
Tolerant Versus Intolerant Testing for Boolean Properties

Eldar Fischer∗

Faculty of Computer Science
Technion – Israel Institute of Technology

Technion City, Haifa 32000, Israel.
eldar@cs.technion.ac.il

Lance Fortnow
Department of Computer Science

University of Chicago
1100 E. 58th St., Chicago, IL 60637, USA.

fortnow@cs.uchicago.edu

Abstract

A property tester with high probability accepts inputs
satisfying a given property and rejects inputs that are far
from satisfying it. A tolerant property tester, as defined
by Parnas, Ron and Rubinfeld, must also accept inputs
that are close enough to satisfying the property. We con-
struct two properties of binary functions for which there
exists a test making a constant number of queries, but yet
there exists no such tolerant test. The first construction
uses Hadamard codes and long codes. Then, using Proba-
bilistically Checkable Proofs of Proximity as constructed
by Ben-Sasson et. al., we exhibit a property which has
constant query intolerant testers but for which any toler-
ant tester requires nΩ(1) queries.

1. Introduction

Combinatorial property testing deals with the fol-
lowing task: For a fixed ε > 0 and a fixed property R,
distinguish using as few queries as possible (with high
confidence) between the case that an input of length m
satisfies R, and the case that the input is ε-far from sat-
isfying R. In our context the inputs are boolean, and
the distance from R is measured by the minimum num-
ber of bits that have to be modified in the input in or-
der to make it satisfy R, divided by the input length
m. For the purpose here we are mainly interested in
tests that have a number of queries that depends only
on the approximation parameter ε and is independent
of the input length. Properties that admit such algo-
rithms are called testable.

Blum, Luby and Rubinfeld [7] were the first to in-
vestigate a question formulated in terms of property
testing, and Rubinfeld and Sudan [21] formally defined

∗ Research supported in part by an Israel Science Foundation
grant number 55/03.

the general notion of property testing. Goldreich, Gold-
wasser and Ron [15] investigated property testing in the
combinatorial context, where they first formalized the
testing of combinatorial objects such as graph proper-
ties. In recent years the field of property testing has
enjoyed rapid growth, as witnessed in the surveys of
Ron [20] and Fischer [11].

Since even a correct input may have a small amount
of noise, Parnas, Ron and Rubinfeld [18] have recently
started investigating property testing algorithms which
are guaranteed to accept (with high confidence) not
only inputs that satisfy the property, but also inputs
that are sufficiently close to satisfying it. The follow-
ing formal definition highlights this distinction.

Definition 1. Given a property R, an ε-test for R is a
randomized algorithm that is guaranteed to accept with
probability at least 2

3 any input that satisfies R, and reject
with probability at least 2

3 any input that is ε-far from sat-
isfying R. A 1-sided ε-test for R is an ε-test as above that
in addition is guaranteed to accept any input that satis-
fies R with probability 1.

A tolerant (ε, δ)-test for R is an ε-test for R that in
addition is guaranteed to accept with probability at least
2
3 any input that is δ-close to satisfying R, where an input
is said to be δ-close to satisfying R if it is not δ-far from
satisfying R.

Many properties that are ε-testable for every ε are
also (ε, δ)-testable for some constant δ that depends
on ε. Alon et. al. [1] implicitly give tolerant tests for
the testable graph properties, and such tests also fol-
low from the canonical testing result of Goldreich and
Trevisan [16]. Fischer and Newman [13] prove an even
stronger result that every testable graph property is
also (ε, δ)-testable for any δ < ε.

For non-Boolean properties there are easy examples
of properties where the number of queries required for
an ε-test may be much smaller than the number re-
quired for an (ε, δ)-test, such as the following example

that uses bounds on testing of functions for inverta-
bility and inverseness, implicit in the works of Ergün
et. al. [9] and Ergün, Kumar and Rubinfeld [10] about
testing for element distinctness and multiset equality.
Consider the property of a sequence of n2 numbers
consisting of (the representation of) n − 1 copies of
a function f : {1, . . . , n} → {1, . . . , n} and one copy
of its inverse function g. An easy test follows from
uniformly sampling values i and checking that indeed
f(g(i)) = g(f(i)) = i (as well as sampling from the sup-
posed n − 1 copies of f and checking that they agree
with each other on i). On the other hand, a tolerant
test would have to ignore the representation of g alto-
gether, and testing whether a function f has an inverse
is hard.

