
My Favorite Ten Complexity Theoremsof the Past DecadeLance Fortnow?Department of Computer ScienceThe University of Chicago1100 East 58th StreetChicago, Illinois 60637Abstract. We review the past ten years in computational complexitytheory by focusing on ten theorems that the author enjoyed the most.We use each of the theorems as a springboard to discuss work done invarious areas of complexity theory.1 IntroductionJust about ten years ago, in the spring of 1985, I enrolled in a graduate compu-tational complexity course taught by Juris Hartmanis at Cornell. That coursemarked the beginning of study and research in computational complexity thathas been a major part of my life ever since.As a decade has passed, I �nd it useful to review where complexity theoryhas come during those years. I have found that complexity theory has 
ourishedduring that time. No twenty page paper could possibly do justice to the past tenyears in complexity theory.Instead I have taken a di�erent approach. I have isolated ten theorems that Ihave enjoyed the most during the past decade following a few self-imposed guide-lines (See Section 1.1). I have then used these theorems as a basis to describemany other results in complexity theory using each theorem as a springboardinto a subarea of computational complexity.Please note that each area could have a twenty page survey of its own. Icannot possibly mention all the important results in any given area. Nor am Iable to bring in all the di�erent subareas in complexity theory.I have found the past ten years in complexity theory quite exciting. Cir-cuit complexity has come of age during the past ten years and has providedus with a rich source of combinatorial problems. Interactive proof systems havesurprised us all with their ability to use randomness to simulate alternation andtheir important connections to program testing and hardness of approximationalgorithms. Algebraic techniques now seem to pervade all areas of complexityespecially circuit complexity, interactive proof systems and counting complex-ity. We have also seen a lot of interest in probabilistic computation both in its? Email: fortnow@cs.uchicago.edu. Partially supported by NSF grant CCR 92-53582.



power in interactive proof systems and the many successful attempts to reduceand eliminate randomness in various computation models.Computational complexity theory has had steady growth since its inceptionin the '60s. I would guess that the number of active researchers in computationalcomplexity theory has doubled over the past decade. Complexity theory now hasa major conference, The IEEE Structure in Complexity Theory Conference, aswell as many smaller conferences and workshops.However, complexity theory has had its disappointments. We seem no closerto solving the famous P 6= NP problem than we were ten years ago. I havefound that really only one theorem (Theorem 4) gives us such fundamental re-sults about complexity classes that would make it into an undergraduate course.Despite these shortcomings, this paper shows that complexity theory has pro-vided us with great theorems throughout the past ten years.1.1 GuidelinesIn choosing the ten theorems I used the following guidelines:{ Theorems chosen from the broad area of computational complex-ity theory: There are several good theorems in other areas of theory andcomputer science. However, I have my expertise in computational complexitytheory. I would not make a good judge in other areas.{ Theorems chosen from the past ten years: It would not be fair to judgetheorems before I was actively involved in complexity theory.{ Theorems chosen for importance of result, originality and di�cultyof technique and relationships with other results in complexitytheory.{ No theorems proven at The University of Chicago: I do not want toplay favorites.{ Theorems chosen for diversity: I wanted to get a representation of manydi�erent areas of complexity theory.{ Theorems chosen as results instead of for people: I did not make anyattempt to choose people, instead I chose results that I enjoyed.2 The TheoremsWe present the ten favorite theorems in rough chronological order.2.1 Branching ProgramsIn the last decade we have seen algebra play a much larger role in complexitytheory than ever before. Usually in these results algebra plays no role in thestatement of the theorem but simple algebraic properties lead to very beautifulresults.No theorem captures this algebraic beauty more than our �rst theorem, asurprising characterization of bounded-width branching programs due to Bar-rington:



