ofthe research of this chapter but has remained unsolved.This chapter introduces several techniques for oracle construction. These methods maybe useful in the construction of oracles for other problems.This chapter gives an example of how probabilistic computation appears di�erent thandeterministic and nondeterministic computation. Perhaps there exist other results that mayhelp to understand the di�erences and similarities in the nature of probabilistic computationand other types of computation such as interactive proof systems.
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