If we try to directly convert such examples to prop-
erties of Boolean functions, for example by taking the
Boolean representation of the values of f and g, then
with some tweaking we can see a difference in the num-
ber of required queries between a tolerant and an in-
tolerant test, but it will typically be between two dif-
ferent constants. This still leaves open the question of
whether a property, for which there exists a (constant
query complexity) ε-test for every ε > 0, admits also
constant query complexity tolerant tests. In this paper
we prove that this is not the case, and construct prop-
erties that have intolerant tests with a constant num-
ber of queries but no such tolerant tests.

Theorem 1.1. There exists a property R, such that for
every ε there exists an ε-test for R making a number of
queries that depends only on ε (and not on the input size),
while for every constant δ and q there exists no tolerant
(1
4 , δ)-test making only q queries (for large enough in-

puts).

The proof of the above combines results from sev-
eral topics of property testing, including one of the very
first results in this field, linearity testing [7]. Alterna-
tively, using the recently constructed Probabilistically
Checkable Proofs of Proximity by Ben-Sasson et. al. [5]
we can prove a strengthening of Theorem 1.1.

Theorem 1.2. There exists a property R, such that for
every ε there exists an ε-test for R making a number of
queries that depends only on ε (and not on the input size),
while there exists a constant c > 0 such that for every con-
stant δ there exists no tolerant (1

4 , δ)-test making only nc

queries (for large enough inputs).

The proof of the Theorem 1.2 relies on the heavy
machinery of Probabilistically Checkable Proofs. We
present its proof following a separate direct proof of
Theorem 1.1.

The rest is organized as follows. In Section 2 we
present the basic building blocks for the proof of The-

orem 1.1, for which we need results all throughout the
history of the field, and in Section 3 we string them
together proving Theorem 1.1. Section 4 contains the
proof of Theorem 1.2, which gives better lower bounds
but requires less direct methods.

2. Preliminaries

We base our first property on Hadamard codes and
long codes. An Hadamard code is a string x of length
2n, for which there exists a y such that for every i
the ith bit of x is equal to y · i (where we use the bi-
nary representation of i, and the “dot product” is de-
fined over Z2 as a · b =

⊕n
j=1 ajbj). The string x is an

Hadamard code if and only if f(i) = xi is a linear func-
tion over Z2.

Let f1, . . . , f22n be an enumeration of all of the func-
tions on inputs of length n, according to the lexico-
graphic order on the sequence of their values on the
domain 2n. A long code is a string x of length 22n

such that xj = fj(y) for every j for some fixed y of
length n. The string x is a long code if and only if
g(i) = xi is a dictator function, i.e., when there ex-
ists a j for the above g : {0, 1}2n → {0, 1} such that
for all z ∈ {0, 1}2n

, g(z) = zj . We get the correspon-
dence by setting g(i) = fi(j). The extreme redundancy
of long codes has proven itself to be very useful in com-
plexity theory, such as in the optimal inapproximabil-
ity results of H̊astad [17].

The possibility for testing that a function is an
Hadamard code in fact stems from one of the very first
results in the field of property testing.

Lemma 2.1 ([7]). For every ε, the property that a
Boolean function f : {0, 1}n → {0, 1} is linear (over
the field Z2) is testable with a 1-sided test using a num-
ber of queries that depends only on ε.

Since the property that a function h : {0, 1}n →
{0, 1} is an Hadamard code of some b1, . . . , bn is iden-
tical to the property of h being linear over Z2, we can
use the above for testing this. Testing for long codes fol-
lows from somewhat more recent results.

Lemma 2.2 ([4, 19]). For every ε, the property that
a Boolean function f : {0, 1}m → {0, 1} is a dictator
function is testable with a 1-sided test using a number of
queries that depends only on ε.

Properties of long codes of binary strings can be eas-
ily tested for, since a proper long code of a string con-
tains its corresponding value for every possible func-
tion, including the function that describes the prop-
erty to be tested for (the complete argument will be
given below).

On the other hand, there exist properties of
Hadamard codes that are hard to test – such proper-
ties have been used to prove the existence of properties
that can easily be tested for only with a quantum algo-
rithm, by Buhrman, Fortnow, Newman and Röhrig [8],
and another property of Hadamard codes with addi-
tional features was implicitly used also by Fischer et.
al. [12].