Favorite Theorem 1 ([Bar89]) Bounded-width polynomial-size branching pro-grams recognize exactly those languages in NC1.A branching program is a rooted directed acyclic graph where each internalvertex is labelled by a variable name and for each input symbol there is a singleedge leaving that vertex labelled by that symbol. The leaf vertices are labelledby \Accept" or \Reject". The machine proceeds along a root to leaf path byexamining the input of the current vertex's label and then follows the edgecorresponding to the value of that input. The machine accepts or rejects whenit comes to the corresponding leaf vertex.A language L has bounded-width branching programs if for some k, for alln there is a width k branching program using n inputs and at most nO(1) nodesthat accepts exactly those strings of length n in L.Recall that NC1 consists of the languages accepted by constant fan-in andlogarithmic depth circuits.One can easily show that every language that accepts bounded-width poly-size branching programs must lie inNC1 by divide and conquer. However, it didnot seem possible to count in a bounded-width program so many believed thatmajority, anNC1 function, did not have bounded-width branching programs. Infact, Yao [Yao83] showed a super-polynomial lower bound for width-two branch-ing programs to compute majority.Barrington used the fact that S5, the set of permutations on �ve elements,formed a nonsolvable group. More precisely there are two �ve cycles �1 = (12345)and �2 = (13542) in S5, such that �1�2��11 ��12 = (13254) is a �ve cycle. Bar-rington uses this simple fact to capture the computation of a circuit by justremembering one of these cycles.Barrington's result has some implications for the complexity class PSPACE.By the Chandra, Kozen and Stockmeyer [CKS81] result relating PSPACE withalternating polynomial-time, one can view PSPACE computation as a uniformNC1 circuit of polynomial-depth.Cai and Furst [CF91] showed that every PSPACE language L can be ac-cepted by a Turing machine that has a polynomial-size \clock", makes logarith-mic space computation then erases all but a few bits of its tape between clockticks. They prove their result by simulating an exponentially long but easily de-scribable bounded width branching program for the NC1 circuit that simulatesthe PSPACE machine.Bovet, Crescenzi and Silvestri [BCS92] developed the concept of leaf lan-guages. Think of a nondeterministic polynomial-time Turing machine M on in-put x as generating an exponentially long string M (x) read o� of the end of thecomputation paths (leaves) of M on x. Given a machine M and a set of stringsA, we de�ne the leaf language L as the set of x such that M (x) is in A.Hertrampf, Lautemann, Schwentick, Vollmer and Wagner [HLS+93] showthat any language in PSPACE has a leaf language de�ned via a regular lan-guage. Their proof uses Barrington's result by simulating the branching programwith a �nite automaton.



2.2 Bounded-Depth CircuitsIn the mid-1980's, theorems about circuits provided great excitement amongcomplexity theorists. The techniques used in complexity theory before then didnot seem to help prove the big theorems such as P 6= NP. Many theoristsbelieved that the new combinatorial and algebraic tools used in circuits couldprove some nontrivial separations in complexity classes.Although this promise has remained unful�lled, we have seen several sepa-ration results in low-level circuit classes as well as many new combinatorial andalgebraic techniques. Because of the vast amount of e�ort devoted to circuit com-plexity in the last decade we devote Sections 2.2 and 2.3 to circuit complexity.Circuit complexity also comes up in connection with many of the other theoremsmentioned in this paper.The early work in circuit complexity came out of an attempt to create anoracle to separate the polynomial-time hierarchy from PSPACE. In order tocreate such an oracle, an interesting combinatorial problem arose: One wouldneed to show that a simple problem, like parity, did not have small constantdepth circuits.Furst, Saxe and Sipser [FSS84] and Ajtai [Ajt83] independently showed thatparity does not have constant-depth polynomial-size circuits. Yao [Yao85] showeda strong enough bound to get the desired oracle separation. H�astad greatlysimpli�ed Yao's proof and achieved near tight bounds:Favorite Theorem 2 ([H�as89]) Parity does not have depth d circuits withless than 2(1=10)n1=d gates.H�astad's proof used random restrictions where some of the variables in a po-tential circuit for parity are randomly set to zero or one with some probability.H�astad's main \switching" lemma showed that a random restriction of an ANDgate of small OR gates resulted in an OR gate of small AND gates. H�astadthen used an inductive argument by converting any depth d circuit claiming tosolve parity into a depth d� 1 circuit for parity. This switching lemma has alsofound several other applications subsequently.Razborov [Raz87] and Smolensky [Smo87] show that for primes p and q,p 6= q, theMODq function requires an exponential number of gates for bounded-depth circuits with AND, OR and MODp gates. Their proof uses a new ideaof approximating bounded-depth circuits by low-degree polynomials over a �nite�eld.Linial, Mansour and Nisan [LMN93] show using Fourier Transform meth-ods how to approximate bounded-depth circuits by low-degree polynomials overthe rationals and reals. Their proof uses the H�astad switching lemma. Their re-sult has had some applications in circuit complexity and learning theory. Tarui[Tar93] shows how to approximate bounded-depth circuits by low-degree poly-nomials over the integers. His proof uses the Valiant-Vazirani [VV86] lemmadescribed in Section 2.8 and can be used to give an alternative proof of part ofTheorem 8.



2.3 Monotone CircuitsH�astad's Theorem (Theorem 2) led hope that circuit complexity could nowlead to perhaps a combinatorial separation of machine-based complexity classes.Since it is well known that every language in P has polynomial-size circuits, wecould separate P from NP by exhibiting some NP problem that does not havepolynomial-size circuits. We believe that such problems exist because Karp andLipton [KL82] showed that if every language in NP has polynomial-size circuitsthen the polynomial-hierarchy collapses.However, proving superpolynomial (or even superlinear) lower bounds forsuch an NP problem seems extremely di�cult. Razborov looked at answer-ing this question in a restricted model. In particular, he looked at monotonecircuits, i.e., circuits with no negations or negated variables. Of course a non-monotone problem cannot have such circuits so Razborov looked at a monotoneNP-complete problem, Clique:Favorite Theorem 3 ([Raz85b]) The general clique function requires expo-nentially large monotone circuits.Instead of the restriction method used by H�astad (Theorem 2), Razborov usesan approximation method. Razborov shows how to approximate each AND andOR with approximateAND and approximateOR. Each approximation cannotcause too many errors in the inputs. However, he shows the �nal approximatedcircuit must error in many inputs. Razborov then concludes that the circuitsmust have had lots of gates. Alon and Boppana [AB87] strengthen Razborov'sbounds.Initially, many thought that perhaps we could extend these techniques intothe general case. Now it seems that Razborov's theorem says much more aboutthe weakness of monotone models than about the hardness of NP problems.Razborov [Raz85a] showed that matching also does not have polynomial-sizemonotone circuits. However, we know that matching does have a polynomial-time algorithm [Edm65] and thus polynomial-size nonmonotone circuits. Tardos[Tar88] exhibited a monotone problem that has an exponential gap between itsmonotone and nonmonotone circuit complexity.Other results on monotone complexity come out of communication complex-ity. Karchmer and Wigderson [KW90] show a direct connection between a com-munication complexity game and circuit depth. They use this characterization toshow that graph connectivity requires 
(log2 n) depth in polynomial-size mono-tone circuits. Razborov [Raz90] uses more general matrix methods to prove sim-ilar lower bounds for other problems. Raz and Wigderson [RW92] show thatmonotone circuits for matching require linear depth.We also have seen several arguments that the techniques used in Theorems 2and 3 will not help us settle the big questions like P = NP. Razborov [Raz89]himself showed that approximation techniques like those used in the proof ofTheorem 3 will not work in the general case. Razborov [Raz94] later shows afragment of arithmetic strong enough to prove Theorems 2 and 3 cannot showthat NP does not have polynomial-size circuits. Razborov and Rudich [RR94]



show that under a strong cryptographic assumption, combinatorial proofs ful�ll-ing certain largeness and constructivity properties cannot show that NP doesnot have polynomial-size circuits.This last decade started with the promise of great separation results usingcombinatorial techniques but ends �nding us no closer to solving the big openquestions in complexity theory.2.4 Nondeterministic SpaceWe usually use many factors to determine the \quality" of a result. If we looksolely at the importance of the statement of the theorem one result stands out.Immerman and Szelepcs�enyi independently proved the following fundamentaltheorem about nondeterministic space complexity:Favorite Theorem 4 ([Imm88, Sze88]) Nondeterministic Space is closed un-der complementation.From the very beginnings of complexity theory, theorists have thought hardabout the relationship among the various deterministic and nondeterministictime and space classes. The fundamental theorems in complexity theory relatethese classes, such as the basic time and space hierarchy