Lemma 2.3 ([8]). There exist properties of Hadamard
codes that cannot be 1

3 -tested (even by a 2-sided test) with
a constant number of queries.

The work of Fischer et. al. [12] implies that one
cannot distinguish with a constant number of queries
between a linear Boolean function depending on ex-
actly b 1

2nc variables and one that depends on exactly
b 1

2nc + 2 variables, and so the property of being an
Hadamard code of a string with exactly b 1

2nc nonzero
bits is not testable.

We use such a property of an Hadamard code be-
cause it will always yield to an easy “long-code assisted
test”, despite the Hadamard code being hard to test in
an “unassisted” manner. The notion of “assisted tests”
somewhat reminds one of the essence of the work of
Ergün, Kumar and Rubinfeld [10] and Batu, Rubinfeld
and White [3], only here the “witness” can have expo-
nential size because we can do weighting by replication.
For the construction with the better lower bounds, we
will use a strong result of Ben-Sasson et. al. [5] about
assisted tests.

With all the above components in hand, we are now
ready to construct a property that has an easy test but
not a tolerant one.

3. Proof of Theorem 1.1

In the following, for a parameter n, we consider in-
puts whose size is (2n + 1)22n

. We consider the input
as composed of one function L from the set of func-
tions {f |f : {0, 1}n → {0, 1}} to {0, 1} (the function
L takes 22n

bits to write down), and l = 22n

func-
tions h1, . . . , hl from {0, 1}n to {0, 1} (each such func-
tion takes 2n bits to write down).

We pick a property U of Hadamard codes that satis-
fies Lemma 2.3, and define Property R as the property
of the input satisfying the following: All the functions
h1, . . . , hl are identical and are equal to an Hadamard
code of some x ∈ {0, 1}n that satisfies property U , and
the function L is identical to the long code of this same x.

Lemma 3.1. Property R admits a 1-sided ε-test with a
constant number of queries for every ε.

Proof. We assume that ε < 1
8 , and do the following.

• Repeating independently 100ε−1 times, we select
a uniformly random x ∈ {0, 1}n, a uniformly ran-
dom 1 ≤ i ≤ l, and check that the bit correspond-
ing to h1(x) is indeed equal to that of hi(x). If any
of these checks fails, we reject the input.

• We perform a 1
2ε-test of h1(x) for the property of

being a linear function (i.e. being an Hadamard
code of some b1, . . . , bn). We amplify the success
probability of the test to 19

20 , so that the probabil-
ity for a false positive answer will be no greater
than 1

20 .

• We perform an ε-test of L(f) for the property of
being a long code of some x ∈ {0, 1}n. We amplify
the success probability of the test also here to 19

20 .

• Denote for any y ∈ {0, 1}n by χy : {0, 1}n → {0, 1}
the corresponding Hadamard code (i.e. for y =
(a1, . . . , an), we set χy(b1, . . . , bn) =

⊕n
i=1 aibi).

We perform 100 iterations of the following: We
select a uniformly random y ∈ {0, 1}n, a uni-
formly random f : {0, 1}n → {0, 1}, and check
that h(y) = L(f) ⊕ L(f ⊕ χy), rejecting the in-
put if any of the checks fail.

• Now let u(x) : {0, 1}n → {0, 1} denote the indi-
cator function of Property U , i.e. u(x) = 1 if and
only if the Hadamard code of x satisfies Property
U . We now perform 100 iterations of choosing a
uniformly random f : {0, 1}n → {0, 1}, and check-
ing that L(f) ⊕ L(f ⊕ u) = 1, rejecting if any of
these checks fail.

On one hand, it is clear that an input that satisfies
Property R will be accepted (with probability 1). On
the other hand, if an input is accepted with probability
at least 2

3 , then all of the following hold.

• The portion of the input that corresponds to
h2(x), . . . , hl(x) is 1

2ε-close to being l − 1 copies
of the function h1(x).

• h1(x) is 1
2ε-close to being the Hadamard code of

some (b1, . . . , bn) ∈ {0, 1}n. With the previous
item this means that the restriction of the input
to h1(x), . . . , hl(x) is ε-close to being l copies of
the Hadamard code of b1, . . . , bn.

• L(f) is ε-close to being a long code of some
(c1, . . . , cn) ∈ {0, 1}n.