theorems due to Hart-manis and Stearns [HS65] in 1965.While the relationships between deterministic and nondeterministic timeclasses remain the single most important open area in complexity, we know muchmore about the related space complexity questions. In 1970, Savitch [Sav70]showed that one can simulate a S(n) space nondeterministic Turing machineby a S2(n) space deterministic machine. Thus, for example, NPSPACE =PSPACE.In the two and a half decades since, no one has improved upon this quadraticincrease from nondeterministic to deterministic space. From Immerman andSzelepcs�enyi, we do get that only a linear blow up going from nondeterministic(existential) space to conondeterministic (universal) space.We can think of the computation of a s(n) space-bounded Turing machineMon input x as a directed graph G on 2O(s(jxj)) nodes where each node representsa con�guration of M (x) and each edge represents a transition. Note that M (x)accepts if and only if there is a directed path from the initial con�guration toan accepting con�guration.The proof of Theorem 4 uses inductive counting to show that there is nopath from s to t in an n-node graph in nondeterministic O(logn) space. For adirected graph G and a node s of G de�ne the value ci as the number of nodesreachable from s in G by a path of length at most i. They show how using anondeterministic log space machine they can verify the value of ci inductively asi goes from 0 to n. They can then use cn to determine if a node t is not reachablefrom node s.Though Immerman and Szelepcs�enyi have similar proofs, they each wentabout this theorem from di�erent angles. Immerman has built up a theory giv-



ing logical characterizations of complexity classes. Immerman looked at a char-acterization of nondeterministic logarithmic space (NL) as sets of languagesdescribable by �rst-order expressions with transitive closure. Immerman showedthat having �rst-order with the complement of transitive closure led to the sameclass. He then translated this proof to show that NL = coNL and then that allnondeterministic space classes are closed under complementation.Szelepcs�enyi looked at the question of whether context sensitive languagesare closed under complement. This was one of the few open formal languagesquestions in Hopcroft and Ullman [HU79]. Landweber [Lan63] showed that con-text sensitive languages accepted exactly those sets in nondeterministic linearspace. Thus by proving that nondeterministic space is closed under complement,Immerman and Szelepcs�enyi also showed that context sensitive languages areclosed under complementation.Borodin, Cook, Dymond, Ruzzo and Tompa [BCD+89b] extended the in-ductive counting arguments used in the proof of Theorem 4 to show two otherresults:1. LOGCFL, the class of languages log-space reducible to context-free lan-guages, is closed under complementation.2. Undirected s�t connectivity has an errorless log-space expected polynomial-time probabilistic algorithm.2.5 Cryptographic AssumptionsIn another trend during the past decade, researchers have looked at complexityissues arising from cryptography. Cryptographers used many di�erent hardnessassumptions in order to prove the security of their various protocols. Some com-plexity theorists looked at the relative hardness of these assumptions.Cryptographers designed their protocols with either hardness assumptionsabout particular languages like factoring or discrete logarithm, or with somegeneral assumption. Usually a general assumption took one of the followingthree forms:1. One-way functions exist.2. Pseudorandom generators exist.3. Trap-door functions exist.We will not de�ne these notions formally in this paper, but keep in mind thatcryptographers usually require that hardness occurs for most inputs. It was wellknown that the second two assumptions imply the �rst but ten years ago theother directions remained open.Impagliazzo, Levin and Luby settled one relationship:Favorite Theorem 5 ([ILL89]) Pseudorandom generators can be constructedfrom any one-way function.