• (b1, . . . , bn) = (c1, . . . , cn). Otherwise every itera-
tion of the check in the fourth item above would
fail with probability at least 1

8 . This is since do-
ing such a check between an actual Hadamard code
and long code of differing strings would fail with
probability 1

2 ; the additional loss of 3
8 in the prob-

ability is because h1(x) is only guaranteed to be

1
16 close to being the Hadamard code of b1, . . . , bn,
and L(f) is only guaranteed to be 1

8 -close to the
long code of c1, . . . , cn.

• b1, . . . , bn satisfy Property U (and with the above
items this means that the input as a whole is in
fact ε-close to satisfying Property R). The reason
is that otherwise every iteration of the check in
the fifth item of the test would fail with probabil-
ity at least 1− 2ε > 3

4 .

The above complete the proof of the test.

Lemma 3.2. There exist no constant δ and q, for which
property R can be (1

4 , δ)-tested for every n using only q
queries.

Proof. We may assume that δ < 1
12 . We show that if

there exists a (1
4 , δ)-test for R, then for every n large

enough there exists a 1
3 -test for U (not necessarily a

tolerant one) making only q queries, which is known
not to exist by Lemma 2.3.

Given an input h : {0, 1}n → {0, 1} which we would
like to test for Property U , we construct an input for
Property R as follows: h1, . . . , hl will all be identical to
h, and L will be arbitrarily set to the all-zero function.
Note that any single query to the new input can be an-
swered by making a single query (or no query) to the
original input.

The next thing to note is that for n large enough,
if h satisfies U then the new input is δ-close to satisfy-
ing R, because for n large enough the number of bits
in the function L is less than δ of the total number of
bits in the input. On the other hand, if the new input
is 1

4 -close to satisfying Property R, then h is necessar-
ily 1

3 -close to satisfying Property U , because of what
Property R states for h1, . . . , hl. We thus obtain our
1
3 -test for U .

The above two lemmas complete Theorem 1.1.

4. PCPs of Proximity and Theorem 1.2

This section gives a proof of Theorem 1.2 that
strengthens Theorem 1.1. We first define the construc-
tions and cite the main lemma that we will use.

Property testing has some common origins with
Probabilistically Checkable Proofs, and Ergün et.
al. [10] and Batu et. al. [3] investigated this connec-
tion further, with regards to using a PCP witness for
an input.

Definition 2. Given a promise problem and a Boolean
input v1, . . . , vn, a (1-sided) PCP witness for the prob-
lem is a set of functions f1, . . . , fl, where l is polynomial
in n, satisfying the following.

• Each of the functions has a number of variables
bounded by a constant independent of n, that may
include variables from v1, . . . , vn as well as from an
additional set of (polynomially many) Boolean vari-
ables w1, . . . , wm.

• If v1, . . . , vn should be accepted according to the
promise problem, then there exists an assignment to
w1, . . . , wm that together with v1, . . . , vn satisfies all
the functions f1, . . . , fl.

• If v1, . . . , vn should be rejected according to the
promise problem, then there exists no assign-
ment to w1, . . . , wm for which more then 1

2 l of the
functions will be satisfied.

A PCP of Proximity is a PCP witness for the promise
problem of accepting all inputs that satisfy a given prop-
erty P , and rejecting all inputs that are ε-far from P for
a given distance parameter ε.

A recent strong result, concerning the existence of
PCPs of Proximity for all properties decidable in poly-
nomial time, is given by Ben-Sasson et. al. [5].

Lemma 4.1 (Special case of [5]). If P is a prop-
erty of v1, . . . , vn that is decidable by a circuit of size k,
and t < log log k/ log log log k, then there exists a PCP
of Proximity for P with distance parameter 1/t. More-
over, the number of additional variables and the number
of functions are both bounded by k2, and each function de-
pends on O(t) variables.

On the other hand, there is a plethora of lower
bound results for properties which belong to low com-
plexity classes (e.g. [2, 6, 14]) and most of them would
work fine for us. We will choose the property U =
{uuRvvR|u, v ∈ {0, 1}∗}, where wR denotes the rever-
sal of the word w.

Lemma 4.2 (Alon et. al. [2]). Property U can be
computed in polynomial time, while any 1

3 -test for U re-
quires at least Ω(

√
n) queries (where n is the input size).

We let p(x) be a polynomial bound on the circuit
size for deciding Property U .

To construct the property to fulfill Theorem 1.2,
we first assume without loss of generality that
n divides p(n) and set tn = blog log log p(n)c <
log log p(n)/ log log log p(n) for sufficiently large n. We
consider inputs of size n(p(n))2. We label the first
(n − tn)(p(n))2 bits by (vi,j)1≤i≤n,1≤j≤(n−tn)(p(n))2/n,
and the rest of the bits by (wi,j)1≤i≤(p(n))2,1≤j≤tn

.
We define Property R as that of the input satisfy-
ing all of the following.

• For every i, 1 ≤ i ≤ n, and j, 1 < j ≤ (n −
tn)(p(n))2, vi,1 = vi,j .

• v1,1, . . . , vn,1 satisfy Property U .

• For every j, 1 ≤ j ≤ tn, w1,j , . . . , w(p(n))2,j is an
assignment satisfying the PCP of Proximity (from
Lemma 4.1) with distance parameter 1/j, with re-
gards to v1,1, . . . , vn,1.

We now prove that this is the required property.

Lemma 4.3. Property R is (non-tolerantly) testable.

Proof. For every ε we show how for n large enough we
can ε-test for R using a constant number of queries (and
for smaller n we can just read the entire input). We As-
sume that ε < 1

8 and that n is large enough to satisfy
tn > 3/ε, and do the following.

• Repeating independently 100ε−1 times, we select
a uniformly random i, 1 ≤ i ≤ n, a uniformly ran-
dom j, 1 < j ≤ (n − tn)(p(n))2, and check that
vi,1 = vi,j . If any of these checks fails, we reject
the input.

• For j = d3/εe, for 100 iterations we select a uni-
formly random i, 1 ≤ i ≤ l (where l is the number
of functions in the corresponding PCP of Proxim-
ity from Lemma 4.1), and each time test that the
function fi is satisfied with regards to v1,1, . . . , vn,1

and w1,j , . . . , w(p(n))2,j .

This test makes a constant number of queries, as the
PCP of Proximity was invoked with a distance param-
eter that depends only on ε. It is also clear that if the
input satisfies Property R, then it is accepted by this
tester with probability 1.

On the other hand, if the input is satisfied with
probability at least 1

3 , then v1,1, . . . , vn,1 is 1
3ε-close

to some v′1,1, . . . , v
′
n,1 satisfying Property U , and the

rest of the vi,j are 1
3ε-close to satisfying the equali-

ties with v1,j and thus are 2
3ε-close to being copies of

the v′1,1, . . . , v
′
n,1 from above. But as the wi,j form less

than a 1
3ε fraction of the total input size, this means

that the input is ε-close to satisfying Property R.

Lemma 4.4. There exists some c > 0, so that there ex-
ists no δ for which Property R can be (1

4 , δ)-tested even
with nc queries.

Proof. We assume that δ < 1
12 . Let c1 > 0 be such that

Property U cannot be 1
3 -tested with nc1 queries, and

let c2 > 0 be such that n(p(n))2 < n1/c2 for n > 1.
We set c = c1c2, and prove that a (1

4 , δ)-test with nc

queries for Property R implies (for all n large enough)
a 1

3 -test with nc queries for Property U , a contradic-
tion.

Given an input v1, . . . , vn which we would like to
1
3 -test, we construct an input of size n(p(n))2 to test
for Property R as follows. We set vi,j = vi for all

1 ≤ i ≤ n and 1 ≤ j ≤ (n − tn)(p(n))2/n, and ar-
bitrarily set wi,j = 0. As in Section 3, it is clear that a
query to the new input can be simulated by perform-
ing at most one query to the original input. Also, for
n large enough, if v1, . . . , vn satisfy Property U then
the new input is δ-close to satisfying Property R (be-
cause the wi,j form less than a δ fraction of the in-
put bits), and on the other hand if the new input is
1
4 -close to satisfying Property R then the original in-
put was 1

3 -close to satisfying Property U .
The above implies that a (1

4 , δ)-test for Property R,
that make at most (n(p(n))2)c < nc1 queries, would
yield a 1

3 -test for Property U , that makes at most nc1

queries, a contradiction.

The above two lemmas complete Theorem 1.2.

A concluding comment

Theorem 1.2 gives an example of a testable prop-
erty for which there is an nc lower bound for tolerant
(ε, δ)-testing (for some ε, and any constant δ). It would
be interesting to know whether every (non-tolerantly)
testable Boolean property admits a tolerant test with
a sub-linear number of queries.