This problem has a very interesting history. Blum and Micali [BM84] show howto create pseudorandom generators based on the hardness of discrete logarithm.Yao [Yao82] generalizes their algorithm to create a generator based on any one-way permutation. Levin [Lev87] shows a technical one-way property of functionsthat he can use to create secure pseudorandom generators. Goldreich, Krawczykand Luby [GKL93] show how to convert a \regular" one-way function to a pseu-dorandom generator. Impagliazzo, Levin and Luby then showed Theorem 5. Fi-nally, H�astad [H�as90] extended the techniques of Impagliazzo, Levin and Lubyto show how to construct pseudo-random functions from any uniformly one-wayfunction.The proof of Theorem 5 uses a new idea of computational entropy. In otherwords, they use a one-way function to create a distribution that may not havelarge real entropy or randomness but does have large entropy in a computationalsense. They then use this pseudoentropy distribution to create the pseudoran-dom generator. Their techniques make important use of a result of Goldreichand Levin [GL89] that shows how to get a \hard-core" bit out of any one-wayfunction.The relationship between one-way functions and trap-door functions appearmuch more di�cult to resolve. Impagliazzo and Rudich [IR89] give some rela-tivization results that shed light on this di�culty.2.6 Isomorphism ConjectureBack in the late 70's, Berman and Hartmanis [BH77] looked at the structureof the known NP-complete sets via many-one reductions. They developed someconditions under which one could show two sets were isomorphic, i.e., thereexisted a polynomial-time computable polynomial-time invertible bijection re-ducing one to the other. They then showed that all the NP-complete problemsknown at that time were isomorphic. They conjectured that all NP-completeproblems are isomorphic. Since their conjecture implies P 6= NP (or one wouldhave �nite sets isomorphic to in�nite sets) they thought that maybe that di�cultproblem could be attacked by looking at the structure of complete sets.The isomorphism conjecture would imply that every NP-complete set A hasexponential density, i.e., for all n, jA \ ��nj � 2n
(1) . Mahaney [Mah82] gavesome evidence to this direction by showing that there are no sparse (polynomialdense) NP-complete sets unless P = NP.What about complete sets via other notions of reductions. Karp and Lipton[KL82] show that if there exist sparse sets NP-hard via Turing reductions thenthe polynomial-time hierarchy collapses to the second level. However, what kindof reductions to sparse sets can we rule out by only assuming P 6= NP?Many people tried extending the techniques of Mahaney. Ogiwara andWatan-abe made large progress with a brand new trick to solve the problem for boundedtruth-table reductions, i.e., nonadaptive reductions that make a constant numberof queries to the set.



Favorite Theorem 6 ([OW91]) There are no sparse sets hard for NP viapolynomial-time bounded truth-table queries unless P = NP.The proof uses a new technique known as \left-sets". For a satis�able formula,Ogiwara and Watanabe create a step function based on the lexicographicallyleast witness. They then use the reduction to �nd this step and thus a witness.Homer and Longpr�e [HL94] give a very clear proof of Theorem 6 with strongerbounds.Complexity theorists have proven many other interesting results relating tothe isomorphism conjecture in the past decade. Joseph and Young [JY85] con-jecture that one could use certain one-way functions to create NP-complete setsnonisomorphic to SAT. Ko, Long and Du [KLD87] show that one-way func-tions exist if and only if there exist two sets reducible to each other via injectivelength-increasing reductions but not isomorphic to each other. Kurtz, Mahaneyand Royer [KMR89] show that relative to a random oracle, those two sets couldbeNP-complete. On the other hand, Hartmanis and Hemachandra [HH91] showthat there exists a relativized world where no one-way functions exist but theisomorphism conjecture fails.Kurtz, Mahaney and Royer [KMR88] show there exists some set such that allsets many-one equivalent to it are isomorphic to it. Fenner, Fortnow and Kurtz[FFK92] give a relativized world where all the NP-complete sets are isomorphic,i.e., the Berman-Hartmanis conjecture holds.2.7 Simulating RandomnessProbabilistic computation has played a major role in complexity theory duringthe last decade. In Section 2.10 we will see how interactive proof system modelsuse randomness as a powerful veri�cation tool. In this section we will look at anopposite approach{to look at how we can reduce or eliminate randomness fromsome computational models.We have seen many important results in this area over the past decade. NoamNisan has played an important role in many of these results so in this section Iwould like to highlight one of his more general results:Favorite Theorem 7 ([Nis92a]) For any r(n) and s(n) there exists a pseu-dorandom generator that converts a random seed of length O(s(n) log r(n)) tor(n) bits that looks random to any algorithm using s(n) space.Nisan's generator builds on universal hashing, a technique to generate pairwiseindependence (or close to it) without using many random bits. Nisan then buildsa random string by recursively applying a speci�c universal hash function.Theorem 7 has important applications to the problem of universal traversalsequences. Aleliunas, Karp, Lipton, Lov�asz and Racko� [AKL+79] show that forevery n there exist polynomial in n length universal traversal sequences that tra-verse every connected undirected graph on n nodes. Constructing such sequenceshas remained an important open question. Istrail [Ist88] requires a di�cult proof



just to show a constructible sequence for cycles. Theorem 7 implies that nO(logn)length universal traversal sequences can be constructed in O(log2 n) space.Nisan [Nis92b] extends the techniques of Theorem 7 to show that every lan-guage accepted in randomized logarithmic space like undirected graph connec-tivity can be accepted by a deterministic Turing machine running in polynomialtime and O(log2 n) space. Also building on the generator from Theorem 7, Nisan,Szemer�edi and Wigderson [NSW92] show that undirected connectivity can becomputed in O(log1:5 n) space.Nisan and Zuckerman [NZ93] show how to simulate any randomized s(n)space bounded Turing machine that uses poly(s(n)) random bits in determin-istic space s(n). Their proof uses a procedure that extracts randomness from adefective random source using a small additional number of truly random bits.Suppose we had a probabilistic algorithm A that gave the correct answerwith probability 2=3 using r random coins. If we wanted to get this probabilityup to 1�2�k we can use the standard trick of running A O(k) times and takingmajority vote. However, this method will take O(nk) random coins.Can we achieve the same result using fewer random coins? Impagliazzo andZuckerman [IZ89] give a tight answer to this question. They show how to achievethe 1�2�k error using only O(n+k) random coins. Their proof uses a new ideaof taking a random walk on an expander graph.2.8 Counting ComplexityIn 1979, Valiant [Val79a] looked at the question of computing the permanent ofa matrix. Unlike the determinant where we knew polynomial-time algorithms,the permanent seemed a much more di�cult problem to handle.In order to capture the power of the permanent, Valiant developed a newfunction class #P. A function is in #P if there exists a nondeterministicpolynomial-time Turing machineM such that f(x) equals the number of accept-ing computations ofM (x). Valiant showed that the permanent is#P-complete.In future work, Valiant [Val79b] showed that several other natural countingquestions are #P-complete.Clearly, #P functions are hard for NP. But we knew little about theirrelationship to other complexity classes. In perhaps the best complexity result ofthe last decade, Toda showed a surprising relationship between the polynomial-time hierarchy and #P functions:Favorite Theorem 8 ([Tod91]) Every language in the polynomial-time hier-archy can be reduced in polynomial-time to a single query of a #P function.In other words, one can use counting to simulate a constant number of alterna-tions.Toda's proof uses several new and exciting ideas making this theorem oneof the prettiest structural complexity results in the last decade. Toda actuallyproves two separate theorems. First he shows how to randomly reduce everylanguage in the polynomial-time hierarchy to a �P question, where L 2 �P if



there exists a #P function f where x 2 L if and only if f(x) is odd. Then Todashows how to reduce languages probabilistically reducible to �P to a single#Pquestion.Valiant and Vazirani proved the following extremely useful lemma:Lemma1. [VV86] There exists a random reduction 
 mapping CNF formulasto CNF formulas such that for all formulas � of n variables1. If � is not satis�able then 
(�) is never satis�able.2. If � is satis�able then with probability at least 14n , 
(�) has exactly onesatisfying assignment.Papadimitriou and Zachos [PZ83] show that �P�P = �P, i.e. a �P machinethat asks arbitrary �P questions to an \oracle".Toda uses Lemma 1 in a novel way combined with the Papadimitriou andZachos result to show how to probabilistically reduce everyNP language to a �Planguage. Toda then uses a nice induction again with some new tricks to showthat every language in PH (the polynomial-time hierarchy) probabilisticallyreduces to a �P set.Toda then shows for any polynomial q, how to modify a #P function f toa new function g such that f(x) mod 2 = g(x) mod 2q(jxj) for all x 2 ��. Usingthis fact, Toda can combine the randomness and the �P question into a single#P question thus completing his proof.Toda's theorem sparked renewed interest in counting complexity. Much ofthe work has centered on classes de�ned by counting functions. We will discussthis work in Section 2.9.Toda's result also has implications in circuit complexity. Allender [All89]shows how to use Toda's proof to show that every constant depth circuit has anequivalent depth-three quasipolynomial-size threshold circuit. The class ACCconsists of those circuits accepted by bounded depth circuits with AND, ORand MODq gates where q is a �xed integer not necessarily prime. Yao [Yao90]and Beigel and Tarui [BT91] extend the ideas of Theorem 8 to show that everylanguage in ACC is recognized by depth-two circuits with a symmetric (inde-pendent of input order) gate at the root and quasipolynomial AND gates ofpolylog fan-in at the leaves.Fenner, Fortnow and Kurtz [FFK94] developed the notion of GapP. Thefunction class GapP consists of functions f(x) where there exists a nondeter-ministic polynomial-time Turing machine M where f(x) is equal to the numberof accepting paths ofM (x) minus the number of rejecting paths ofM (x). Equiv-alently,GapP consists of the closure of#P functions under subtraction. Fenner,Fortnow and Kurtz show that many of the #P closure properties also hold forGapP and that looking atGapP functions simpli�edmany counting complexityarguments.Toda and Ogiwara [TO92] extend part of Toda's work to show that everyfunction in GapPPH probabilistically reduces to a GapP function. Their re-sult shows that in addition to �P, PH probabilistically reduces to many othercounting classes such as PP (see Section 2.9).