Acknowledgments

We thank Prahladh Harsha for his help with Proba-
bilistically Checkable Proofs of Proximity, particularly
with the statement of Lemma 4.1.

References

[1] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy, Ef-
ficient testing of large graphs, Combinatorica 20 (2000),
451–476.

[2] N. Alon, M. Krivelevich, I. Newman and M. Szegedy,
Regular languages are testable with a constant number
ofqueries,SIAMJournal onComputing30 (2001), 1842–
1862.

[3] T. Batu, R. Rubinfeld and P. White, Fast approxima-
tion PCPs for multidimensional bin-packing problems,
Proceedings of the 3rd International Workshop on Ran-
domization andApproximationTechniques inComputer
Science (1999), 246–256.

[4] M.Bellare,O.Goldreich andM. Sudan, Free bits, PCPs,
and nonapproximability – towards tight results, SIAM
Journal on Computing 27 (1998), 804–915.

[5] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and
S. Vadhan, Robust PCPs of Proximity, shorter PCPs
and applications to coding,Proceedings of the 36th ACM
STOC (2004), 1–10.

[6] E. Ben-Sasson, P. Harsha and S. Raskhodnikova, Some
3CNF properties are hard to test, SIAM Journal on
Computing, to appear (a preliminary version appeared
in Proc. 35th STOC, 2003).

[7] M. Blum, M. Luby and R. Rubinfeld, Self-testing/cor-
recting with applications to numerical problems. Jour-
nal of Computer and SystemSciences47 (1993), 549–595
(a preliminary version appeared in Proc. 22nd STOC,
1990).

[8] H. Buhrman, L. Fortnow, I. Newman and H. Röhrig,
Quantum property testing, Proceedings of the 14th

ACM-SIAM SODA (2003), 480–488.

[9] F. Ergün, S. Kannan, R. Kumar, R. Rubinfeld and
M. Viswanathan, Spot checkers, Journal of Computer
and System Science 60 (2000), 717–751.

[10] F. Ergün, R. Kumar and R. Rubinfeld, Fast approxi-
mate PCPs, Proceedings of the 31st ACM STOC (1999),
41–50.

[11] E. Fischer, The art of uninformed decisions: A primer to
property testing, The Bulletin of the European Associa-
tion forTheoretical Computer Science75 (2001), 97-126.

[12] E. Fischer, G. Kindler, D. Ron, S. Safra, and
A. Samorodnitsky, Testing juntas, Journal of Com-
puter and System Sciences (43rd FOCS special issue) 68
(2004), 753–787.

[13] E. Fischer and I. Newman, Testing versus estimation of
graph properties, Proceedings of the 37th ACM STOC
(2005), to appear.

[14] E. Fischer, I. Newman and J. Sgall, Functions that have
read-twice constant width branching programs are not
necessarily testable,Random Structures and Algorithms
24 (2004), 175–193.

[15] O. Goldreich, S. Goldwasser and D. Ron, Property test-
ing and its connection to learning and approximation,
Journal of the ACM 45 (1998), 653–750 (a preliminary
version appeared in Proc. 37th FOCS, 1996).

[16] O.Goldreich andL.Trevisan,Three theorems regarding
testing graph properties, Random Structures and Algo-
rithms 23 (2003), 23–57.

[17] J. H̊astad, Some optimal inapproximability results,
Journal of the ACM 48 (2001), 798–859.

[18] M. Parnas, D. Ron, and R. Rubinfeld, Tolerant property
testing and distance approximation, manuscript (avail-
able as ECCC TR04-010).

[19] M. Parnas, D. Ron, and A. Samorodnitsky, Testing ba-
sic Boolean formulae, SIAM Journal on Discrete Math-
ematics, 16 (2002), 20–46.

[20] D. Ron, Property testing (a tutorial), In: Handbook
of Randomized Computing (edited by S. Rajasekaran,
P. M. Pardalos, J. H. Reif and J. D. P. Rolim), Kluwer
Press (2001), Vol. II Chapter 15.

[21] R. Rubinfeld and M. Sudan, Robust characterization of
polynomialswithapplications toprogramtesting,SIAM
Journal ofComputing25 (1996), 252–271 (first appeared
as a technical report, Cornell University, 1993).