Toda's result leads to one of the more intriguing open questions to arise inthe last decade: Does P#P = PSPACE? In other words, can counting simulatepolynomial alternations?2.9 Counting ClassesAs described in Section 2.8, counting complexity played a major role in com-plexity theory in the past decade. Instead of asking whether an NP questionhas a solution, we now ask how many. In Section 2.8 we looked at the complexityof functions de�ned this way. In this section we will look at complexity classesbased on counting functions.Gill [Gil77] in his seminal paper on probabilistic complexity classes de�nedthe basic probabilistic classes that we look at today including the class PP- Probabilistic Polynomial-time. The class PP consists of those languages ac-cepted by probabilistic polynomial-time Turing machines that accept with prob-ability greater than a half.This class also plays an important role in counting complexity. A languageL is in PP if there is some nondeterministic polynomial-time Turing machineM such that x is in L if and only if the accepting paths of M (x) outnumber therejecting paths or equivalently when some GapP function f(x) is greater thanzero.Such a class containsNP. By binary search, one can show that PPP = P#P.Thus by Theorem 8, we have that PH � PPP and thus if PP � PH then thepolynomial-time hierarchy collapses.Clearly PP is closed under complementation but surprisingly there is noeasy way to show that PP is closed under intersection. That question remainedopen until the '90s when Beigel, Reingold and Spielman showed us that PP doesindeed have this closure property.Favorite Theorem 9 ([BRS94]) PP is closed under intersection.The proof of Theorem 9 really makes use of the connection between GapPfunctions and low-degree polynomials. Beigel, Reingold and Spielman make useof the fact that there exist rational functions that very closely approximatethe absolute value function and use it to create a rational function of GapPfunctions that take on a positive value if and only if both GapP functions arepositive. They then show how to test for this condition with a PP predicate.Fortnow and Reingold [FR91] extend the techniques of Beigel, Reingold andSpielman to show that PP is closed under truth-table reductions. Beigel [Bei92]created a very useful oracle relative to which PNP 6� PP and thus PP is notclosed under Turing reductions.We have seen many other counting classes arise in complexity theory recently.We unfortunately only have room to review a few of them.The class ModkP consists of those languages L where there exists a #Pfunction f such that x 2 L if and only if f(x) mod k = 1. Papadimitriou andZachos [PZ83] look at the special case of �P =Mod2P and show that �P�P =



�P. Beigel and Gill [BG92] and Hertrampf [Her90] extend this result forModkPwhere k is prime. We have also already seen the importance that �P plays inthe proof of Theorem 8.Fenner, Fortnow and Kurtz [FFK94] formalize a notion of complexity classesde�ned via GapP functions (see Section 2.8). They de�ne a class SPP wherea language L lies in SPP if there exists a GapP function f such that f(x) =�L(x). They show that SPP is contained in every reasonable Gap-de�nableclass.2.10 Interactive Proof SystemsNo review of complexity theory in the past decade could be complete withoutmentioning interactive proof systems. In order to keep this section manageablewe will concentrate only on the complexity theoretical aspects of interactive proofsystems. I recognize the importance of many interesting zero-knowledge, programtesting and approximation results that arise from the theory of interactive proofsystems but will leave most of the discussion of them to other surveys.We highlight the last of the truly great results in interactive proof systems,a paper by Arora, Lund, Motwani, Sudan and Szegedy that characterizes NPby a simple veri�cation procedure:Favorite Theorem 10 ([ALM+92]) Every language in NP has a probabilis-tically checkable proof system where the veri�er uses only O(logn) random coinsand asks only a constant number of queries to the proof.In order to appreciate Theorem 10, we �rst give a history of the complexity ofinteractive proof systems.Goldwasser, Micali and Racko� [GMR89] and Babai [Bab85, BM88] inde-pendently developed interactive proof systems. The model has an arbitrarilypowerful prover that tries to convince an untrusting polynomial-time probabilis-tic veri�er about whether some string is in a language. Goldwasser and Sipser[GS89] show that the power of the model does not depend on whether or notthe prover can see the veri�er's coins.A bounded-round interactive proof system only allows a �xed number ofpolynomial-length messages between the prover and the veri�er. Babai [Bab85]shows that every bounded-round proof system has an equivalent system consist-ing of a single message from the veri�er followed by a single message from theprover. Boppana, H�astad and Zachos [BHZ87] show that if every coNP languagehas bounded-round interactive proof systems then the polynomial-time hierar-chy collapses to �p2 . Goldreich, Micali and Wigderson [GMW91] show that graphnonisomorphism has a bounded-round interactive proof system. As an immedi-ate corollary, we get that graph isomorphism is not NP-complete unless thepolynomial-time hierarchy collapses.Feldman [Fel86] showed that in interactive proof systems we can assume theprover runs in polynomial-space and thus every language accepted by interactiveproof systems lies in PSPACE. Lund, Fortnow, Karlo� and Nisan [LFKN92]



show that every language in PH has an (unbounded-round) interactive proofsystem. Shamir [Sha92] extends the techniques of Lund, Fortnow, Karlo� andNisan to show that, every language in PSPACE has an interactive proof system.The proof uses the low-degree structure of some #P and PSPACE-completeproblems. These results are some of the very few known that do not relativize:Fortnow and Sipser [FS88] exhibit an oracle relative to which some coNP lan-guage does not have an interactive proof system.Ben-Or, Goldwasser, Kilian and Wigderson [BGKW88] developed amultiple-prover interactive proof system where many separated provers try to convincethe veri�er that a string lies in a language. Fortnow, Rompel and Sipser [FRS94]showed that every language accepted by such proof systems lies in NEXP.Babai, Fortnow and Lund [BFL91] showed that every language in NEXP hassuch a proof system. Babai, Fortnow and Lund's proof uses a relativizable formof the Lund, Fortnow, Karlo� and Nisan protocol combined with a multilinearitytest. Feige and Lov�asz [FL92] show that very language in NEXP in fact has atwo-prover one-round proof system.Arora and Safra [AS92] de�ne a probabilistically checkable proof system wherethe prover must write down a perhaps exponentially long proof system thatthe polynomial-time probabilistic veri�er can check using random access to theproof. Fortnow, Rompel and Sipser [FRS94] show the equivalence between themultiple-prover interactive proof system model and an arbitrary probabilisticallycheckable proof. Arora, Lund, Motwani, Sudan and Szegedy, building on ideasof Arora and Safra [AS92], proved Theorem 10.Arora, Lund, Motwani, Sudan and Szegedy's result also has implicationsfor approximation problems. Papaditimitriou and Yannakakis [PY91] de�ne aclass MAXSNP of NP optimization problems such as �nding an assignmentthat maximizes the number of clauses made true in a formula. A corollary ofthe result of Arora, Lund, Motwani, Sudan and Szegedy shows that for everyMAXSNP-hard language L, there is some constant � > 0 such that one couldnot approximate problems in L within a 1 + � factor unless P = NP.3 ConclusionsOne can draw several interesting conclusions about the theorems on the list:{ No theorem stands alone. Every theorem chosen either has a long line ofresults leading up to it and/or has several results that use the theorem ortechnique in an important way.{ No one person has dominated complexity theory. Though a few strong the-orists do stand out from the last decade, no single person has proven morethan one of the theorems I have chosen.{ No single country dominates the list. The twenty authors of these ten resultsrepresent no fewer than nine separate countries.Here's to hoping that computational complexity theory can achieve as manygreat results in the next decade as it has in this past one.
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